

An Introduction to

Programming with C++

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

E i g h t h E d i t i o n

An Introduct ion to

Programming w ith C++

D i a n e Z a k

A u s t r a l i a • B r a z i l • M e x i c o • S i n g a p o r e • U n i t e d K i n g d o m • U n i t e d S t a t e s

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

 Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An Introduction to Programming with C++,
Eighth Edition
Diane Zak

Product Director: Kathleen McMahon

Product Team Manager: Kristin McNary

Senior Product Manager: Jim Gish

Senior Content Developer: Alyssa Pratt

Product Assistant: Abigail Pufpaff

Marketing Manager: Eric LaScola

Senior Production Director:
Wendy Troeger

Production Director: Patty Stephan

Senior Content Project Manager:
Jennifer K. Feltri-George

Managing Art Director: Jack Pendleton

Cover image(s):
© Rudchenko Liliia/Shutterstock.com

Unless otherwise noted all screenshots are
courtesy of Microsoft Corporation

Open Clip art source: OpenClipArt

Printed in the United States of America
Print Number: 01	 Print Year: 2016

© 2016 Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

Library of Congress Control Number: 2015940474
ISBN: 978-1-285-86011-4

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning solutions
with employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

For your course and learning solutions, visit www.cengage.com

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com

Notice to the Reader
Publisher does not warrant or guarantee any of the products described herein or
perform any independent analysis in connection with any of the product informa-
tion contained herein. Publisher does not assume, and expressly disclaims, any
obligation to obtain and include information other than that provided to it by the
manufacturer. The reader is expressly warned to consider and adopt all safety
precautions that might be indicated by the activities described herein and to avoid
all potential hazards. By following the instructions contained herein, the reader
willingly assumes all risks in connection with such instructions. The publisher
makes no representations or warranties of any kind, including but not limited to,
the warranties of fitness for particular purpose or merchantability, nor are any such
representations implied with respect to the material set forth herein, and the
publisher takes no responsibility with respect to such material. The publisher shall
not be liable for any special, consequential, or exemplary damages resulting, in
whole or part, from the readers’ use of, or reliance upon, this material.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at www.cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-200-203

v

	 Preface . xiv

	 Read This Before You Begin xvi i i

Chapter 1	A n Introduct ion to Programming 1

Chapter 2	 Beginn ing the Problem-Solv ing Process 23

Chapter 3	 Var iables and Constants 51

Chapter 4	 Complet ing the Problem-Solv ing Process 75

Chapter 5	 The Select ion Structure 113

Chapter 6	 More on the Select ion Structure 157

Chapter 7	 The Repet i t ion Structure 201

CHAPTER 8	 More on the Repet i t ion Structure 247

CHAPTER 9	 Va lue -Return ing Funct ions 279

CHAPTER 10	 Void Funct ions . 329

CHAPTER 11	 One-Dimensional Arrays 369

CHAPTER 12	 Two-Dimensional Arrays 425

CHAPTER 13	 Str ings . 461

CHAPTER 14	 Sequent ia l Access F i les 511

CHAPTER 15	 C lasses and Objects 551

Appendix A	 C++ Keywords . 593

Appendix B	A SCII Codes . 595

Appendix C	 Common Syntax Errors 597

Appendix D	 How To Boxes . 599

	I ndex . 603

	 The Answers.pdf and data files can be found online at CengageBrain.com.

Brief Contents

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

vi

Contents

	 Preface . xiv
	 Read This Before You Begin xvi i i

Chapter 1	A n Introduct ion to Programming 1

Programming a Computer . 2
The Programmer’s Job . 2
Employment Opportunities . 2

A Brief History of Programming Languages . 3
Machine Languages . 3
Assembly Languages . 3
High-Level Languages . 4

Control Structures . 5
The Sequence Structure . 5
The Selection Structure . 6
The Repetition Structure . 8

LAB 1-1  Stop and Analyze . 10
LAB 1-2  Plan and Create . 10
LAB 1-3  Modify . 11
LAB 1-4  What’s Missing? . 11
Chapter Summary . 12
Key Terms . 12
Review Questions . 13
Exercises . 14

Chapter 2	 Beginn ing the Problem-Solv ing Process 23

Problem Solving . 24
Solving Everyday Problems . 24
Creating Computer Solutions to Problems . 25
Step 1—Analyze the Problem . 26

Hints for Analyzing Problems . 26
Step 2—Plan the Algorithm . 28
Step 3—Desk-Check the Algorithm . 31
The Gas Mileage Problem . 34
LAB 2-1  Stop and Analyze . 36
LAB 2-2  Plan and Create . 36
LAB 2-3  Modify . 39
LAB 2-4  What’s Missing? . 39
LAB 2-5  Desk-Check . 40
LAB 2-6  Debug . 40

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

﻿ 	﻿

vii

Chapter Summary . 42
Key Terms . 43
Review Questions . 43
Exercises . 45

Chapter 3	 Var iables and Constants 51

Beginning Step 4 in the Problem-Solving Process 52
Internal Memory . 52

Selecting a Name for a Memory Location . 53
Revisiting the Addison O’Reilly Problem from Chapter 2 54

Selecting a Data Type for a Memory Location 55
How Data Is Stored in Internal Memory . 57

Selecting an Initial Value for a Memory Location 60
Declaring a Memory Location . 62
LAB 3-1  Stop and Analyze . 64
LAB 3-2  Plan and Create . 65
LAB 3-3  Modify . 67
LAB 3-4  What’s Missing? . 67
LAB 3-5  Desk-Check . 67
LAB 3-6  Debug . 68
Chapter Summary . 68
Key Terms . 69
Review Questions . 70
Exercises . 71

Chapter 4	 Complet ing the Problem-Solv ing Process 75

Finishing Step 4 in the Problem-Solving Process 76
Getting Data from the Keyboard . 76
Displaying Messages on the Computer Screen 78
Arithmetic Operators in C++ . 81

Type Conversions in Arithmetic Expressions 82
The static_cast Operator . 83

Assignment Statements . 84
Arithmetic Assignment Operators . 87

Step 5—Desk-Check the Program . 88
Step 6—Evaluate and Modify the Program . 90
LAB 4-1  Stop and Analyze . 94
LAB 4-2  Plan and Create . 95
LAB 4-3  Modify . 98
LAB 4-4  What’s Missing? . 98
LAB 4-5  Desk-Check . 99
LAB 4-6  Debug . 99
Chapter Summary . 99
Key Terms . 101
Review Questions . 102
Exercises . 104

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C o n t e n t s ﻿

viii

Chapter 5	 The Select ion Structure 113

Making Decisions . 114
Flowcharting a Selection Structure . 116
Coding Selection Structures in C++ . 118
Comparison Operators . 120
Swapping Numeric Values . 121
Displaying the Area or Circumference . 124
Logical Operators . 126
Using the Truth Tables . 129
A Different Version of the Area or Circumference Program 130
Summary of Operators . 132
Converting a Character to Uppercase or Lowercase 133
Formatting Numeric Output . 134
LAB 5-1  Stop and Analyze . 137
LAB 5-2  Plan and Create . 138
LAB 5-3  Modify . 143
LAB 5-4  What’s Missing? . 143
LAB 5-5  Desk-Check . 143
LAB 5-6  Debug . 144
Chapter Summary . 144
Key Terms . 145
Review Questions . 146
Exercises . 147

Chapter 6	 More on the Select ion Structure 157

Nested Selection Structures . 158
Flowcharting a Nested Selection Structure 161
Coding a Nested Selection Structure . 163
Logic Errors in Selection Structures . 165

First Logic Error: Using a Compound Condition Rather Than a Nested
Selection Structure . 167

Second Logic Error: Reversing the Outer and Nested Decisions 169
Third Logic Error: Using an Unnecessary Nested Selection Structure 169
Fourth Logic Error: Including an Unnecessary Comparison in a Condition 170

Multiple-Alternative Selection Structures . 173
The switch Statement . 174

LAB 6-1  Stop and Analyze . 177
LAB 6-2  Plan and Create . 178
LAB 6-3  Modify . 182
LAB 6-4  What’s Missing? . 182
LAB 6-5  Desk-Check . 183
LAB 6-6  Debug . 183
Chapter Summary . 184
Key Terms . 184
Review Questions . 185
Exercises . 187

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

﻿ 	﻿

ix

Chapter 7	 The Repet i t ion Structure 201

Repeating Program Instructions . 202
Using a Pretest Loop to Solve a Real-World Problem 204

Flowcharting a Pretest Loop . 206
The while Statement . 208
Using Counters and Accumulators . 211

The Stock Price Program . 213
Counter-Controlled Pretest Loops . 217
The for Statement . 219

The Total Payroll Program . 220
The Tip Program . 223
Another Version of the Commission Program 224
The Even Integers Program . 226

LAB 7-1  Stop and Analyze . 229
LAB 7-2  Plan and Create . 230
LAB 7-3  Modify . 234
LAB 7-4  What’s Missing? . 234
LAB 7-5  Desk-Check . 234
LAB 7-6  Debug . 234
Chapter Summary . 235
Key Terms . 236
Review Questions . 236
Exercises . 239

Chapter 8	 More on the Repet i t ion Structure 247

Posttest Loops . 248
Flowcharting a Posttest Loop . 250
The do while Statement . 252
Nested Repetition Structures . 254
The Clock Program . 255
The Car Depreciation Program . 258
LAB 8-1  Stop and Analyze . 262
LAB 8-2  Plan and Create . 263
LAB 8-3  Modify . 267
LAB 8-4  What’s Missing? . 267
LAB 8-5  Desk-Check . 267
LAB 8-6  Debug . 268
Chapter Summary . 268
Key Terms . 268
Review Questions . 269
Exercises . 270

Chapter 9	 Va lue -Return ing Funct ions 279

Functions . 280
Value-Returning Functions . 281

The pow Function . 281

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C o n t e n t s ﻿

x

The sqrt Function . 282
The Hypotenuse Program . 283

The rand, srand, and time Functions . 285
The Guessing Game Program . 289

Creating Program-Defined Value-Returning Functions 291
Calling a Function . 293

The Savings Account Program . 295
Function Prototypes . 298

Completing the Savings Account Program 298
The Scope and Lifetime of a Variable . 304
LAB 9-1  Stop and Analyze . 305
LAB 9-2  Plan and Create . 307
LAB 9-3  Modify . 314
LAB 9-4  What’s Missing? . 314
LAB 9-5  Desk-Check . 315
LAB 9-6  Debug . 316
Chapter Summary . 316
Key Terms . 317
Review Questions . 318
Exercises . 320

Chapter 10	 Void Funct ions . 329

Functions . 330
Creating Program-Defined Void Functions . 331
Passing Variables to a Function . 337

Reviewing Passing Variables by Value . 338
Passing Variables by Reference . 341

LAB 10-1  Stop and Analyze . 345
LAB 10-2  Plan and Create . 347
LAB 10-3  Modify . 356
LAB 10-4  What’s Missing? . 356
LAB 10-5  Desk-Check . 356
LAB 10-6  Debug . 357
Chapter Summary . 357
Key Terms . 358
Review Questions . 358
Exercises . 360

Chapter 11	 One-Dimensional Arrays 369

Arrays . 370
One-Dimensional Arrays . 370

Declaring and Initializing a One-Dimensional Array 371
Entering Data into a One-Dimensional Array 373
Displaying the Contents of a One-Dimensional Array 375

The Calories Program . 376
Passing a One-Dimensional Array to a Function 382
Calculating a Total and an Average . 384

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

﻿ 	﻿

xi

The Social Media Program—Searching an Array 385
The Currency Converter Program—Accessing an Individual Element 388
The Highest Number Program—Finding the Highest Value 391
Parallel One-Dimensional Arrays . 396
Sorting the Data Stored in a One-Dimensional Array 399
LAB 11-1  Stop and Analyze . 406
LAB 11-2  Plan and Create . 407
LAB 11-3  Modify . 411
LAB 11-4  What’s Missing? . 411
LAB 11-5  Desk-Check . 411
LAB 11-6  Debug . 412
Chapter Summary . 413
Key Terms . 413
Review Questions . 414
Exercises . 416

Chapter 12	 Two-Dimensional Arrays 425

Using Two-Dimensional Arrays . 426
Declaring and Initializing a Two-Dimensional Array 427
Entering Data into a Two-Dimensional Array 428
Displaying the Contents of a Two-Dimensional Array 431
The Chapton Company Program . 432

Accumulating the Values Stored in a Two-Dimensional Array 434
Searching a Two-Dimensional Array . 436
Passing a Two-Dimensional Array to a Function 443
LAB 12-1  Stop and Analyze . 444
LAB 12-2  Plan and Create . 446
LAB 12-3  Modify . 449
LAB 12-4  What’s Missing? . 449
LAB 12-5  Desk-Check . 449
LAB 12-6  Debug . 450
Chapter Summary . 450
Key Terms . 450
Review Questions . 451
Exercises . 452

Chapter 13	 Str ings . 461

The string Data Type . 462
Getting String Input from the Keyboard . 462
The Primrose Auction House Program . 464

The ignore Function . 468
Determining the Number of Characters in a string Variable 471
Accessing the Characters in a string Variable 473
Searching the Contents of a string Variable 477
Removing Characters from a string Variable 481
Replacing Characters in a string Variable 484
Inserting Characters Within a string Variable 485

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C o n t e n t s ﻿

xii

Duplicating a Character Within a string Variable 487
Concatenating Strings . 489
LAB 13-1  Stop and Analyze . 491
LAB 13-2  Plan and Create . 492
LAB 13-3  Modify . 497
LAB 13-4  What’s Missing? . 497
LAB 13-5  Desk-Check . 498
LAB 13-6  Debug . 498
Chapter Summary . 499
Key Terms . 500
Review Questions . 501
Exercises . 504

Chapter 14	 Sequent ia l Access F i les 511

File Types . 512
Creating File Objects . 512
Opening a Sequential Access File . 514

Determining Whether a File Was Opened Successfully 516
Writing Data to a Sequential Access File . 518
Reading Information from a Sequential Access File 519

Testing for the End of a Sequential Access File 522
Closing a Sequential Access File . 522
The eBook Collection Program . 523
LAB 14-1  Stop and Analyze . 528
LAB 14-2  Plan and Create . 530
LAB 14-3  Modify . 539
LAB 14-4  What’s Missing? . 540
LAB 14-5  Desk-Check . 540
LAB 14-6  Debug . 541
Chapter Summary . 541
Key Terms . 542
Review Questions . 543
Exercises . 544

Chapter 15	 C lasses and Objects 551

Object-Oriented Terminology . 552
Defining a Class in C++ . 553
Instantiating an Object and Referring to a Public Member 556
Ex�ample 1—A Class That Contains a Private Data Member

and Public Member Methods 557
Header Files . 561

Example 2—A Class That Contains a Parameterized Constructor 562
Example 3—Reusing a Class . 565
Example 4—A Class That Contains Overloaded Methods 566
LAB 15-1  Stop and Analyze . 569
LAB 15-2  Plan and Create . 571
LAB 15-3  Modify . 576

C o n t e n t s ﻿

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

﻿ 	﻿

xiii

LAB 15-4  What’s Missing? . 576
LAB 15-5  Desk-Check . 576
LAB 15-6  Debug . 578
Chapter Summary . 578
Key Terms . 579
Review Questions . 580
Exercises . 581

Appendix A	 C++ Keywords . 593

Appendix B	A SCII Codes . 595

Appendix C	 Common Syntax Errors 597

Appendix D	 How To Boxes . 599

	I ndex . 603

	 The Answers.pdf and data files can be found online at CengageBrain.com.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xiv

An Introduction to Programming with C++, Eighth Edition uses the C++ programming language
to teach programming concepts. This book is designed for a beginning programming course.
Although the book provides instructions for using several specific C++ compilers (such as
Microsoft® Visual C++®, Dev-C++, and Code::Blocks), it can be used with most C++ compilers,
often with little or no modification.

Organization and Coverage
An Introduction to Programming with C++, Eighth Edition contains 15 chapters and several
appendices. In the chapters, students with no previous programming experience learn how to
plan and create well-structured programs. They also learn how to write programs using the
sequence, selection, and repetition structures, as well as how to create and manipulate functions,
sequential access files, arrays, strings, classes, and objects.

Approach
An Introduction to Programming with C++, Eighth Edition is distinguished from other textbooks
because of its unique approach, which motivates students by demonstrating why they need to
learn the concepts and skills presented. Each chapter begins with an introduction to one or more
programming concepts. The concepts are illustrated with code examples and sample programs.
The sample programs allow the student to observe how the current concept can be used before
they are introduced to the next concept. The concepts are taught using standard C++ commands.
Following the concept portion in each chapter (except Chapter 1) are six labs: Stop and Analyze,
Plan and Create, Modify, What’s Missing?, Desk-Check, and Debug. Each lab teaches students
how to apply the chapter concepts; however, each does so in a different way.

Features
An Introduction to Programming with C++, Eighth Edition is an exceptional textbook because it
also includes the following features:

READ THIS BEFORE YOU BEGIN  This section is consistent with Cengage Learning’s
unequaled commitment to helping instructors introduce technology into the classroom.
Technical considerations and assumptions about hardware, software, and default settings are
listed in one place to help instructors save time and eliminate unnecessary aggravation.

LABS  Each chapter (except Chapter 1) contains six labs that teach students how to
apply the concepts taught in the chapter to real-world problems. In the first lab,
which is the Stop and Analyze lab, students are expected to stop and analyze an
existing program. Students plan and create a program in the Plan and Create lab,
which is the second lab. The third lab is the Modify lab. This lab requires students to

Preface

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Organization and Coverage 	﻿

xv

modify an existing program. In the fourth lab, which is the new What’s Missing? lab, students are
asked to find one or more missing instructions in a program. However, before they can
accomplish this task, they must put the existing instructions in the proper order. The fifth lab is
the Desk-Check lab, in which students follow the logic of a program by desk-checking it. The
sixth lab is the Debug lab. This lab gives students an opportunity to find and correct the errors in
an existing program. Answers to the labs are provided in the Answers.pdf file available at
CengageBrain.com. Providing the answers allows students to determine whether they have
mastered the material covered in the chapter.

HOW TO BOXES  The How To boxes in each chapter summarize important concepts and
provide a quick reference for students. The How To boxes that introduce new statements,
operators, stream manipulators, or functions contain the syntax and examples of using the syntax.

STANDARD C++ SYNTAX  Like the previous edition of the book, this edition uses the standard
C++ syntax in the examples, sample programs, and exercises in each chapter.

PSEUDOCODE AND FLOWCHARTS  Both planning tools are shown for many of the programs
within the chapters.

TIP  These notes provide additional information about the current concept. Examples
include alternative ways of writing statements, warnings about common mistakes made
when using a particular command, and reminders of related concepts learned in previous
chapters.

MINI-QUIZZES  Mini-Quizzes are strategically placed to test students’ knowledge at various
points in each chapter. Answers to the quiz questions are provided in the Answers.pdf file,
allowing students to determine whether they have mastered the material covered thus far before
continuing with the chapter.

WANT MORE INFO? FILES  These notes direct students to files that accompany
each chapter in the book. The files contain additional examples and further
explanations of the concepts covered in the chapter. The files are in PDF format and
are available online at CengageBrain.com. Search for the ISBN associated with your
book (from the back cover of your book) using the search box at the top of the page.

This will take you to the product page where free companion resources can be found.

SUMMARY  A Summary section follows the labs in each chapter. The Summary section recaps
the programming concepts and commands covered in the chapter.

KEY TERMS  Following the Summary section in each chapter is a listing of the key terms
introduced throughout the chapter, along with their definitions.

REVIEW QUESTIONS  Review Questions follow the Key Terms section in each chapter.
The Review Questions test the students’ understanding of what they learned in the chapter.

PAPER AND PENCIL EXERCISES  The Review Questions are followed by Pencil
and Paper Exercises, which are designated as TRY THIS, MODIFY THIS,
INTRODUCTORY, INTERMEDIATE, ADVANCED, and SWAT THE BUGS. The
answers to the TRY THIS Exercises are provided at the end of the chapter. The

ADVANCED Exercises provide practice in applying cumulative programming knowledge or
allow students to explore alternative solutions to programming tasks. The SWAT THE BUGS
Exercises provide an opportunity for students to detect and correct errors in one or more lines
of code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C o n t e n t s Organization and Coverage

xvi

Computer
COMPUTER EXERCISES  The Computer Exercises provide students with additional
practice of the skills and concepts they learned in the chapter. The Computer
Exercises are designated as TRY THIS, MODIFY THIS, INTRODUCTORY,
INTERMEDIATE, ADVANCED, and SWAT THE BUGS. The answers to the

TRY THIS Exercises are provided at the end of the chapter. The ADVANCED Exercises provide
practice in applying cumulative programming knowledge or allow students to explore alternative
solutions to programming tasks. The SWAT THE BUGS Exercises provide an opportunity for
students to detect and correct errors in an existing program.

New to this Edition!
ANSWERS.PDF FILE  The answers to the Mini-Quizzes and Labs are now contained
in the Answers.pdf file (rather than in Appendix A); this file is available to students at
CengageBrain.com.

NEW EXAMPLES, PROGRAMS, LABS, QUESTIONS, AND EXERCISES  The chapters
contain new code examples, sample programs, Labs, Review Questions, and Exercises.

WHAT’S MISSING? LAB  The chapters contain a new Lab called What’s Missing?.
In the What’s Missing? Lab, students must determine the one or more missing
instructions in a program. However, before they can do this, they must first put the
existing instructions in the proper order.

VIDEOS  These notes direct students to videos that accompany each chapter in the
book. Many of the videos have been revised from the previous edition. The videos
explain and/or demonstrate one or more of the chapter’s concepts. The videos are

available online at CengageBrain.com. Search for the ISBN associated with your book (from the
back cover of your book) using the search box at the top of the page. This will take you to the
product page where free companion resources can be found.

INSTALLATION VIDEOS  These videos, which have been revised from the previous
edition, show students how to install various C++ compilers (such as Microsoft Visual
C++, Dev-C++, and Code::Blocks). The videos are named Ch04-Installation

developmentTool, where developmentTool is the name of the C++ development tool covered in
the video. The videos are available online at CengageBrain.com. Search for the ISBN associated
with your book (from the back cover of your book) using the search box at the top of the page.
This will take you to the product page where free companion resources can be found.

STEP-BY-STEP INSTRUCTIONS  This book is accompanied by files that contain step-by-step
instructions for completing Labs 4-2, 4-3, 4-4, 4-6, 5-2, 5-3, and 5-6 using various
C++ compilers. The files, which have been revised from the previous edition, are named
Ch04-Lab4-X developmentTool.pdf and Ch05-Lab5-X developmentTool.pdf, where X represents
the lab number, and developmentTool is the name of the C++ development tool covered in the
file. The files are in PDF format and are available online at www.cengagebrain.com. Search for
the ISBN associated with your book (from the back cover of your book) using the search box at
the top of the page. This will take you to the product page where free companion resources can
be found.

APPENDICES  Appendices B, C, D, and E are now Appendices A, B, C, and D. The information
in Appendix A from the previous edition is now contained in the Answers.pdf file.

POW FUNCTION  The pow function is now covered along with the built-in value-returning
functions in Chapter 9 (rather than in Chapter 8).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Acknowledgments 	﻿

xvii

Instructor Resources
The following resources are available on the Instructor Companion Site (sso.cengage.com) to
instructors who have adopted this book. Search for this title by ISBN, title, author, or keyword.
From the Product Overview page, select the Instructor’s Companion Site link to access your
complementary resources.

INSTRUCTOR’S MANUAL  The Instructor’s Manual follows the text chapter by chapter to assist
you in planning and organizing an effective, engaging course. The manual includes learning
objectives, chapter overviews, ideas for classroom activities, and additional resources. A sample
course Syllabus is also available.

TEST BANK  Cengage Learning Testing Powered by Cognero is a flexible, online system that
allows you to:

•• author, edit, and manage test bank content from multiple Cengage Learning solutions

•• create multiple test versions in an instant

•• deliver tests from your LMS, your classroom or wherever you want

POWERPOINT PRESENTATIONS  This book comes with Microsoft PowerPoint slides for
each chapter. These are included as a teaching aid for classroom presentation, to make available
to students on the network for chapter review, or to be printed for classroom distribution.
Instructors are encouraged to customize the slides to fit their course needs, and may add slides
to cover additional topics using the complete Figure Files from the text, also available on the
Instructor Companion Site.

SOLUTION FILES  Solutions to the Labs, Review Questions, Pencil and Paper Exercises, and
Computer Exercises are available. The Solution Files also contain the sample programs that
appear in the figures throughout the book.

DATA FILES  Data Files are required to complete many Labs and Computer Exercises in this
book. They are available on the Instructor Companion Site as well as on CengageBrain.com.

Acknowledgments
Writing a book is a team effort rather than an individual one. I would like to take this
opportunity to thank my team, especially Alyssa Pratt (Senior Content Developer), Jennifer
K. Feltri-George (Senior Content Project Manager), Marisa Taylor (Senior Project Manager),
and Nicole Ashton, Serge Palladino, Chris Scriver (Quality Assurance). Thank you for your
support, enthusiasm, patience, and hard work; it made a difficult task much easier. Last, but
certainly not least, I want to thank Fred D’Angelo, Pima Community College East Campus;
Charles Nelson, Rock Valley College; and Mark Shellman, Gaston College for their invaluable
ideas and comments.

Diane Zak

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xviii

Read This Before
You Begin

Technical Information
Data Files
You will need data files to complete the Labs and Computer Exercises in this book. Your
instructor may provide the data files to you. You may obtain the files electronically at
CengageBrain.com. Search for the ISBN associated with your book (from the back cover of your
text) using the search box at the top of the page. This will take you to the product page where
free companion resources can be found.

Each chapter in this book has its own set of data files, which are stored in a separate folder
within the Cpp8 folder. The files for Chapter 4 are stored in the Cpp8\Chap04 folder. Similarly,
the files for Chapter 5 are stored in the Cpp8\Chap05 folder. Throughout this book, you will be
instructed to open files from or save files to these folders.

You can use a computer in your school lab or your own computer to complete the Labs and
Computer Exercises in this book.

Using Your Own Computer
To use your own computer to complete the Labs and Computer Exercises in this book, you will
need a C++ compiler. This book is accompanied by videos that show students how to install
various C++ compilers (such as Microsoft Visual C++, Dev-C++, and Code::Blocks). The
videos are named Ch04-Installation development Tool, where development Tool is the name of
the C++ development tool covered in the video. You may obtain the files electronically at
CengageBrain.com. Search for the ISBN associated with your book (from the back cover of
your book) using the search box at the top of the page. This will take you to the product page
where free companion resources can be found.

The book was written and Quality Assurance tested using Microsoft Visual C++ in Visual
Studio Ultimate 2015. It also was tested using Code::Blocks and Dev-C++. However, the book
can be used with most C++ compilers, often with little or no modification. At the time of
this writing, you can download a free copy of the Community Edition of Visual Studio 2015,
which contains the Visual C++ compiler, at https://www.visualstudio.com/en-us/downloads/
visual-studio-2015-downloads-vs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1
An Introduction to
Programming

After studying Chapter 1, you should be able to:

�� Define the terminology used in programming

�� Explain the tasks performed by a programmer

�� Understand the employment opportunities for programmers and
software engineers

�� Explain the history of programming languages

�� Explain the sequence, selection, and repetition structures

�� Write simple algorithms using the sequence, selection, and repetition
structures

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

2

Programming a Computer
In essence, the word programming means giving a mechanism the directions to accomplish a
task. If you are like most people, you’ve already programmed several mechanisms, such as your
digital video recorder (DVR), cell phone, or coffee maker. Like these devices, a computer also is a
mechanism that can be programmed.

The directions (typically called instructions) given to a computer are called computer programs
or, more simply, programs. The people who write programs are called programmers. Program-
mers use a variety of special languages, called programming languages, to communicate with the
computer. Some popular programming languages are C++, Visual Basic, C#, Java, and Python. In
this book, you will use the C++ programming language.

The Programmer’s Job
When a company has a problem that requires a computer solution, typically it is a programmer
who comes to the rescue. The programmer might be an employee of the company; or he or she
might be a freelance programmer, which is a programmer who works on temporary contracts
rather than for a long-term employer.

To begin the process of developing a program, the programmer meets with the user, who is
the person (or persons) responsible for describing the problem. In many cases, this person or
persons also will eventually use the solution. Depending on the complexity of the problem,
multiple programmers may be involved, and they may need to meet with the user several
times. Programming teams often contain subject matter experts, who may or may not be
programmers. For example, an accountant might be part of a team working on a program that
requires accounting expertise. The purpose of the initial meetings with the user is to determine
the exact problem and to agree on a solution.

After the programmer and user agree on the solution, the programmer begins converting the solu-
tion into a computer program. During the conversion phase, the programmer meets periodically
with the user to determine whether the program fulfills the user’s needs and to refine any details
of the solution. When the user is satisfied that the program does what he or she wants it to do, the
programmer rigorously tests the program with sample data before releasing it to the user, who will
test it further to verify that it correctly solves the problem. In many cases, the programmer also
provides the user with a manual that explains how to use the program. As this process indicates,
the creation of a good computer solution to a problem—in other words, the creation of a good
program—requires a great deal of interaction between the programmer and the user.

Employment Opportunities
When searching for a job in computer programming, you will encounter ads for “computer
programmers” as well as for “computer software engineers.” Although job titles and descriptions
vary, computer software engineers typically are responsible for designing an appropriate solution
to a user’s problem, while computer programmers are responsible for translating the solution
into a language that the computer can understand—a process called coding. Software engineer-
ing is a higher-level position that requires the ability to envision solutions. Using a construction
analogy, software engineers are the architects, while programmers are the carpenters.

Keep in mind that, depending on the employer and the size and complexity of the user’s problem,
the design and coding tasks may be performed by the same employee, no matter what his or her
job title is. In other words, it’s not unusual for a software engineer to code his or her solution, just
as it’s not unusual for a programmer to have designed the solution he or she is coding.

Ch01-Programmers

Ch01-Programmer
Qualities

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3

A Brief History of Programming Languages 	﻿

Programmers and software engineers need to have strong problem-solving and analytical skills,
as well as the ability to communicate effectively with team members, end users, and other non-
technical personnel. Typically, computer software engineers are expected to have at least a bach-
elor’s degree in software engineering, computer science, or mathematics, along with practical
work experience, especially in the industry in which they are employed. Computer programmers
usually need at least an associate’s degree in computer science, mathematics, or information sys-
tems, as well as proficiency in one or more programming languages.

Computer programmers and software engineers are employed by companies in almost every
industry, such as telecommunications companies, software publishers, financial institutions,
insurance carriers, educational institutions, and government agencies. The Bureau of Labor
Statistics predicts that employment of computer software engineers will increase by 22 percent
from 2012 to 2022. The employment of computer programmers, on the other hand, will
increase by 8 percent over the same period. In addition, consulting opportunities for freelance
programmers and software engineers are expected to increase as companies look for ways to
reduce their payroll expenses.

There is a great deal of competition for programming and software engineering jobs, so jobseekers
will need to keep up to date with the latest programming languages and technologies. A competitive
edge may be gained by obtaining vendor-specific or language-specific certifications, as well as knowl-
edge of a prospective employer’s business. More information about computer programmers and
computer software engineers can be found on the Bureau of Labor Statistics Web site at www.bls.gov.

A Brief History of Programming Languages
Just as human beings communicate with each other through the use of languages such as English,
Spanish, Hindi, and Chinese, programmers use a variety of programming languages to commu-
nicate with the computer. In the next sections, you will follow the progression of programming
languages from machine languages to assembly languages, and then to high-level languages.

Machine Languages
Within a computer, all data is represented by microscopic electronic switches that can be either
off or on. The off switch is designated by a 0, and the on switch is designated by a 1. Because
computers can understand only these on and off switches, the first programmers had to write
the program instructions using nothing but combinations of 0s and 1s; for example, a program
might contain the instruction 00101 10001 10000. Instructions written in 0s and 1s are called
machine language or machine code. The machine languages (each type of machine has its
own language) represent the only way to communicate directly with the computer. As you can
imagine, programming in machine language is very tedious and error-prone and requires highly
trained programmers.

Assembly Languages
Slightly more advanced programming languages are called assembly languages. The assembly
languages simplify the programmer’s job by allowing the programmer to use mnemonics in
place of the 0s and 1s in the program. Mnemonics are memory aids—in this case, alphabetic
abbreviations for instructions. For example, most assembly languages use the mnemonic ADD
to represent an add operation and the mnemonic MUL to represent a multiply operation. An
example of an instruction written in an assembly language is ADD bx, ax.

Programs written in an assembly language require an assembler, which also is a program,
to convert the assembly instructions into machine code—the 0s and 1s the computer can

Ch01-History

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

4

understand. Although it is much easier to write programs in assembly language than in machine
language, programming in assembly language still is tedious and requires highly trained
programmers. Programs written in assembly language are machine specific and usually must be
rewritten in a different assembly language to run on different computers.

High-Level Languages
High-level languages represent the next major development in programming languages.
High-level languages are a vast improvement over machine and assembly languages because
they allow the programmer to use instructions that more closely resemble the English language.
An example of an instruction written in a high-level language is grossPay = hours * rate. In
addition, high-level languages are more machine independent than are machine and assembly
languages. As a result, programs written in a high-level language can be used on many different
types of computers.

Programs written in a high-level language usually require a compiler, which also is a program,
to convert the English-like instructions into the 0s and 1s the computer can understand. Some
high-level languages also offer an additional program called an interpreter. Unlike a compiler,
which translates all of a program’s high-level instructions before running the program, an
interpreter translates the instructions line by line as the program is running.

Like their predecessors, the first high-level languages were used to create procedure-oriented
programs. When writing a procedure-oriented program, the programmer concentrates on
the major tasks that the program needs to perform. A payroll program, for example, typically
performs several major tasks, such as inputting the employee data, calculating the gross pay,
calculating the taxes, calculating the net pay, and outputting a paycheck. The programmer must
instruct the computer every step of the way, from the start of the task to its completion. In a
procedure-oriented program, the programmer determines and controls the order in which the
computer processes the instructions. In other words, the programmer must determine not only
the proper instructions to give the computer but the correct sequence of those instructions as
well. Examples of high-level languages used to create procedure-oriented programs include
COBOL (Common Business-Oriented Language), BASIC (Beginner’s All-Purpose Symbolic
Instruction Code), and C.

More advanced high-level languages can be used to create object-oriented programs in addition
to procedure-oriented ones. Different from a procedure-oriented program, which focuses
on the individual tasks the program must perform, an object-oriented program requires
the programmer to focus on the objects that the program can use to accomplish its goal. The
objects can take on many different forms. For example, programs written for the Windows
environment typically use objects such as check boxes, list boxes, and buttons. A payroll
program, on the other hand, might utilize objects found in the real world, such as a time card
object, an employee object, or a check object.

Because each object in an object-oriented program is viewed as an independent unit, an object
can be used in more than one program, usually with little or no modification. A check object
used in a payroll program, for example, also can be used in a sales revenue program (which
receives checks from customers) and an accounts payable program (which issues checks to
creditors). The ability to use an object for more than one purpose enables code reuse, which
saves programming time and money—an advantage that contributes to the popularity of

Most objects
in an object-
oriented
program are
designed

to perform multiple
tasks. These tasks are
programmed using the
same techniques used
in procedure-oriented
programming.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5

Control Structures 	﻿

object-oriented programming. Examples of high-level languages that can be used to create both
procedure-oriented and object-oriented programs include C++, Visual Basic, Java, and C#. In this
book, you will learn how to use the C++ programming language to create procedure-oriented
and object-oriented programs.

Mini-Quiz 1-1

1.	 Instructions written in 0s and 1s are called _________________________ language.

2.	 When writing a(n) _________________________ program, the programmer
concentrates on the major tasks needed to accomplish a goal.

a.	 procedure-oriented
b.	 object-oriented

3.	 When writing a(n) _________________________ program, the programmer breaks up a
problem into interacting objects.

a.	 procedure-oriented
b.	 object-oriented

4.	 Most high-level languages use a(n) _________________________ to translate the
instructions into a language that the computer can understand.

Control Structures
All computer programs, no matter how simple or how complex, are written using one or more
of three basic structures: sequence, selection, and repetition. These structures are called control
structures or logic structures because they control the flow of a program’s logic. In other
words, they control the order in which the computer executes the program’s instructions. You
will use the sequence structure in every program you write. In most programs, you also will
use the selection and repetition structures. This chapter gives you an introduction to the three
control structures. More detailed information about each structure, as well as how to implement
these structures using the C++ language, is provided in subsequent chapters.

The Sequence Structure
You use the sequence structure each time you follow a set of step-by-step instructions, in order,
from beginning to end. The instructions might be a recipe for making chocolate chip cookies.
Or, they might be the MapQuest directions to your favorite restaurant. They could also be the
instructions for assembling a robot, which are shown in Figure 1-1. The instructions shown in
the figure are called an algorithm, which is a set of step-by-step instructions for accomplishing
a task.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

6

In a computer program, the sequence structure directs the computer to process the program
instructions, one after another, in the order listed in the program. You will find the sequence
structure in every program.

The Selection Structure
The selection structure, also called the decision structure, indicates that a decision (based
on some condition) needs to be made, followed by an appropriate action derived from that
decision. You use the selection structure every time you drive your car and approach a railroad
crossing. Your decision, as well as the appropriate action, is based on whether the crossing
signals (flashing lights and ringing bells) are on or off, as indicated in Figure 1-2.

Figure 1-1   An example of the sequence structure

1. get one head, one body, one right arm, one left arm, one right leg, and one left leg
2. attach head to top of body
3. attach right leg to bottom-right portion of body
4. attach left leg to bottom-left portion of body
5. attach right arm to right side of body
6. attach left arm to left side of body

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7

Control Structures 	﻿

The portion within the parentheses in the figure is called the condition and specifies the deci-
sion that you must make. The condition in a selection structure must result in either a true or a
false answer. In this case, either the crossing signals are on (true) or they are not on (false).

Notice that the two instructions within the selection structure are indented. Indenting in this
manner indicates that the instructions should be followed only when the crossing signals are
on—in other words, only when the condition results in an answer of true. The instructions to be
followed when a selection structure’s condition evaluates to true are referred to as the structure’s
true path. The end if instruction in Figure 1-2 denotes the end of the selection structure.

Figure 1-3 shows how the selection structure can be used in a game program. In this game, our
superhero gets one shot at the villain. He needs to raise his right arm before taking the shot. If he
hits the villain, he should say “Got Him” and then lower his right arm. If he doesn’t hit the villain,
he should say “Missed Him” before lowering his right arm.

Figure 1-2   An example of the selection structure

1. approach the railroad crossing

2. if (the crossing signals are on)
 stop your car before crossing the railroad tracks
 wait for the train to go by and the crossing signals to turn off
 end if
3. proceed with caution over the railroad tracks

�instructions indented in
the true path

condition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

8

Figure 1-3   Another example of the selection structure

1. raise your right arm
2. shoot at the villain

3. if (the villain was hit)
 say “Got Him”
 else
 say “Missed Him”
 end if
4. lower your right arm

condition

�instruction
indented in
the true path

�instruction
indented in
the false path

Image by Diane Zak; created with Reallusion CrazyTalk Animator

Unlike the selection structure from Figure 1-2, which requires two specific actions to be taken
only when the structure’s condition evaluates to true, the selection structure in Figure 1-3
requires our superhero to take one action when the condition evaluates to true but a different
action when it evaluates to false. In other words, the selection structure in Figure 1-3 has both a
true path and a false path. The else instruction marks the beginning of the false path.

Notice that the instruction in each path is indented. Indenting in this manner clearly indicates
the instruction to be followed when the condition evaluates to true (the villain was hit), as
well as the one to be followed when the condition evaluates to false (the villain was not hit).
Although both paths in Figure 1-3’s selection structure contain only one instruction, each can
contain many instructions.

When used in a computer program, the selection structure alerts the computer that a decision
needs to be made, and it provides the appropriate action(s) to take based on the result of that
decision.

The Repetition Structure
The last of the three control structures is the repetition structure, which indicates that one or
more instructions need to be repeated until some condition is met. You will find the repetition
structure in many recipes; some examples are shown in Figure 1-4. Notice that the condition
can be phrased in several different ways.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9

Control Structures 	﻿

When used in a program, the repetition structure directs the computer to repeat one or more
instructions until some condition is met, at which time the computer should stop repeating the
instructions. The repetition structure is also referred to as a loop or an iteration.

Mini-Quiz 1-2

1.	 What are the three basic control structures?

2.	 Which control structure is contained in all programs?

3.	 The step-by-step instructions that accomplish a task are called a(n)
_________________________.

4.	 Which structure tells the computer to repeat one or more instructions in a program?

5.	 Which structure ends when its condition has been met?

6.	 The _________________________ structure, also called the decision structure, instructs
the computer to evaluate a condition and then follow one of two paths based on the
result of the evaluation.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Figure 1-4   Examples of the repetition structure

Example 1
1. combine all ingredients in a medium bowl

2. repeat (10 times)
 stir ingredients
 end repeat

Example 2
1. combine all ingredients in a medium bowl

2. repeat until (ingredients are well-blended)
 stir ingredients
 end repeat

Example 3
1. combine all ingredients in a medium bowl

2. repeat for (two minutes)
 stir ingredients
 end repeat

condition

condition

condition

�instruction indented
in the loop

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

10

Lab 1-1  Stop and Analyze
Study the algorithm shown in Figure 1-5, and then answer the questions.

Figure 1-5   Algorithm for Lab 1-1

repeat for (each customer buying a TV)
enter the original price of the TV
calculate the discount by multiplying the original price by 15%
calculate the total due by subtracting the discount from the original price
print a bill showing the original price, discount, and total due

end repeat

Questions

1.	 Which control structures are used in the algorithm?

2.	 What will the algorithm print when the price of the TV is $2,100?

3.	 How would you modify the algorithm so that it can be used for only the first
10 customers buying a TV?

4.	 How would you modify the algorithm so that it allows the user to also enter the discount
rate and then uses that rate to calculate the discount?

Lab 1-2  Plan and Create
The 10 salespeople at Harkins Company are paid a 10% bonus when they sell more
than $10,000 in product; otherwise, they receive a 5% bonus. Create an appropriate
algorithm using only the instructions shown in Figure 1-6.

Figure 1-6   Instructions for Lab 1-2

display the salesperson’s name and bonus
else
end if
end repeat
enter the salesperson’s name and sales
if (the sales are greater than 10,000)
calculate the bonus by multiplying the sales by 5%
calculate the bonus by multiplying the sales by 10%
repeat (10 times)

The answers
to the labs are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11

Control Structures 	﻿

Lab 1-3  Modify
Modify the algorithm shown in Figure 1-5 so that it gives a 25% discount to customers
who are also employees of the store; all other customers receive a 15% discount.

Lab 1-4  What’s Missing?
Harold wants to sit down on the park bench, but his cat Ginger may or may not be
already seated there. Put the instructions shown in Figure 1-7 in the proper order, and
then determine the one or more missing instructions.

Figure 1-7   Instructions for Lab 1-4

end if
end repeat
end repeat
gently shove Ginger off the bench
if (Ginger is on the bench)
repeat (2 times)
sit down on the bench
turn left 90 degrees
walk forward one complete step

�Ginger may or may not
be on the bench

�Harold is three steps
away from the bench

Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

12

Chapter Summary
Programs are the step-by-step instructions that tell a computer how to perform a task.
Programmers, the people who write computer programs, use various programming languages
to communicate with the computer. The first programming languages were machine languages,
also called machine code. The assembly languages came next, followed by the high-level
languages. The first high-level languages were used to create procedure-oriented programs.
More advanced high-level languages are used to create object-oriented programs, as well as
procedure-oriented ones.

An algorithm is the set of step-by-step instructions that accomplish a task. The algorithms for
all computer programs contain one or more of the following three control structures: sequence,
selection, and repetition. The control structures, also called logic structures, are so named
because they control the flow of a program’s logic.

The sequence structure directs the computer to process the program instructions, one after
another, in the order listed in the program. The selection structure, also called the decision
structure, directs the computer to evaluate a condition and then select an appropriate action
based on the result of that evaluation. The repetition structure directs the computer to repeat
one or more program instructions until some condition is met. The sequence structure is used
in all programs. Most programs also contain both the selection and repetition structures.

Key Terms
Algorithm—the set of step-by-step instructions that accomplish a task

Assembler—a program that converts assembly instructions into machine code

Assembly languages—programming languages that use mnemonics, such as ADD

Coding—the process of translating a solution into a language that the computer can understand

Compiler—a program that converts high-level instructions into a language that the computer
can understand; unlike an interpreter, a compiler converts all of a program’s instructions before
running the program

Computer programs—the directions given to computers; also called programs

Control structures—the structures that control the flow of a program’s logic; also called logic
structures; sequence, selection, and repetition

Decision structure—another term for the selection structure

High-level languages—programming languages whose instructions more closely resemble the
English language

Interpreter—a program that converts high-level instructions into a language that the computer
can understand; unlike a compiler, an interpreter converts a program’s instructions line by line as
the program is running

Iteration—another term for the repetition structure

Logic structures—another term for control structures

Loop—another term for the repetition structure

Machine code—another term for machine language

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13

Review Questions 	

Machine language—computer instructions written in 0s and 1s; also called machine code

Mnemonics—the alphabetic abbreviations used to represent instructions in assembly languages

Object-oriented program—a program designed by focusing on the objects that the program
could use to accomplish its goal

Procedure-oriented program—a program designed by focusing on the individual tasks to be
performed

Programmers—the people who write computer programs

Programming—giving a mechanism the directions to accomplish a task

Programming languages—languages used to communicate with a computer

Programs—the directions given to computers; also called computer programs

Repetition structure—the control structure that directs the computer to repeat one or more
instructions until some condition is met, at which time the computer should stop repeating the
instructions; also called a loop or an iteration

Selection structure—the control structure that directs the computer to make a decision and
then take the appropriate action based on the result of that decision; also called the decision
structure

Sequence structure—the control structure that directs the computer to process each
instruction in the order listed in the program

Review Questions
1.	 Which of the following is not a programming control structure?

a.	 repetition	 c.	 sequence
b.	 selection	 d.	 sorting

2.	 Which of the following control structures is used in every program?

a.	 repetition	 c.	 sequence
b.	 selection	 d.	 switching

3.	 The set of instructions for adding together two numbers is an example of the
_____________________ structure.

a.	 control	 c.	 selection
b.	 repetition	 d.	 sequence

4.	 The set of step-by-step instructions that solve a problem is called _____________________ .

a.	 an algorithm	 c.	 a plan
b.	 a list	 d.	 a sequential structure

5.	 The instruction “Brush your hair 5 times” is an example of which structure?

a.	 control	 c.	 selection
b.	 repetition	 d.	 sequence

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

14

6.	 The instruction “If it’s dark, turn the light on” is an example of which structure?

a.	 control	 c.	 selection
b.	 repetition	 d.	 sequence

7.	 Which control structure would an algorithm use to determine whether a credit card
holder is over his credit limit?

a.	 repetition
b.	 selection
c.	 both repetition and selection

8.	 Which control structure would an algorithm use to calculate a 5% commission for each
of a company’s salespeople?

a.	 repetition
b.	 selection
c.	 both repetition and selection

9.	 A company pays a 3% annual bonus to employees who have been with the company
more than 5 years; other employees receive a 1% bonus. Which control structure(s)
would an algorithm use to calculate every employee’s bonus?

a.	 repetition
b.	 selection
c.	 both repetition and selection

10.	 Which control structure would an algorithm use to determine whether a customer is
entitled to a senior discount?

a.	 repetition
b.	 selection
c.	 both repetition and selection

Exercises

Pencil and Paper

1.	 Harold is five steps away from his cat Ginger, who is an unknown distance away from
a chair, as illustrated in Figure 1-8. Using only the instructions listed in the figure, cre-
ate an algorithm that directs Harold to step over Ginger and sit in the chair. You may
use an instruction more than once. In the repeat (x times) instruction, replace x with
the appropriate number of times you want the loop instruction(s) repeated. Be sure to
indent the instructions appropriately. (The answers to TRY THIS Exercises are located
at the end of the chapter.)

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15

Exercises 	

Figure 1-8  

end repeat
repeat (x times)
repeat until (you are directly in front of the chair)
sit down in the chair
step over Ginger
turn left 90 degrees
walk forward one complete step

Image by Diane Zak; created with Reallusion CrazyTalk Animator

 2.	 A store gives a 15% discount to customers who are at least 55 years old, and a 10% discount
to all other customers. Using only the instructions shown in Figure 1-9, write an algorithm
that displays the amount of money a customer owes. Be sure to indent the instructions
appropriately. (The answers to TRY THIS Exercises are located at the end of the chapter.)

TRY THIS

Figure 1-9  

calculate the amount due by subtracting the discount from the sales amount
calculate the discount by multiplying the sales amount by 10%
calculate the discount by multiplying the sales amount by 15%
display the amount due
else
end if
enter the customer’s age and the sales amount
if (the customer’s age is less than 55)

Figure 1-10  

calculate the average by dividing the sum by 4
calculate the sum by adding the number to the sum
display the average
end repeat
enter a number
repeat (4 times)

3.	 Modify the algorithm shown earlier in Figure 1-5 so that it gives a 25% discount if the
customer buying a TV is an employee of the store; all other customers buying a TV
should receive a 15% discount.

4.	 Using only the instructions shown in Figure 1-10, create an algorithm that displays the
average of four numbers. Be sure to indent the instructions appropriately.

MODIFY THIS

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

16

7.	 Harold is standing in front of a flowerbed that contains six flowers, as illustrated in
Figure 1-13. Create an algorithm that directs Harold to pick the flowers as he walks
to the other side of the flowerbed. He should pick all red flowers with his right hand.
Flowers that are not red should be picked with his left hand. Use only the instructions
shown in the figure; however, an instruction can be used more than once. Be sure to
create an algorithm that will work for any combination of colored flowers.

INTERMEDIATE

Figure 1-11  

circle the component name on the list
cross the component name off the list
else
end if
end repeat
if (the component was received)
read the component name from the list
repeat for (each component name on the list)
search for the component

Figure 1-12  

calculate the amount owed by multiplying the number of tickets by $35
display the amount owed
display the message “You can purchase up to 4 tickets only.”
else
end if
end repeat
enter the number of tickets
if (the number of tickets is greater than 4)
if (the number of tickets is less than or equal to 4)
repeat for (each customer)

5.	 You have just purchased a new personal computer system. Before putting the system
components together, you read the instruction booklet that came with the system. The
booklet contains a list of the components that you should have received. The booklet
advises you to verify that you received all of the components by matching those that
you received with those on the list. If a component was received, you should cross its
name off the list; otherwise, you should draw a circle around the component name in
the list. Using only the instructions listed in Figure 1-11, create an algorithm that shows
the steps you should take to verify that you received the correct components. Be sure to
indent the instructions appropriately.

INTRODUCTORY

6.	 Using only the instructions shown in Figure 1-12, write two versions of an algorithm
that displays the total amount each customer owes for concert tickets. Be sure to indent
the instructions appropriately.

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17

Exercises 	

Figure 1-13  

else
end if
end repeat
if (the flower is red)
pick the flower with your left hand
pick the flower with your right hand
repeat (x times)
walk forward one complete step

�Harold should end up on the
other side of the flowerbed

Image by Diane Zak; created with Reallusion CrazyTalk Animator

Figure 1-14  

 enter the employee’s name, hours worked, and pay rate

 calculate gross pay = hours worked times pay rate
 else
 calculate regular pay = pay rate times 40
 calculate overtime hours = hours worked minus 40
 calculate overtime pay = ____________________
 calculate gross pay = _______________________
 end if
 print the employee’s name and gross pay
end repeat

8.	 The algorithm shown in Figure 1-14 should calculate and print the gross pay for five
workers; however, some of the instructions are missing from the algorithm. Complete
the algorithm. If an employee works more than 40 hours, he or she should receive time
and one-half of his or her pay rate for the hours worked over 40.

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

18

Figure 1-15  

repeat (for each employee)
 enter the employee’s payment schedule and annual salary
 if (the employee’s payment schedule is weekly)
 calculate gross pay = ____________________

 calculate gross pay = ____________________

 __

10.	 Create an algorithm that tells someone how to evaluate the following expression:
7 * 5 – 20 / 2 + 4 * 2. The / operator means division, and the * operator means multipli-
cation. (As you may remember from your math courses, division and multiplication are
performed before addition and subtraction.)

11.	 Store A is having a BoGoHo (Buy One, Get One Half Off) sale. Store B is not having a
sale, but sometimes its prices are much lower than at Store A. Write an algorithm that
determines whether it’s cheaper to buy two of the item at Store A or Store B. The algo-
rithm should display either the message “Buy at store A” or the message “Buy at store B”.
If the prices would be the same at both stores, display the “Buy at store A” message.

ADVANCED

ADVANCED

9.	 All employees at Kranston Sports Inc. are paid based on an annual salary rather than
an hourly wage. However, some employees are paid weekly, while others are paid every
other week (biweekly). Employees paid weekly receive 52 paychecks; employees paid
biweekly receive 26 paychecks. The algorithm shown in Figure 1-15 should calculate
and display the gross pay for each employee; however, some of the instructions are
missing from the algorithm. Complete the algorithm.

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19

Exercises 	

12.	 The algorithm in Figure 1-16 should get Robin the Robot seated in the chair, but it does
not work correctly. Correct the algorithm.

SWAT THE BUGS

1. repeat (3 times)
 walk forward one complete step
 end repeat
2. turn left 90 degrees
3. repeat (2 times)
 walk forward one complete step
 end repeat
4. turn right 90 degrees
5. repeat (2 times)
 walk forward one complete step
 end repeat
6. turn right 90 degrees
7. walk forward one complete step
8. turn right 90 degrees
9. repeat (4 times)
 walk forward one complete step
 end repeat
10. turn right 90 degrees
11. sit down

Figure 1-16  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 An Introduction to Programming

20

13.	 The algorithm in Figure 1-17 does not get Robin the Robot through the maze. Correct
the algorithm.

SWAT THE BUGS

1. walk into the maze
2. turn left 90 degrees
3. repeat until (you are directly in front of a wall)
 walk forward one complete step
 end repeat
4. turn right 90 degrees
5. repeat until(you are directly in front of a wall)
 walk forward one complete step
 end repeat
6. turn right 90 degrees
7. repeat until (you are directly in front of a wall)
 walk forward one complete step
 end repeat
8. turn right 90 degrees
9. repeat until (you are directly in front of a wall)
 walk forward one complete step
 end repeat
10. turn right 90 degrees
11. repeat until (you are directly in front of a wall)
 walk forward one complete step
 end repeat
12. turn left 90 degrees
13. repeat until (you are directly in front of a wall)
 turn right 90 degrees
 end repeat
14. repeat until (you are out of the maze)
 walk forward one complete step
 end repeat

Figure 1-17  

Robin should end up here

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21

Exercises 	

Answers to TRY THIS Exercises

See Figure 1-18.

1. repeat (5 times)
 walk forward one complete step
 end repeat
2. step over Ginger
3. repeat until (you are directly in front of the chair)
 walk forward one complete step
 end repeat
4. repeat (2 times)
 turn left 90 degrees
 end repeat
5. sit down in the chair

Figure 1-18

See Figure 1-19.

1. enter the customer’s age and the sales amount
2. if (the customer’s age is less than 55)
 calculate the discount by multiplying the sales amount by 10%
 else
 calculate the discount by multiplying the sales amount by 15%
 end if
3. calculate the amount due by subtracting the discount from the sales amount
4. display the amount due

Figure 1-19

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2
Beginning the Problem-
Solving Process

After studying Chapter 2, you should be able to:

�� Explain the problem-solving process used to create a computer program

�� Analyze a problem

�� Complete an IPO chart

�� Plan an algorithm using pseudocode and flowcharts

�� Desk-check an algorithm

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

24

Problem Solving
This chapter introduces you to the process that programmers follow when solving problems that
require a computer solution. Although you may not realize it, you use a similar process to solve
hundreds of small problems every day. Because most of these problems occur so often, you typi-
cally solve them almost automatically, without giving much thought to the process your brain
goes through to arrive at the solutions. Unfortunately, problems that are either complex or unfa-
miliar usually cannot be solved so easily; most require extensive analysis and planning. Under-
standing the thought process involved in solving simple and familiar problems will make solving
complex or unfamiliar ones easier.

In this chapter, you will explore the thought process that you follow when solving common
problems. You will also learn how to use a similar process to create a computer solution to a
problem—in other words, how to create a computer program. The computer solutions you create in
this chapter will contain the sequence control structure only, in which each instruction is processed
in order from beginning to end. Computer solutions requiring the selection structure are covered in
Chapters 5 and 6, and those requiring the repetition structure are covered in Chapters 7 and 8.

Solving Everyday Problems
The first step in solving a problem is to analyze the problem. Next, you plan, review,
implement, evaluate, and modify (if necessary) the solution. Consider, for example, how
you solve the problem of paying a bill that you received in the mail. First, your mind
analyzes the problem to identify its important components. One very important component
of any problem is the goal of solving the problem. In this case, the goal is to pay the bill.
Other important components of a problem are the things that you can use to accomplish the
goal. In this case, you will use the bill itself, as well as the preaddressed envelope that came
with the bill. You will also use a bank check, pen, return address label, and postage stamp.

After analyzing the problem, your mind plans an algorithm. Recall from Chapter 1 that an algo-
rithm is the set of step-by-step instructions that describe how to accomplish a task. In other
words, an algorithm is a solution to a problem. The current problem’s algorithm, for example,
describes how to use the bill, preaddressed envelope, bank check, pen, return address label, and
postage stamp to pay the bill. Figure 2-1 shows a summary of the analysis and planning steps for
the bill-paying problem.

Ch02-Bill Paying

Items used to Algorithm Goal
accomplish the goal
bill 1. use the pen to fill in the bank check’s date, pay the bill
preaddressed envelope payee, numerical amount, and written amount
bank check 2. use the pen to sign the bank check
pen 3. use the pen to write the customer account number
return address label on the bank check
postage stamp 4. put the return address label on the preaddressed envelope

5. put the postage stamp on the preaddressed envelope
6. put the bill and bank check in the preaddressed envelope
7. seal the preaddressed envelope
8. mail the preaddressed envelope

Figure 2-1   Summary of the analysis and planning steps for the bill-paying problem

�result of
the analysis
step

�result of the
planning step

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

25

Creating Computer Solutions to Problems 	﻿

After planning the algorithm, you review it (in your mind) to verify that it will work as intended.
When you are satisfied that the algorithm is correct, you implement it by following each of its
instructions in the order indicated. After implementing the algorithm, you evaluate it, and,
if necessary, you modify it. In this case, for example, you may decide to include the selection
structure shown in instruction 6 in Figure 2-2.

Items used to Algorithm Goal
accomplish the goal
bill 1. use the pen to fill in the bank check’s date, pay the bill
preaddressed envelope payee, numerical amount, and written amount
bank check 2. use the pen to sign the bank check
pen 3. use the pen to write the customer account number
return address label on the bank check
postage stamp 4. put the return address label on the preaddressed envelope

5. put the postage stamp on the preaddressed envelope
6. if (the bill has a return stub)

tear off the return stub
put the return stub and bank check in the preaddressed envelope

else
make a copy of the bill for your records
put the bill and bank check in the preaddressed envelope

end if
7. seal the preaddressed envelope
8. mail the preaddressed envelope

Figure 2-2   Modified algorithm for the bill-paying problem

Figure 2-3   How to create a computer solution to a problem

Creating Computer Solutions to Problems
In the previous section, you learned how you create a solution to a familiar problem. A similar
problem-solving process is used to create a computer program, which is simply a solution that
is implemented with a computer. Figure 2-3 shows the steps that computer programmers
follow when solving problems that require a computer solution. This chapter covers the first
three steps; the last three steps are covered in Chapters 3 and 4.

�modifications
made to the
original algorithm
in Figure 2-1

How To �Create a Computer Solution to a Problem

1.	 Analyze the problem

2.	 Plan the algorithm

3.	 Desk-check the algorithm

4.	 Code the algorithm into a program

5.	 Desk-check the program

6.	 Evaluate and modify (if necessary) the program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

26

Step 1—Analyze the Problem
You cannot solve a problem unless you understand it, and you cannot understand a problem
unless you analyze it—in other words, unless you identify its important components. The two
most important components of any problem are the problem’s output and its input. The output
is the goal of solving the problem, and the input is the item or items needed to achieve the goal.
When analyzing a problem, you always search first for the output and then for the input. Let’s
begin by analyzing the problem specification shown in Figure 2-4.

Addison O’Reilly wants a program that calculates and displays the cost of a 4K Ultra HD TV,
which is finally on sale at one of the stores in her area. The program should calculate the cost by
multiplying the sale price by the state sales tax rate and then adding the result to the sale price.

Figure 2-4   Problem specification for Addison O’Reilly

When searching for the output, ask yourself the following question: What does the user want
to see displayed on the screen, printed on paper, or stored in a file? The answer to this question
is typically stated as nouns and adjectives in the problem specification. The problem specifica-
tion in Figure 2-4 indicates that Addison (the program’s user) wants to see the cost of the TV
displayed on the screen; therefore, the output is the cost. In this context, the word cost is a noun.

After determining the output, you then determine the input, which is also usually stated as
nouns and adjectives in the problem specification. Here, look for an answer to the following
question: What information will the computer need to know to display, print, or store the output
items? It helps to think about the information that you would need to solve the problem manu-
ally because the computer will need to know the same information. In this case, to determine
the cost, both you and the computer need to know the sale price and the sales tax rate; these
items, therefore, are the input. In this context, sale, sales, and tax are adjectives, while price
and rate are nouns. This completes the analysis step for the Addison O’Reilly problem. Some
programmers use an IPO chart to organize and summarize the results of the analysis step, as
shown in Figure 2-5. IPO is an acronym for Input, Processing, and Output.

Output
cost

Input
sale price
sales tax rate

Processing
Processing items:

Algorithm:

Figure 2-5   Partially completed IPO chart showing the input and output items

Hints for Analyzing Problems
Unfortunately, analyzing real-world problems will not be as easy as analyzing the problems
found in a textbook. The analysis step is the most difficult of the problem-solving steps, and it
requires a lot of time, patience, and effort. If you are having trouble analyzing a problem, try
reading the problem specification several times, as it is easy to miss information during the
first reading. If the problem still is unclear to you, do not be shy about asking the user for more
information. Remember, the more you understand a problem, the easier it will be for you to
write a correct and efficient solution.

When reading a problem specification, it helps to use a pencil to lightly cross out the informa-
tion that you feel is unimportant to the solution, as shown in Figure 2-6. Doing this reduces the
amount of information you need to consider in your analysis. If you are not sure whether an item
of information is important, ask yourself this question: If I didn’t know this information, could

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

27

Step 1—Analyze the Problem 	﻿

I still solve the problem? If your answer is Yes, then the information is superfluous, and you can
ignore it. If you later find that the information is important, you can always erase the pencil line.

Figure 2-8   Problem specification in which the input is not explicitly stated

Figure 2-6   Problem specification with unimportant information crossed out

Addison O’Reilly wants a program that calculates and displays the cost of a 4K Ultra HD TV, which is
finally on sale at one of the stores in her area. The program should calculate the cost by multiplying
the sale price by the state sales tax rate and then adding the result to the sale price.

Some problem specifications, like the one shown in Figure 2-7, are difficult to analyze because
they contain incomplete information. In this case, it is clear that the output is the weekly gross
pay and the input is the hourly pay and the number of hours worked during the week. However,
most companies pay a premium (such as time and one-half) for the hours worked over 40. You
cannot tell whether the premium applies to the additional five hours that Cintia worked because
the problem specification does not contain enough information. Before you can solve this
problem, you will need to ask the payroll manager about the company’s overtime policy.

Figure 2-7   Problem specification that does not contain enough information

Cintia Johanson earns $11.50 per hour. Last week, she worked 45 hours. Create a program that
calculates and displays her weekly gross pay.

As a programmer, it is important to distinguish between information that truly is missing and
information that simply is not stated explicitly in the problem specification—that is, informa-
tion that is implied. For example, consider the problem specification shown in Figure 2-8. To
solve the problem, you need to calculate the area of a rectangle; you do this by multiplying the
rectangle’s length by its width. Therefore, the area is the output, and the length and width are the
input. Notice, however, that the words length and width do not appear in the problem specifica-
tion. Although both items are not stated explicitly, neither is considered missing information.
This is because the formula for calculating the area of a rectangle is common knowledge. (The
formula can also be found in any math book or on the Internet.) With practice, you will also be
able to “fill in the gaps” in a problem specification.

Gordon Matthew wants a program that calculates and displays the area of any rectangle.

Mini-Quiz 2-1

Identify the output and input in each of the following problem specifications.

1.	 Alycia Thompkins is expecting her salary to increase by a specific percentage next year.
She wants a program that she can use to display her raise and new salary amounts.

2.	 Professor Carlos wants a program that displays the average of two test scores: a
midterm and a final.

3.	 The manager of a local restaurant wants a program that displays the suggested amounts
to tip a waiter, using tip percentages of 10%, 15%, and 20%. The tip should be calculated
on the customer’s entire bill.

4.	 If James Monet saves $2 per day, how much will he save in one year?

For more
examples
of ana-
lyzing
problems,

see the Analyzing
Problems section in the
Ch02WantMore.pdf file.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

28

Step 2—Plan the Algorithm
The second step in the problem-solving process is to plan the algorithm that will transform the
problem’s input into its output. You record the algorithm in the Processing column of the IPO
chart. Each instruction in the algorithm will describe an action that the computer needs to take
in order to derive the output from the input. Therefore, each instruction should start with a verb.

Most algorithms begin with an instruction to enter the input items into the computer. Next,
you usually record instructions to process the input items to achieve the problem’s output. The
processing typically involves performing one or more calculations using the input items. Most
algorithms end with an instruction to display, print, or store the output items. Display, print,
and store refer to the computer screen, the printer, and a file on a disk, respectively.

Figure 2-9 shows the problem specification and IPO chart for the Addison O’Reilly problem.
Notice that each instruction in the algorithm starts with a verb: enter, calculate, and display. The
algorithm begins by entering the input items. It then uses the input items to calculate the out-
put item. An algorithm should state both what is to be calculated and how to calculate it. In this
case, the cost is calculated by multiplying the sale price by the sales tax rate and then adding the
result to the sale price. The last instruction in the algorithm displays the output item. To avoid
confusion, it is important that the algorithm is consistent when referring to the input and output
items. For example, if the input item is listed as sales tax rate, then the algorithm should refer to
the item as sales tax rate rather than a different name, such as tax rate or rate.

Problem speci�cation

Input Processing Output
sale price Processing items: none cost
sales tax rate

Algorithm:
1. enter the sale price and sales tax rate
2. calculate the cost by multiplying the sale price by the

sales tax rate and then adding the result to the sale price
3. display the cost

Addison O’Reilly wants a program that calculates and displays the cost of a 4K Ultra HD TV,
which is finally on sale at one of the stores in her area. The program should calculate the cost by
multiplying the sale price by the state sales tax rate and then adding the result to the sale price.

�each instruction
begins with a
verb

Figure 2-9   Problem specification and IPO chart for the Addison O’Reilly problem

The algorithm in Figure 2-9 is composed of short English statements, referred to as pseudocode,
which means false code. It’s called false code because, although it resembles programming
language instructions, pseudocode cannot be understood by a computer. Programmers use
pseudocode to help them while they are planning an algorithm. It allows them to jot down
their ideas using a human-readable language without having to worry about the syntax (rules) of
the programming language itself. Pseudocode is not standardized; every programmer has his or
her own version, but you will find some similarities among the various versions. For instance, one
programmer may write the statement to calculate a rectangle’s area as “calculate area by multiply-
ing length by width”, while another programmer might use the statement “area = length * width”.

Besides using pseudocode, programmers also use flowcharts when planning algorithms.
A flowchart uses standardized symbols to visually depict an algorithm. You can draw the
flowchart symbols by hand, or you can use the drawing or shapes feature in a word processor.
You can also use a flowcharting program, such as SmartDraw or Microsoft Visio.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29

Step 2—Plan the Algorithm 	﻿

Figure 2-10 shows the algorithm from Figure 2-9 in flowchart form. The flowchart contains
three different symbols: an oval, a parallelogram, and a rectangle. The symbols are connected
with lines, called flowlines. The oval symbol is called the start/stop symbol and is used to
indicate the beginning and end of the flowchart. Between the start and stop ovals are two
parallelograms, called input/output symbols. You use the input/output symbol to represent
input tasks (such as getting information from the user) and output tasks (such as displaying,
printing, or storing information). The first parallelogram in Figure 2-10 represents an input task,
while the last parallelogram represents an output task. The rectangle in a flowchart is called the
process symbol and is used to represent tasks such as calculations.

Figure 2-10   Figure 2-9’s algorithm in flowchart form

Output
cost

Input
sale price
sales tax rate

Processing
Processing items: none

Algorithm:

start

enter sale price
and sales tax
rate

cost = sale price * sales tax
rate + sale price

display cost

stop

When planning an algorithm, you do not need to create both pseudocode and a flowchart; you
need to use only one of these planning tools. The tool you use is really a matter of personal
preference. For simple algorithms, pseudocode works just fine. However, when an algorithm
becomes more complex, its logic may be easier to see in a flowchart. As the old adage goes, a
picture is sometimes worth a thousand words.

Even a very simple problem can have more than one solution. Figure 2-11 shows a different
solution to the Addison O’Reilly problem. In this solution, the sales tax is calculated in a separate
instruction rather than in the instruction that calculates the cost. The sales tax item is neither
an input item (because it’s not provided by the user) nor an output item (because it won’t be
displayed, printed, or stored in a file). Instead, the sales tax is a special item, commonly referred
to as a processing item. A processing item represents an intermediate value that the algorithm
uses when processing the input into the output. In this case, the algorithm uses the two input

For more
examples
of planning
algorithms,
see the

Planning Algorithms
section in the
Ch02WantMore.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

30

items (sale price and sales tax rate) to calculate the sales tax (an intermediate value). It then uses
this intermediate value, along with the sale price, to compute the cost.

Input Processing Output
sale price Processing items: cost
sales tax rate sales tax

Algorithm (pseudocode):
1. enter the sale price and sales tax rate
2. calculate the sales tax by multiplying the sale price by the
 sales tax rate
3. calculate the cost by adding the sales tax to the sale price
4. display the cost

Algorithm (flowchart):

start

enter sale price
and sales tax
rate

sales tax = sale price *
sales tax rate

display cost

stop

cost = sale price + sales tax

Problem speci�cation
Addison O’Reilly wants a program that calculates and displays the cost of a 4K Ultra HD TV,
which is finally on sale at one of the stores in her area. The program should calculate the cost by
multiplying the sale price by the state sales tax rate and then adding the result to the sale price.

Figure 2-11   A different solution to the Addison O’Reilly problem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

31

Step 3—Desk-Check the Algorithm 	﻿

The algorithms shown in Figures 2-9 through 2-11 produce the same result and simply represent
two different ways of solving the same problem.

Mini-Quiz 2-2

1.	 The parallelogram in a flowchart is called the _________________________ symbol.

2.	 In a flowchart, calculation tasks are placed in a processing symbol, which has a(n)
_________________________ shape.

3.	 Alycia Thompkins is expecting her salary to increase by a specific percentage next year.
She wants a program that she can use to display her raise and new salary amounts. The
output is the raise and new salary. The input is the current salary and raise percentage.
Complete an appropriate IPO chart, using pseudocode in the Algorithm section.

4.	 Professor Carlos wants a program that displays the average of two test scores: a midterm
and a final. The input is the midterm score and final score. The output is the average
score. Complete an appropriate IPO chart, using a flowchart in the Algorithm section.
The algorithm should use a processing item for the sum of both scores.

Step 3—Desk-Check the Algorithm
After analyzing a problem and planning its algorithm, you then desk-check the algorithm. The
term desk-checking refers to the fact that the programmer reviews the algorithm while seated
at his or her desk rather than in front of the computer. Desk-checking is also called hand-tracing
because the programmer uses a pencil and paper to follow each of the algorithm’s instructions
by hand. You desk-check an algorithm to verify that it is not missing any instructions and that
the existing instructions are correct and in the proper order.

Before you begin the desk-check, you first choose a set of sample data for the input values, which
you then use to manually compute the expected output value. For the Addison O’Reilly algorithm,
you will use input values of $2300 and .05 (the decimal equivalent of 5%) as the sale price and sales
tax rate, respectively. A manual calculation of the cost results in $2415, as shown in Figure 2-12.

Ch02-Addison

Figure 2-12   Manual cost calculation for the first desk-check

$ 2300 (sale price)
* .05 (sales tax rate)

115 (sales tax)
+ 2300 (sale price)
$ 2415 (cost)

You now use the sample input values to desk-check the algorithm, which should result in the
expected output value of $2415. It is helpful to use a desk-check table when desk-checking an
algorithm. The table should contain one column for each input item listed in the IPO chart, as
well as one column for each output item and one column for each processing item (if any). You
can perform the desk-check using either the algorithm’s pseudocode or its flowchart.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

32

Figure 2-13 shows one solution for the Addison O’Reilly problem along with a partially com-
pleted desk-check table. (The flowchart for this solution is shown earlier in Figure 2-11.) Notice
that the desk-check table contains four columns: two for the input items, one for the processing
item, and one for the output item.

Input Processing Output
sale price Processing items: cost
sales tax rate sales tax

Algorithm (pseudocode):
1. enter the sale price and sales tax rate
2. calculate the sales tax by multiplying the sale price by the

sales tax rate
3. calculate the cost by adding the sales tax to the sale price
4. display the cost

sale pric e sales tax rate sales tax cost

Figure 2-13   Addison O’Reilly solution and partially completed desk-check table

The first instruction in the algorithm is to enter the two input values. You record the results of
this instruction by writing 2300 and .05 in the sale price and sales tax rate columns, respectively,
in the desk-check table. See Figure 2-14.

Figure 2-14   Input values entered in the desk-check table

Figure 2-15   Processing item’s value entered in the desk-check table

sale price sales tax rate sales tax cost
2300 .05

The second instruction calculates the sales tax by multiplying the sale price by the sales tax rate.
The desk-check table shows that the sale price is 2300 and the sales tax rate is .05. When making
the calculation, always use the table to determine the values of the sale price and sales tax rate.
Doing this helps to verify the accuracy of the algorithm. If, for example, the table did not show
any amount in the sales tax rate column, you would know that your algorithm missed an instruc-
tion; in this case, it neglected to enter the sales tax rate. When you multiply the sale price (2300)
by the sales tax rate (.05), you get 115. You record the number 115 in the sales tax column, as
shown in Figure 2-15.

sale price sales tax rate sales tax cost
 2300 .05 115

The third instruction calculates the cost by adding the sales tax (115) to the sale price (2300).
When you add 115 to 2300, you get 2415. You record the number 2415 in the cost column, as
shown in Figure 2-16.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

33

Step 3—Desk-Check the Algorithm 	﻿

The last instruction in the algorithm displays the cost. In this case, the number 2415 will be
displayed because that is what appears in the cost column. Notice that this amount agrees with
the manual calculation shown in Figure 2-12; therefore, the algorithm appears to be correct.
The only way to know for sure, however, is to test the algorithm a few more times with different
input values. For the second desk-check, you will test the algorithm using $5200 and .03 as the
sale price and sales tax rate, respectively. The cost should be $5356, as shown in Figure 2-17.

Figure 2-16   Output value entered in the desk-check table

sale price sales tax rate sales tax cost
2300 .05 115 2415

Figure 2-17   Manual cost calculation for the second desk-check

$ 5200 (sale price)
* .03 (sales tax rate)

156 (sales tax)
+ 5200 (sale price)
$ 5356 (cost)

Recall that the first instruction in the algorithm is to enter the sale price and sales tax rate.
Therefore, you write 5200 and .03 in the appropriate columns in the desk-check table, as shown
in Figure 2-18. Although it’s not required, some programmers find it helpful to lightly cross out
the previous value in a column before recording a new value. Doing this helps keep track of the
column’s current value.

Figure 2-18   Second set of input values entered in the desk-check table

sale price sales tax rate sales tax cost
 2300 .05 115 2415
 5200 .03

The second instruction calculates the sales tax by multiplying the value in the sale price column
(5200) by the value in the sales tax rate column (.03). You record the result (156) in the sales tax
column. See Figure 2-19.

Figure 2-19   Value of the second desk-check’s processing item entered in the desk-check table

sale price sales tax rate sales tax cost
2300 .05 115 2415
5200 .03 156

The third instruction calculates the cost by adding the value in the sales tax column (156) to the
value in the sale price column (5200). You record the result (5356) in the cost column, as shown
in Figure 2-20. The last instruction in the algorithm displays the cost. In this case, the number
5356 will be displayed, which agrees with the manual calculation shown in Figure 2-17.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

34

To be sure an algorithm works correctly, you should desk-check it several times using both valid
and invalid data. Valid data is data that the algorithm is expecting the user to enter. For example,
the algorithm that you just finished desk-checking expects the user to provide positive numbers
for the input values. Invalid data is data that the algorithm is not expecting the user to enter,
such as a negative number for the sale price. You should test an algorithm with invalid data
because users sometimes make mistakes when entering data. In later chapters in this book, you
will learn how to write algorithms that correctly handle input errors. For now, however, you can
assume that the user will always enter valid data.

The Gas Mileage Problem
The gas mileage problem will help reinforce what you learned in this chapter. Figure 2-21 shows
the problem specification.

sale price sales tax rate sales tax cost
2300 .05 115 2415
5200 .03 156 5356

Figure 2-20   Value of the second desk-check’s output item entered in the desk-check table

Figure 2-21   Problem specification for the gas mileage problem

Figure 2-22   IPO chart for the gas mileage problem

When Sheila Jones began her trip from Vermont to Oregon, she filled her car’s tank with gas and
reset its trip meter to zero. After traveling 324 miles, Sheila stopped at a gas station to refuel; the
gas tank required 17 gallons. Sheila wants a program that calculates and displays her car’s gas
mileage at any time during the trip. The gas mileage is the number of miles her car can be driven
per gallon of gas.

First, analyze the problem, looking for nouns and adjectives that represent both the output and
the input. The output should answer the question: What does the user want to see displayed on
the screen, printed on paper, or stored in a file? The input should answer the question: What infor-
mation will the computer need to know to display, print, or store the output items? In the gas mile-
age problem, the output is the miles per gallon, and the input is the miles driven and gallons used.

Next, plan the algorithm. Recall that most algorithms begin with an instruction to enter the
input items into the computer, followed by instructions that process the input items and then
display, print, or store the output items. Figure 2-22 shows the completed IPO chart for the gas
mileage problem.

Input Processing Output
miles driven Processing items: none miles per gallon
gallons used

 Algorithm:
 1. enter the miles driven and gallons used
 2. calculate the miles per gallon by dividing
 the miles driven by the gallons used
 3. display the miles per gallon

�each instruction
begins with
a verb

For more
examples
of desk-
checking
algorithms,

see the Desk-Checking
Algorithms section in the
Ch02WantMore.pdf file.

Ch02-Gas Mileage

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

35

The Gas Mileage Problem 	﻿

After planning the algorithm, you then desk-check it. You will desk-check the algorithm twice,
first using 324 and 17 as the miles driven and gallons used, respectively, and then using 400 and
15. Figure 2-23 shows the completed desk-check table for the gas mileage problem. (The miles
per gallon are rounded to two decimal places.)

Figure 2-23   Desk-check table for the gas mileage problem

Figure 2-24   IPO chart for Question 1 in Mini-Quiz 2-3

Figure 2-25   IPO chart for Question 2 in Mini-Quiz 2-3

miles driven gallons used miles per gallon
324 17 19.06
400 15 26.67

Input Processing Output
current salary
raise percentage

Processing items: none raise
new salary

Algorithm:
1. enter the current salary and raise percentage
2. calculate the raise by multiplying the
 current salary by the raise percentage
3. calculate the new salary by adding the raise
 to the current salary
4. display the raise and new salary

Input Processing Output
midterm score
final score

Processing items:
 sum

average score

Algorithm:
1. enter the midterm score and final score
2. calculate the sum by adding together the
 midterm score and final score
3. calculate the average score by dividing the sum by 2
4. display the average score

Mini-Quiz 2-3

1.	 Desk-check the algorithm shown in Figure 2-24 twice. First, use a current salary
of $32,600 and a raise percentage of .05 (the decimal equivalent of 5%). Then use
$54,700 and .02.

2.	 Desk-check the algorithm shown in Figure 2-25 twice. First, use 75 and 83 as the
midterm score and final score, respectively. Then use 98 and 93.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

36

Lab 2-2  Plan and Create
In this lab, you will plan and create an algorithm for the manager of Jericho Bakery.
The problem specification is shown in Figure 2-27.

LAB 2-1  Stop and Analyze
Study the IPO chart shown in Figure 2-26, and then answer the questions.

QUESTIONS

1.	 Complete the desk-check table using two sets of input values. First, use 100, 5, and 8 as
the quantity sold, item cost, and item selling price, respectively. Then use 650, 2.50, and
3.75. What will the algorithm display using the first set of input values? What will the
algorithm display using the second set of input values?

2.	 How would you modify the IPO chart to also display the difference between the item
cost and item selling price?

3.	 How would you modify the IPO chart and desk-check table to eliminate the use of a
processing item?

Figure 2-26   IPO chart and partially completed desk-check table for Lab 2-1

Input Processing Output
quantity sold
item cost
item selling price

quantity sold item cost item selling price price and cost difference profit

Processing items:
 price and cost difference

profit

Algorithm:
1. enter the quantity sold, item cost, and item selling price
2. calculate the price and cost difference by subtracting the
 item cost from the item selling price
3. calculate the profit by multiplying the price and cost
 difference by the quantity sold
4. display the profit

Figure 2-27   Problem specification for Lab 2-2

Jericho Bakery sells a variety of doughnuts and muffins for $0.50 each. The manager of the bakery
wants a program that calculates and displays the total number of items (doughnuts and muffins)
purchased by a customer, as well as the total cost of the order.

The answers
to the labs are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

37

The Gas Mileage Problem 	﻿

First, analyze the problem, looking first for the output and then for the input. Recall that the
output and input are typically stated as nouns and adjectives in the problem specification.
Asking the question What does the user want to see displayed on the screen, printed on paper,
or stored in a file? will help you determine the output. In this case, the manager wants to see
the total number of items ordered and the total cost of the order displayed on the computer
screen. The question What information will the computer need to know to display, print, or store
the output items? will help you determine the input. In this case, the input is the number of
doughnuts purchased, the number of muffins purchased, and the price of one item (doughnut or
muffin). Figure 2-28 shows the input and output items entered in an IPO chart.

Input Processing Output
number of doughnuts ordered
number of muffins ordered
item price

Processing items: none total number of items ordered
total cost

Algorithm:

Figure 2-28   Partially completed IPO chart for Lab 2-2

After determining a problem’s output and input, you then plan its algorithm. Recall that most
algorithms begin by entering the input items into the computer. The first instruction in the
current problem’s algorithm, for example, will be enter the number of doughnuts ordered,
number of muffins ordered, and item price. Notice that the instruction refers to the input items
using the same names listed in the Input column of the IPO chart.

After the instruction to enter the input items, you usually record instructions to process those
items, typically including the items in one or more calculations. In this case, you will add
together the number of doughnuts ordered and the number of muffins ordered, giving the total
number of items ordered. You then will calculate the total cost by multiplying the total number
of items ordered by the item price.

Recall that most algorithms end with an instruction to display, print, or store the output items.
The last instruction in this algorithm will display the total number of items ordered and total
cost on the screen. Figure 2-29 shows the completed IPO chart. Notice that each instruction in
the algorithm begins with a verb.

Figure 2-29   Completed IPO chart for Lab 2-2

Input Processing Output
number of doughnuts ordered
number of muffins ordered
item price

Processing items: none total number of items ordered
total cost

Algorithm:
1. enter the number of doughnuts ordered, number
 of muffins ordered, and item price
2. calculate the total number of items ordered by
 adding together the number of doughnuts ordered
 and number of muffins ordered
3. calculate the total cost by multiplying the
 total number of items ordered by the item price
4. display the total number of items ordered and total cost

each instruction
begins with a verb

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

38

After completing the IPO chart, you then move on to the third step in the problem-solving
process, which is to desk-check the algorithm. You begin by choosing a set of sample data for the
input values. You then use the values to manually compute the expected output. You will desk-
check the current algorithm twice: first using 4, 2, and 0.50 as the number of doughnuts ordered,
number of muffins ordered, and item price, respectively, and then using 0, 12, and 0.45. The
manual calculations for both desk-checks are shown in Figure 2-30.

Next, you create a desk-check table that contains one column for each input, processing, and
output item. You then begin desk-checking the algorithm. The first instruction is to enter the
input values. Figure 2-31 shows these values entered in the desk-check table.

The second and third instructions calculate the total number of items ordered and total cost.
Figure 2-32 shows these values entered in the desk-check table.

The last instruction in the algorithm displays the two output values. According to the
desk-check table in Figure 2-32, the total number of items ordered and total cost are 6 and 3.00,
respectively; both amounts agree with the manual calculations shown earlier in Figure 2-30.

Now use the second set of input values to desk-check the algorithm: 0, 12, and 0.45. Figure 2-33
shows the result of the second desk-check. Notice that the amounts in the total number of items
ordered column (12) and total cost column (5.40) agree with the manual calculations shown
earlier in Figure 2-30.

Figure 2-30   Manual calculations for the two desk-checks

First desk-check Second desk-check
4 (number of doughnuts ordered) 0 (number of doughnuts ordered)

+ 2 (number of muffins ordered) + 12 (number of muffins ordered)
6 (total number of items ordered) 12 (total number of items ordered)

* 0.50 (item price) * 0.45 (item price)
$ 3.00 (total cost) $ 5.40 (total cost)

Figure 2-31   First set of input values entered in the desk-check table

number of number of item total number of total cost
doughnuts ordered muffins ordered price items ordered

4 2 0.50

Figure 2-32   Calculated values entered in the desk-check table

number of total cost
doughnuts ordered

4

number of
muffins ordered

2

item
price
0.50

total number of
items ordered

6 3.00

Figure 2-33   Desk-check table showing the result of the second desk-check

number of number of total number of
items ordered

total cost
doughnuts ordered muffins ordered

4 2 6
0 12

item
price
0.50
0.45 12

3.00
5.40

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

39

The Gas Mileage Problem 	﻿

Lab 2-3  Modify
Jericho Bakery has raised the price of its muffins from $0.50 to $0.55. Make the
appropriate modifications to the IPO chart shown earlier in Figure 2-29. Desk-check
the algorithm twice. For the first desk-check, use 4, 2, 0.50, and 0.55 as the number
of doughnuts ordered, number of muffins ordered, doughnut price, and muffin price,
respectively. For the second desk-check, use 0, 12, 0.60, and 0.70.

Lab 2-4  What’s Missing?
A local club sells boxes of three types of cookies: shortbread, pecan sandies, and
chocolate mint. The club leader wants a program that displays the percentage that each
of the cookie types contributes to the total cookie sales. For example, if the club sells
50 boxes of shortbread cookies, 25 boxes of pecan sandies cookies, and 45 boxes of

chocolate mint cookies, the shortbread cookies account for approximately 41.7% of the cookie sales.
The pecan sandies and chocolate mint cookies account for approximately 20.8% and 37.5%, respec-
tively, of the cookie sales. Figure 2-34 contains a list of items and instructions that you can use for
this lab. First, enter the appropriate input, processing (if any), and output items in the IPO chart.
Determine whether any items are missing from the list. Next, put the instructions shown in the fig-
ure in the proper order, and then determine the one or more missing instructions.

Input Processing Output
Processing items:

Algorithm:

Items
chocolate mint contribution
chocolate mint sold
pecan sandies contribution
pecan sandies sold
shortbread contribution
shortbread sold

Instructions
calculate chocolate mint contribution by dividing chocolate mint sold by total sold, and
then multiplying the result by 100
calculate pecan sandies contribution by dividing pecan sandies sold by total sold, and
then multiplying the result by 100
calculate shortbread contribution by dividing shortbread sold by total sold, and then
multiplying the result by 100
display shortbread contribution, pecan sandies contribution, and chocolate mint
contribution
enter shortbread sold, pecan sandies sold, and chocolate mint sold

Figure 2-34   Items and instructions for Lab 2-4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

40

You locate the errors in an algorithm by desk-checking it. First, choose a set of sample data
for the input values. In this case, you will use the numbers 25, 63, and 14. Now use the values
to manually compute the expected output—in this case, the average. The average of the three
numbers is 34. Next, create a desk-check table that contains a column for each input, processing,
and output item. This desk-check table will contain five columns. Finally, walk through each of
the instructions in the algorithm, recording the appropriate values in the desk-check table. The
first instruction in the algorithm in Figure 2-36 is to enter the three input values. Figure 2-37
shows these values entered in the desk-check table.

LAB 2-5  Desk-Check
The algorithm in Figure 2-35 displays three suggested amounts to tip a waiter.
Desk-check the algorithm twice. First, use $102.50 and $5.80 as the restaurant bill
and sales tax, respectively. Then, use $56.78 and $2.18.

Figure 2-35   IPO chart for Lab 2-5

Input
restaurant bill Processing items: 10% tip

15% tip
20% tip

sales tax bill before sales tax

Algorithm:
1. enter the restaurant bill
2. calculate the bill before sales tax by subtracting the sales tax
 from the restaurant bill
3. calculate the 10% tip by multiplying the bill before sales tax by 10%
4. calculate the 15% tip by multiplying the bill before sales tax by 15%
5. calculate the 20% tip by multiplying the bill before sales tax by 20%
6. display the 10% tip, 15% tip, and 20% tip

Output Processing

LAB 2-6  Debug
The algorithm in Figure 2-36 should calculate and display the average of three num-
bers, but it is not working correctly. In this lab, you will find and correct the errors in
the algorithm.

Figure 2-36   IPO chart for Lab 2-6

Input
first number Processing items: average
second number sum
third number

Algorithm:
1. enter the first number, second number, and third number
2. calculate the average by dividing the sum by 3
3. display the average number

Output Processing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

41

The Gas Mileage Problem 	﻿

The next instruction calculates the average by dividing the sum by 3. Notice that the sum
column in the desk-check table does not contain a value. This fact alerts you that the algorithm
is missing an instruction. In this case, it is missing the instruction to calculate the sum of the
three numbers. The missing instruction is shaded in Figure 2-38.

The additional instruction calculates the sum by adding together the first number, second
number, and third number. According to the desk-check table shown earlier in Figure 2-37,
those values are 25, 63, and 14, respectively. The sum of those values is 102. Figure 2-39 shows
the sum entered in the desk-check table.

first number second number third number sum average
25 63 14

Figure 2-37   Three input values entered in the desk-check table

Input Processing Output
first number Processing items: average
second number sum
third number

Algorithm:
1. enter the first number, second number, and third number
2. calculate the sum by adding together the first number,
 second number, and third number
3. calculate the average by dividing the sum by 3
4. display the average number

Figure 2-38   Missing instruction added to the IPO chart for Lab 2-6

Figure 2-39   Sum entered in the desk-check table

The next instruction calculates the average by dividing the sum by 3. According to the
desk-check table, the sum is 102. Dividing 102 by 3 results in 34. Figure 2-40 shows the average
entered in the desk-check table.

first number second number third number sum average
25 63 14 102

Figure 2-40   Average entered in the desk-check table

The last instruction in the algorithm displays the average number. Notice that the desk-check
table does not contain a column with the heading “average number.” Recall that it is important to
be consistent when referring to the input, output, and processing items in the IPO chart. In this
case, the last instruction in the algorithm should be display the average rather than display the
average number. According to the desk-check table, the average column contains the number 34,
which is correct. Figure 2-41 shows the corrected algorithm. The changes made to the original
algorithm (shown earlier in Figure 2-36) are shaded in the figure.

first number second number third number sum average
25 63 14 102 34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

42

Figure 2-41   Corrected algorithm for Lab 2-6

On your own, desk-check the corrected algorithm shown in Figure 2-41 using the numbers 33,
56, and 70.

Chapter Summary
The process you follow when creating solutions to everyday problems is similar to the process
used to create a computer program, which is also a solution to a problem. This problem-solving
process typically involves analyzing the problem and then planning, reviewing, implementing,
evaluating, and modifying (if necessary) the solution.

Programmers use tools such as IPO (Input, Processing, Output) charts, pseudocode, and
flowcharts to help them analyze problems and develop algorithms.

The first step in the problem-solving process is to analyze the problem. During the analysis
step, the programmer first determines the output, which is the goal or purpose of solving the
problem. The programmer then determines the input, which is the information needed to
reach the goal.

The second step in the problem-solving process is to plan the algorithm. During the planning
step, programmers write the instructions that will transform the input into the output. Most
algorithms begin by entering some data (the input items), then processing that data (usually by
performing some calculations), and then displaying some data (the output items).

The third step in the problem-solving process is to desk-check the algorithm to determine
whether it will work as intended. First, choose a set of sample data for the input values.
Then use the values to manually compute the expected output. Next, create a desk-check
table that contains a column for each input, processing, and output item. Finally, walk
through each of the instructions in the algorithm, recording the appropriate values in the
desk-check table.

Input
first number Processing items: average
second number sum
third number

Algorithm:
1. enter the first number, second number, and third number

3. calculate the average by dividing the sum by 3
4. display the average

Output Processing

2. calculate the sum by adding together the first number,
 second number, and third number

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

43

Review Questions 	

Key Terms
Desk-checking—the process of manually walking through each of the instructions in an
algorithm; also called hand-tracing

Flowchart—a tool that programmers use to help them plan (or depict) an algorithm; consists of
standardized symbols connected by flowlines

Flowlines—the lines that connect the symbols in a flowchart

Hand-tracing—another term for desk-checking

Input—the items a program needs in order to achieve the output

Input/output symbol—the parallelogram in a flowchart; used to represent input and output tasks

Invalid data—data that the algorithm is not expecting the user to enter

IPO—an acronym for Input, Processing, and Output

IPO chart—a chart that some programmers use to organize and summarize the results of a
problem analysis

Output—the goal of solving a problem; the items the user wants to display, print, or store

Process symbol—the rectangle symbol in a flowchart; used to represent tasks such as
calculations

Processing item—an intermediate value (neither input nor output) that an algorithm uses when
processing the input into the output

Pseudocode—a tool that programmers use to help them plan an algorithm; consists of short
English statements; means false code

Start/stop symbol—the oval symbol in a flowchart; used to mark the beginning and end of the
flowchart

Valid data—data that the algorithm is expecting the user to enter

Review Questions
1.	 Which of the following is the first step in the problem-solving process?

a.	 Plan the algorithm
b.	 Analyze the problem

c.	 Desk-check the algorithm
d.	 Code the algorithm into a program

2.	 Programmers refer to the goal of solving a problem as the _____________________ .

a.	 input

b.	 output

c.	 processing

d.	 purpose

3.	 Programmers refer to the items needed to reach a problem’s goal as the
_____________________ .

a.	 input

b.	 output

c.	 processing

d.	 purpose

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

44

4.	 A problem’s _____________________ will answer the question What does the user want
to see displayed on the screen, printed on the printer, or stored in a file?

a.	 input

b.	 output

c.	 processing

d.	 purpose

5.	 A problem’s _____________________ will answer the question What information will
the computer need to know to display, print, or store the output items?

a.	 input

b.	 output

c.	 processing

d.	 purpose

6.	 The calculation instructions in an algorithm should state _____________________ .

a.	 only what is to be calculated

b.	 only how to calculate something

c.	 both what is to be calculated and
how to calculate it

d.	 both what is to be calculated and
why it is calculated

7.	 Most algorithms follow the format of _____________________ .

a.	 entering the input items; then
displaying, printing, or storing the
input items; and then processing
the output items

b.	 entering the input items; then
processing the output items;
and then displaying, printing, or
storing the output items

c.	 entering the input items; then
processing the input items; and
then displaying, printing, or
storing the output items

d.	 entering the output items; then
processing the output items;
and then displaying, printing, or
storing the output items

8.	 The short English statements that represent an algorithm are called
_____________________ .

a.	 flow diagrams

b.	 IPO charts

c.	 pseudocharts

d.	 pseudocode

9.	 The oval in a flowchart is called the _____________________ symbol.

a.	 calculation

b.	 input/output

c.	 process

d.	 start/stop

10.	 A desk-check table should contain _____________________ .

a.	 one column for each input item

b.	 one column for each output item

c.	 one column for each processing
item

d.	 all of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

45

Exercises 	

Exercises

Pencil and Paper

1.	 The principal of a local school wants a program that displays the average number of
students per teacher at the school. The principal will enter the number of students
enrolled and the number of teachers employed. Complete an IPO chart for this
problem. Plan the algorithm using a flowchart. Also complete a desk-check table for
your algorithm. For the first desk-check, use 1200 and 60 as the number of students and
number of teachers, respectively. Then use 2500 and 100. (The answers to TRY THIS
Exercises are located at the end of the chapter.)

2.	 Balloon Emporium sells both latex and Mylar balloons. The store owner wants a pro-
gram that allows him to enter the price of a latex balloon, the price of a Mylar balloon,
the number of latex balloons purchased, the number of Mylar balloons purchased,
and the sales tax rate. The program should calculate and display the total cost of the
purchase. Complete an IPO chart for this problem. Plan the algorithm using pseudo-
code. Desk-check the algorithm using $1.50 as the latex balloon price, $2.50 as the
Mylar balloon price, 5 as the number of latex balloons purchased, 10 as the number
of Mylar balloons purchased, and .04 as the sales tax rate. Then desk-check it using
$1.25, $3.75, 10, 4, and .06. (The answers to TRY THIS Exercises are located at the
end of the chapter.)

3.	 Modify the IPO chart shown earlier in Figure 2-22 so that it also displays the cost per
mile driven. Desk-check the algorithm using 324, 17, and $3.10 as the miles driven,
gallons used, and cost per gallon of gas. Then desk-check it using 450, 20, and $2.75.

4.	 All of the employees at Merks Sales are paid based on an annual salary rather than an
hourly wage. However, some employees are paid weekly while others are paid every
other week (biweekly). Weekly employees receive 52 paychecks; biweekly employees
receive 26 paychecks. The payroll manager wants a program that displays two amounts:
an employee’s weekly gross pay and his or her biweekly gross pay. Complete an IPO
chart for this problem. Desk-check the algorithm using $56,700 as the salary. Then
desk-check it using $32,660.

5.	 Norbert Catering is famous for its roast beef sandwiches. The store’s owner wants a
program that he can use to estimate the number of pounds of roast beef a customer
should purchase, given the desired number of sandwiches and the amount of meat
per sandwich. Typically, one sandwich requires two to three ounces of meat, but some
customers prefer four or five ounces per sandwich. Complete an IPO chart for this
problem. Desk-check the algorithm using 50 as the number of sandwiches and 4 ounces
as the amount of meat per sandwich. Then desk-check it using 224 and 2 ounces.

6.	 An airplane has both first-class and coach seats. The first-class tickets cost more than
the coach tickets. The airline wants a program that calculates and displays the total
amount of money the passengers paid for a specific flight. Complete an IPO chart
for this problem. Desk-check the algorithm using 9, 52, $125, and $90 as the number
of first-class tickets sold, the number of coach tickets sold, the price of a first-class
ticket, and the price of a coach ticket, respectively. Then desk-check it using your own
set of data.

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

46

7.	 The annual property tax in Richardson County is $1.75 for each $100 of a property’s
assessed value. The county clerk wants an application that will display the property tax
after he enters the property’s assessed value. Complete an IPO chart for this problem.
Desk-check it twice, using your own data.

8.	 Each time Tania visits the dentist, her dental insurance requires her to pay a $20 co-pay
and 15% of the remaining charge. She wants a program that displays the total amount
she needs to pay, as well as the total amount the insurance should pay. Complete an
IPO chart for this problem. You can assume that the dental charge will always be at
least $20. Desk-check the algorithm using $110 as the dental charge. Then desk-check it
using your own data.

9.	 Treyson Liu has just purchased his first home. His local flooring store is having a great
sale, and he would like to replace the tile floor in his rectangular den with carpeting.
He wants a program that calculates and displays the cost of the carpeting. Complete
an IPO chart for this problem. Desk-check the algorithm using 25 feet as the length,
30 feet as the width, and $5.65 as the cost per square foot of carpeting, respectively.
Then desk-check it using your own set of data.

10.	 Carlos receives 24 paychecks each year. Each paycheck, he contributes a specific
percentage of his gross pay to his retirement plan at work. His employer also
contributes to his retirement plan, but at a different rate. Carlos wants a program that
will calculate and display the total annual contribution made to his retirement plan
by him and his employer. Complete an IPO chart for this problem. Desk-check the
algorithm using $1465 as the gross pay, 4% as Carlos’s contribution rate, and 2% as his
employer’s contribution rate. Then desk-check it using your own set of data.

11.	 The manager of a local restaurant wants a program that displays the total cost for
running a party in the restaurant’s banquet room. The restaurant charges a base fee for
renting the room. It also charges a fee per guest. Complete an IPO chart for this prob-
lem. Desk-check the algorithm twice, using your own sets of data.

12.	 Sam wants a program that displays the number of seconds it takes for a baseball to
travel a specified distance at a specified speed. The distance will be given in feet, and
the speed will be given in miles per hour. Complete an IPO chart for this problem.
Desk-check the algorithm using 60.5 feet as the distance and 105 miles per hour as
the speed. Then desk-check it using 54 feet and 89 miles per hour. In each desk-check,
round the answer to four decimal places.

13.	 The payroll clerk at Nosaki Company wants a program that calculates and displays an
employee’s gross pay, federal withholding tax (FWT), Social Security and Medicare
(FICA) tax, state tax, and net pay. The clerk will enter the hours worked (which is never
over 40), hourly pay rate, FWT rate, FICA tax rate, and state income tax rate. Complete
an IPO chart for this problem. Desk-check the algorithm using 30, $10, .2, .08, and .04
as the hours worked, pay rate, FWT rate, FICA rate, and state tax rate, respectively.
Then desk-check it using your own set of data.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

47

Exercises 	

14.	 The algorithm shown in Figure 2-42 should calculate and display the total amount due,
but it is not working correctly. Correct the algorithm, and then desk-check it using 20,
$0.25, and .045 (the decimal equivalent of 4.5%) as the number of folders purchased,
folder price, and sales tax rate, respectively.

SWAT THE BUGS

Input Processing Output
number purchased Processing items: total due
folder price subtotal
sales tax rate sales tax

Algorithm:
1. enter the number purchased and folder price
2. calculate the subtotal by multiplying the number
 purchased by the folder price
3. calculate the sales tax by dividing the subtotal by
 the sales tax rate
4. calculate the total due by adding the sales tax to the subtotal
5. display the total due

Figure 2-42

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2 Beginning the Problem-Solving Process

48

Input Processing
students Processing items: none

 teachers

Algorithm:

students teachers average number of students per teacher
1200 60 20
2500 100 25

start

enter
students and
teachers

display
average number
of students per
teacher

stop

average number of students per
teacher = students / teachers

Output
average number of students
per teacher

Figure 2-43

Answers to TRY THIS Exercises

1.	 See Figure 2-43.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

49

Exercises 	

2.	 See Figure 2-44.

Processing Output
latex price Processing items: total cost
Mylar price total latex cost
latex purchased total Mylar cost
Mylar purchased subtotal
sales tax rate sales tax

Algorithm:
1. enter the latex price, Mylar price, latex purchased,
 Mylar purchased , and sales tax rate
2. calculate the total latex cost by multiplying the
 latex purchased by the latex price
3. calculate the total Mylar cost by multiplying the
 Mylar purchased by the Mylar price
4. calculate the subtotal by adding together the total
 latex cost and total Mylar cost
5. calculate the sales tax by multiplying the subtotal
 by the sales tax rate
6. calculate the total cost by adding the sales tax to
 the subtotal
7. display the total cost

latex price Mylar price latex purchased Mylar purchased sales tax rate
1.50 2.50 5 10 .04
1.25 3.75 10 4 .06

total latex cost total Mylar cost subtotal sales tax total cost
7.50 25 32.50 1.30 33.80

12.50 15 27.50 1.65 29.15

Input

Figure 2-44

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3
Variables and Constants

After studying Chapter 3, you should be able to:

�� Distinguish among a variable, a named constant, and a literal constant

�� Explain how data is stored in memory

�� Select an appropriate name, data type, and initial value for a memory
location

�� Declare a memory location in C++

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

52

Beginning Step 4 in the Problem-Solving Process
Chapter 2 covered the first three steps in the problem-solving process: analyze the problem, plan
the algorithm, and then desk-check the algorithm. When the programmer is satisfied that the
algorithm is correct, he or she moves on to the fourth step, which is to code the algorithm into a
program. Coding the algorithm refers to the process of translating the algorithm into a language
that the computer can understand; in this book, you will use the C++ programming language.

Programmers use the information in the IPO chart, which they created in the analysis and
planning steps, as a guide when coding the algorithm. The programmer begins by assigning
a descriptive name to each unique input, processing, and output item. The programmer also
assigns to each item a data type and (optionally) an initial value. The name, data type, and
initial value are used to store the input, processing, and output items in the computer’s internal
memory while the program is running.

Internal Memory
The internal memory of a computer is composed of memory locations, with each memory loca-
tion having a unique numeric address. It may be helpful to picture memory locations as shoe
boxes, similar to the ones illustrated in Figure 3-1. As you know, shoe boxes come in different
types and sizes. There are small boxes for children’s sandals, larger boxes for adult sneakers, and
even larger boxes for boots. The type and size of the footwear determine the appropriate type
and size of the box. Like shoe boxes, memory locations also come in different types and sizes.
Here, too, the type and size of the item you want to store determine the appropriate type and
size of the memory location. The item stored in a memory location can be a number, such as the
small number .0005 or the much larger number 1,500,892.35. The item can also be text, which is
a group of characters treated as one unit and not used in a calculation. Examples of text include
a name, an address, or a phone number. The item can also be a Boolean value (true or false) or
a C++ instruction. Unlike the shoe boxes in the figure, however, each memory location inside a
computer can hold only one item of data at a time.

Ch03-Chapter Preview

Some of the memory locations inside the computer are automatically filled with data while you
use your computer. For example, when you enter the number 5 at your keyboard, the computer
saves the number 5 in a memory location for you. Likewise, when you start an application, each

Figure 3-1   Illustration of shoe boxes and memory locations

Memory locations:

.0005 1,500,892.35 Caroline Paulis true

Im
ag

e
by

 D
ia

ne
 Z

ak
; c

re
at

ed
 w

ith
 R

ea
llu

si
on

 C
ra

zy
Ta

lk
 A

ni
m

at
or

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

53

Selecting a Name for a Memory Location 	﻿

program instruction is placed in a memory location, where it awaits processing. Other memory
locations are reserved by programmers for use in a program. Such memory locations are used to
store the values of the input, processing, and output items as the program is running. Reserving
a memory location is also referred to as declaring the memory location.

A programmer declares a memory location using a C++ instruction that assigns a name, a data
type, and (optionally) an initial value to the location. The name allows the programmer to refer
to the memory location using one or more descriptive words, rather than a cryptic numeric
address, in code. Descriptive words are easier to remember and serve to self-document your
code. The data type indicates the type of data—for example, numeric or textual—the memory
location will store.

There are two types of memory locations that a programmer can declare: variables and named
constants. A variable is a memory location whose value can change (vary) during runtime,
which is when a program is running. Most of the memory locations declared in a program are
variables. A named constant, on the other hand, is a memory location whose value cannot be
changed during runtime. In a program that inputs the radius of any circle and then calculates
and outputs the circle’s area, a programmer would declare variables to store the values of the
radius and area; doing this allows those values to vary while the program is running. However,
he or she would declare a named constant to store the value of pi (π), which is used in the
formula for calculating the area of a circle. (The formula is πr2.) A named constant is appropriate
in this case because the value of pi (3.141593 when rounded to six decimal places) will always be
the same.

Selecting a Name for a Memory Location
Every memory location that a programmer declares must be assigned a name. The name, also
called the identifier, should describe the contents of the variable. A good memory location
name is one that is meaningful right after you finish a program and also years later when you
(or perhaps a coworker) need to modify the program.

A memory location’s name must follow several specific rules in C++. It must begin with a letter
and contain only letters, numbers, and the underscore character. No punctuation marks, spaces,
or other special characters (such as $ or %) are allowed in the name. In addition, the name can-
not be a keyword, which is a word that has a special meaning in the programming language you
are using. Keywords are also referred to as reserved words. Appendix A in this book contains a
list of the C++ keywords, which must be entered using lowercase letters.

Memory location names are case sensitive in C++. This means that in addition to using the
exact spelling when referring to a specific memory location in a program, you must also use the
exact case. For example, if you declare a memory location named discount at the beginning of a
program, you must use the name discount, rather than Discount or DISCOUNT, to refer to that
memory location throughout the program.

Many C++ programmers use uppercase letters when naming named constants and use
lowercase letters when naming variables. This practice allows them to easily distinguish between
the named constants and variables in a program. If a named constant’s name contains more
than one word, an underscore character can be used to separate the words, like this: TAX_RATE.
However, if a variable’s name contains two or more words, most C++ programmers enter the
name using camel case, which means they capitalize the first letter in the second and subse-
quent words in the name, like this: grossPay. Camel case refers to the fact that the uppercase
letters appear as “humps” in the name because they are taller than the lowercase letters. The
rules for naming memory locations in C++ are shown in Figure 3-2, along with examples of valid
and invalid names.

Refer to
the Tip that
appears next
to Figure 3-2
for an excep-

tion to beginning a
memory location’s
name with a letter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

54

Revisiting the Addison O’Reilly Problem from Chapter 2
Figure 3-3 shows one of the problem specifications, IPO charts, and desk-check tables from
Chapter 2.

Figure 3-2   How to name a memory location in C++

How To �Name a Memory Location in C++

1.	The name must begin with a letter.

2.	The name can contain only letters, numbers, and the underscore character. No
punctuation marks, spaces, or other special characters are allowed in the name.

3.	The name cannot be a keyword. Appendix A contains a list of keywords in C++.

4.	Names in C++ are case sensitive.

Valid names

Invalid names Reason
the name must begin with a letter
the name cannot contain a space
the name cannot contain punctuation
the name cannot be a keyword
the name cannot contain a special character

Technically,
a memory
location’s name
in C++ can
begin with an

underscore. However,
this usually is done only
for the names of mem-
ory locations declared
within a class. You will
learn about classes
later in this book.

Input Processing

Problem specification

Addison O’Reilly wants a program that calculates and displays the cost of a 4K Ultra HD TV, which
is finally on sale at one of the stores in her area. The program should calculate the cost by
multiplying the sale price by the state sales tax rate and then adding the result to the sale price.

Output
sale price Processing items: cost
sales tax rate sales tax

Algorithm:
1. enter the sale price and sales tax rate
2. calculate the sales tax by multiplying the sale price by the
 sales tax rate
3. calculate the cost by adding the sales tax to the sale price
4. display the cost

sale price sales tax rate sales tax cost
2300 .05 115 2415
5200 .03 156 5356

Figure 3-3   Problem specification, IPO chart, and desk-check table from Chapter 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

55

Selecting a Data Type for a Memory Location 	﻿

Four memory locations will be needed to store the four input, processing, and output items con-
tained in the IPO chart. The memory locations will be variables because each item’s value should
be allowed to vary during runtime. Figure 3-4 lists possible names (identifiers) for the variables.

Mini-Quiz 3-1

1.	 How many items can a memory location store at a time?

2.	 Which of the following can be used in a C++ program to refer to the salesTax
variable?

a.	 salesTax

b.	 salestax

c.	 Salestax

d.	 Any of the above can be used.

3.	 Which of the following is a valid name for a memory location?

a.	 Income&Expense

b.	 4thQtrSales

c.	 quarter#3

d.	 TAX_RATE

4.	 What are the two types of memory locations that a programmer can declare?

Selecting a Data Type for a Memory Location
The item that a memory location will accept for storage is determined by the location’s data
type, which the programmer assigns to the location when he or she declares it in a program. The
most commonly used data types in C++ are listed in Figure 3-5, along with the values each type
can store and the amount of memory needed to store a value.

Except for the string data type, the data types listed in Figure 3-5 belong to a group of data
types called fundamental data types. The fundamental data types are the basic data types built
into the C++ language and often are referred to as primitive data types or built-in data types.
The string data type, on the other hand, was added to the C++ language through the use of
a class and is referred to as a user-defined data type. A class is simply a group of instructions
that the computer uses to create an object. In this case, the string class (user-defined data type)
creates a string variable, which is considered an object. You will learn more about classes and
objects in subsequent chapters in this book.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

The memory
requirements
and values for
the different
data types are

implementation depen-
dent. However, the ones
listed in Figure 3-5 are
typical for personal
computers.

IPO chart item Variable name
sale price
sales tax rate
sales tax
cost

Figure 3-4   Names of the variables for the Addison O’Reilly problem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

56

As Figure 3-5 indicates, bool memory locations can store either the Boolean value true or the
Boolean value false. The Boolean values are named in honor of the English mathematician
George Boole (1815–1864), who invented Boolean algebra. You could use a bool variable in a
program to keep track of whether a customer’s bill is either paid (true) or not paid (false).

Memory locations assigned the char data type can store one character only. A character
is a letter, a symbol, or a number that will not be used in a calculation. Some programmers
pronounce char as “care” because it is short for character, while others pronounce char as in
the first syllable of the word charcoal. A string memory location, on the other hand, can store
zero or more characters.

Memory locations assigned either the short or int data type can store integers only. An
integer is a whole number, which is a number that does not contain a decimal place. Examples
of integers include the numbers 0, 45, and –678. The differences between the short and int
data types are in the range of numbers each type can store and the amount of memory needed
to store the number.

Memory locations assigned either the float or double data type can store real numbers,
which are numbers that contain a decimal place. Examples of real numbers include the numbers
75.67, –3.45, and 783.5689. The differences between the float and double data types are in the
range of numbers each type can store, the precision with which the number is stored, and the
amount of memory needed to store the number.

In most of the programs you create in this book, you will use the int data type for memory
locations that will store integers, and use the double data type for memory locations that will
store numbers with a decimal place. The double data type was chosen over the float data type
because it stores real numbers more precisely, using 15 digits of precision rather than only seven

Figure 3-5   Most commonly used data types in C++

Data type Stores Memory required

an integershort

int

float

double

bool

string

char

2 bytes

Range: –32,768 to 32,767

an integer 4 bytes

Range: –2,147,483,648 to 2,147,483,647

a real number with 7 digits of precision 4 bytes

Range: –3.4 X 1038 to 3.4 X 1038

a real number with 15 digits of precision 8 bytes

Range: –1.7 X 10308 to 1.7 X 10308

a Boolean value (true or false) 1 byte

one character 1 byte

zero or more characters 1 byte per characteruser-defined
data type

fundamental
data types

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

57

Selecting a Data Type for a Memory Location 	﻿

digits. At this point, however, it is important to caution you about real numbers. Even with 15
digits of precision, not all real numbers can be represented exactly within the computer’s inter-
nal memory. As a result, some calculations may not result in accuracy to the penny. You will
learn more about using real numbers in calculations in Chapter 4. Figure 3-6 shows the data type
selected for each variable in the Addison O’Reilly problem.

IPO chart item Variable name Data type
sale price
sales tax rate
sales tax
cost

Figure 3-6   Data type assigned to each variable for the Addison O’Reilly problem

Figure 3-7   How to use the decimal (base 10) number system

Ch03-Number System

How To Use the Decimal (Base 10) Number System

How Data Is Stored in Internal Memory
Knowing how data is stored in the computer’s internal memory will help you understand the
importance of a memory location’s data type. Numbers are represented in internal memory
using the binary (or base 2) number system. The binary number system uses only the two
digits 0 and 1. Although the binary number system may not be as familiar to you as the decimal
number system, which uses the 10 digits 0 through 9, it is just as easy to understand. First, we’ll
review the decimal (or base 10) number system that you learned about in elementary school.

As Figure 3-7 indicates, the position of each digit in the decimal number system is associated
with the system’s base number, 10, raised to a power. Starting with the rightmost position, the
positions represent the number 10 raised to a power of 0, 1, 2, 3, and so on. In the decimal
number 110, the 0 is in the 100 position, the middle 1 is in the 101 position, and the leftmost 1
is in the 102 position. Keep in mind that in all numbering systems, the result of raising the base
number to the 0th power is 1, and the result of raising it to the 1st power is the base number itself.
A base number raised to the 2nd power indicates that the base number should be squared—in
other words, multiplied by itself. As a result, the decimal number 110 means zero 1s (100), one
10 (101), and one 100 (102). The decimal number 3475 means five 1s (100), seven 10s (101), four
100s (102), and three 1000s (103). Similarly, the decimal number 21509 means nine 1s (100), zero
10s (101), five 100s (102), one 1000 (103), and two 10000s (104).

Decimal number 107 106 105 104 103 102 101 100

110 1 1 0
3475 3 4 7 5
21509 2 1 5 0 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

58

Compare the decimal number system illustrated in Figure 3-7 with the binary number system
illustrated in Figure 3-8. Like the decimal number system, the position of each digit in the
binary number system is also associated with the system’s base number raised to a power.
However, in the binary number system, the base number is 2 rather than 10. Starting with
the rightmost position, the positions represent 2 raised to a power of 0, 1, 2, 3, and so on. In
the binary number 110, the 0 is in the 20 position, the middle 1 is in the 21 position, and the
leftmost 1 is in the 22 position. Therefore, the binary number 110 means zero 1s (20), one 2
(21), and one 4 (22). The decimal equivalent of the binary number 110 is 6, which is calculated
by adding together 0 + 2 + 4 (zero 1s + one 2 + one 4). In other words, the decimal number
6 is stored in a memory location using the binary number 110. The binary number 11010
means zero 1s (20), one 2 (21), zero 4s (22), one 8 (23), and one 16 (24). The decimal equivalent
of the binary number 11010 is 26, which is calculated by adding together 0 + 2 + 0 + 8 + 16.
The decimal equivalent of the last binary number shown in Figure 3-8 is 9 (one 1 + zero 2s +
zero 4s + one 8).

Unlike numeric data, character data (which is data assigned to memory locations that can store
characters) is represented in internal memory using ASCII codes. ASCII (pronounced ASK-ee)
stands for American Standard Code for Information Interchange. The ASCII coding scheme
assigns a specific numeric code to each character on your keyboard. Figure 3-9 shows a partial
listing of the ASCII codes along with their binary representations. The full ASCII chart is
contained in Appendix B in this book.

As Figure 3-9 indicates, the uppercase letter A is assigned the ASCII code 65, which is stored in
internal memory using the eight bits (“binary digits”) 01000001 (one 64 and one 1). Notice that
the lowercase version of each letter is assigned a different ASCII code than the letter’s uppercase
version. The lowercase letter a, for example, is assigned the ASCII code 97, which is stored in
internal memory using the eight bits 01100001. This fact indicates that the computer does not
consider both cases of a letter to be equivalent. In other words, the uppercase letter A is not
the same as the lowercase letter a. This concept will become important when you compare
characters in later chapters.

At this point, you may be wondering why the numeric characters on your keyboard are assigned
ASCII codes. For example, shouldn’t a 9 be stored using the binary number system, as you
learned earlier? The answer is that the computer uses the binary number system to store the
number 9, but it uses the ASCII coding scheme to store the character 9. But how does the
computer know whether the 9 is a number or a character? The answer to this question is simple:
by the memory location’s data type.

Figure 3-8   How to use the binary (base 2) number system

How To �Use the Binary (Base 2) Number System

Binary number 27 26 25 24 23 22 21 20 Decimal equivalent
110 1 1 0 6
11010 1 1 0 1 0 26
1001 1 0 0 1 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

59

Selecting a Data Type for a Memory Location 	﻿

Figure 3-9   Partial ASCII chart

Character ASCII Binary Character ASCII Binary Character ASCII Binary

48 00110000 75 01001011 g 103 01100111

49 00110001 76 01001100 h 104 01101000

50 00110010 77 01001101 i 105 01101001

51 00110011 78 01001110 j 106 01101010

52 00110100 79 01001111 k 107 01101011

53 00110101 80 01010000 l 108 01101100
54 00110110 81 01010001 m 109 01101101
55 00110111 82 01010010 n 110 01101110
56 00111000 83 01010011 o 111 01101111
57 00111001 84 01010100 p 112 01110000
58 00111010 85 01010101 q 113 01110001
59 00111011 86 01010110 r 114 01110010
65 01000001 87 01010111 s 115 01110011
66 01000010 88 01011000 t 116 01110100
67 01000011 89 01011001 u 117 01110101
68 01000100 90 01011010 v 118 01110110
69 01000101 97 01100001 w 119 01110111
70 01000110 98 01100010 x 120 01111000
71 01000111 99 01100011 y 121 01111001
72 01001000 100 01100100 z 122 01111010
73 01001001 101 01100101

0

1

2

3

4

5
6
7
8
9
:
;
A
B
C
D
E
F
G
H
I
J 74 01001010

K

L

M

N

O

P
Q
R
S
T
U
V
W
X
Y
Z
a
b
c
d
e
f 102 01100110

Here is an example of the importance of a memory location’s data type: Consider a program
that displays the message “Enter your pet’s age:” on the computer screen. The program stores
your response in a variable named age. When you press the 9 key on your keyboard in
response to the message, the computer uses the data type of the age variable to determine
whether to store the 9 as a number (using the binary number system) or as a character (using
the ASCII coding scheme). If the variable’s data type is int, the 9 is stored as the binary
number 1001 (one 1 + one 8). If the variable’s data type is char, on the other hand, the 9 is
stored as a character using the ASCII code 57, which is represented in internal memory as
00111001 (one 1 + one 8 + one 16 + one 32).

The memory location’s data type also determines how the computer interprets a memory
location’s existing data. If a program instruction needs to access the value stored in a memory
location—perhaps to display the value on the screen—the computer uses the memory location’s
data type to determine the value’s data type. To illustrate this point, assume that a memory loca-
tion named inputItem contains the eight bits 01000001. If the memory location’s data type is
char, the computer displays the uppercase letter A on the screen. This is because the computer
interprets the 01000001 as the ASCII code 65, which is equivalent to the uppercase letter A.
However, if the memory location’s data type is int, the computer displays the number 65 on
the screen because the 01000001 is interpreted as the binary representation of the decimal
number 65. In summary, the data type of a memory location is important because it determines
how the data is stored when first entered into the memory location. It also determines how the
data is interpreted when the memory location is used in an instruction later in the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

60

Mini-Quiz 3-2

1.	 The int data type is one of the fundamental data types in C++.

a.	 True
b.	 False

2.	 In the binary number system, the decimal number 27 is represented as
_________________________.

a.	 10111
b.	 11011
c.	 10011
d.	 none of the above

3.	 What is the ASCII code for the uppercase letter H, and how is it represented in the
computer’s internal memory?

4.	 Which data type can store a real number?

a.	 double

b.	 int

c.	 float

d.	 both a and c

Selecting an Initial Value for a Memory Location
In addition to assigning a name and data type to each variable and named constant used in a
program, you should also assign an initial value to each. Assigning an initial (or beginning) value
to a memory location is referred to as initializing. With the exception of a bool memory loca-
tion, which is initialized using either the C++ keyword true or the C++ keyword false, you
typically initialize a memory location by assigning a literal constant to it. Unlike variables and
named constants, literal constants are not memory locations. Rather, a literal constant is an
item of data that can appear in a program instruction and be stored in a memory location.

The data type of a literal constant should match the data type of the memory location to which
it is assigned. Integers should be assigned to memory locations having the short or int data
type. Memory locations having the float or double data type should be initialized using real
numbers. Integers and real numbers are called numeric literal constants; examples include the
numbers 146, 0.0, and –2.5. Numeric literal constants can contain numbers, the plus sign, the
minus sign, and the decimal point. They can also contain either the lowercase letter e or the
uppercase letter E, both of which are used to represent exponential (or e) notation. Scientific
programs use e notation to represent very small and very large numbers. Numeric literal con-
stants cannot contain a space, a comma, or a special character, such as the dollar sign ($) or per-
cent sign (%). A numeric literal constant with no decimal place is considered an int data type in
C++, whereas a numeric literal constant with a decimal place is considered a double data type.

Programmers use character literal constants to initialize char memory locations. A character
literal constant is one character enclosed in single quotation marks, such as the letter ‘X’, the
dollar sign ‘$’, and a space ‘ ’ (two single quotation marks with a space character between). A
string memory location is initialized using a string literal constant, which is zero or more
characters enclosed in double quotation marks. The word “Hello”, the message “Enter your

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Although
initializing
variables is
optional in most
programming

languages, including
C++, it is considered
a good programming
practice to do so and is
highly recommended.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

61

Selecting an Initial Value for a Memory Location 	﻿

pet’s age:”, and the empty string “” (two double quotation marks with no space between) are
examples of string literal constants.

When a program instructs the computer to assign a value to a memory location, the computer
first compares the value’s data type with the memory location’s data type. The comparison is
made to verify that the value is appropriate for the memory location. If the value’s data type does
not match the memory location’s data type, the computer uses a process called implicit type
conversion to convert the value to fit the memory location. For example, if a program initializes
a double variable named price to the integer 9, the computer converts the integer to a real
number before storing the value in the variable. The computer does this by appending a decimal
point and the number 0 to the end of the integer, like this: 9.0. The computer then stores the
real number 9.0 in the price variable. When a value is converted from one data type to another
data type that can store larger numbers, the value is said to be promoted. In this case, the int
value 9 is promoted to the double value 9.0. (As shown earlier in Figure 3-5, the double data
type can store larger numbers than can the int data type.) In most cases, the implicit promotion
of values does not adversely affect a program’s output.

However, now consider a program that declares an int named constant called MIN_WAGE. If you
use a real number—such as 9.25—to initialize the named constant, the computer first converts
the real number to an integer by truncating (dropping off) the decimal portion of the number; it
then stores the result in the memory location. As a result, the computer will store the number 9
rather than the number 9.25 in the MIN_WAGE memory location. When a value is converted from
one data type to another data type that can store only smaller numbers, the value is said to be
demoted. In this case, the double value 9.25 is demoted to the int value 9. The implicit demo-
tion of values can adversely affect a program’s output. Therefore, it’s important to initialize
memory locations using values that have the same data type as the memory location.

If a memory location is a named constant, the problem specification and IPO chart will provide
the appropriate initial value to use, and that value will remain the same during runtime. (Recall
that the contents of a named constant cannot change while the program is running.) The initial
value for a variable, on the other hand, is not stated in a problem specification or IPO chart
because the user supplies the value while the program is running. Therefore, you usually use the
values shown in Figure 3-10.

Ch03-Type Conversion

How To �Initialize Variables

Figure 3-10   How to initialize variables

Data type Typical initial value
0
0
0.0
0.0
“” (empty string)
‘ ’ (a space)

or

Recall that a
numeric literal
constant with a
decimal place
is treated as a

double number in C++.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

62

Figure 3-11 shows the initial values for the variables in the Addison O’Reilly problem.

Declaring a Memory Location
Now that you know how to select an appropriate name, data type, and initial value for a memory
location, you can learn how to declare variables and named constants in a C++ program. We’ll
begin with variables.

You declare a variable using a statement, which is a C++ instruction that causes the computer
to perform some action after being executed (processed) by the computer. A statement that
declares a variable causes the computer to set aside a memory location with the name, data type,
and initial value you provide. A variable declaration statement is one of many different types of
statements in C++.

The syntax and examples of a variable declaration statement are shown in Figure 3-12. The term
syntax refers to the rules of a programming language. One rule in C++ is that all statements
must end with a semicolon. Another rule is that the programmer must provide a data type and
name for the variable being declared. He or she can also provide an initial value for the variable.

Items that the programmer provides are italicized in a statement’s syntax, as shown in
Figure 3-12. Items appearing in square brackets—in this case, the = symbol and initialValue—
are optional. In other words, the C++ language does not require variables to be initialized.
However, initializing variables is highly recommended. If you do not provide an initial value,
the variable may contain a meaningless value. Programmers refer to the meaningless value
as garbage because it is the remains of what was last stored in the memory location that the
variable now occupies. Items in boldface in a syntax are required. In a variable declaration
statement, the semicolon is required; the = symbol is required only when the programmer is
providing an initial value for the variable.

Using the shoe
box analogy
from the
beginning of
the chapter,

initializing a variable is
similar to removing the
current contents of a
box before using it.

Figure 3-11   Initial values for the variables in the Addison O’Reilly problem

IPO chart item Variable name Data type Initial value
sale price 0.0
sales tax rate 0.0
sales tax 0.0
cost

salePrice
taxRate
salesTax
cost 0.0

double
double
double
double

Figure 3-12   How to declare a variable in C++

How To �Declare a Variable in C++

Syntax
 dataType variableName [= initialValue];

Examples

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

63

Declaring a Memory Location 	﻿

After a variable is declared, you can use its name to refer to it later in the program, such as in a
statement that displays the variable’s value or uses the value in a calculation. You will learn how
to write such statements in Chapter 4. Figure 3-13 shows the declaration statements you would
use to declare the four variables in the Addison O’Reilly problem.

Now we’ll look at how you declare a named constant. Figure 3-14 shows the C++ syntax and
includes examples of declaring several named constants. The const keyword indicates that
the memory location is a named constant, which means its value cannot be changed during
runtime. If a program statement attempts to change the value stored in a named constant, the
C++ compiler will display an error message. As you learned in Chapter 1, a compiler converts
the instructions written in a high-level language (such as C++) into the 0s and 1s the computer
can understand.

Figure 3-13   Variable declaration statements for the Addison O’Reilly problem

IPO chart item Variable
name

Data type Initial
value

sale price
sales tax rate
sales tax
cost

C++ statement

Figure 3-14   How to declare a named constant in C++

How To �Declare a Named Constant in C++

Syntax
const dataType constantName = value;

Examples

As you can with variables, you can use a named constant in another statement that
appears after its declaration statement. For example, after entering the const double
PI = 3.141593; statement in a program, you can use PI in a statement that calculates the
area of a circle; the computer will use the value stored in the named constant (3.141593) to
calculate the area.

Using named constants in a program has several advantages. First, named constants make a
program more self-documenting and easier to modify because they allow the use of meaningful
words (such as PI) in place of values that are less clear (3.141593). Second, unlike the value
stored in a variable, the value stored in a named constant cannot be inadvertently changed
during runtime. Third, typing PI rather than 3.141593 in a statement is easier and less prone to
typing errors. If you do mistype PI in a statement that calculates a circle’s area—for example,
if you type Pi rather than PI—the C++ compiler will display an error message. Mistyping
3.141593 in the area-calculation statement, however, will not trigger an error message and will
result in an incorrect answer. Finally, if a named constant’s value needs to be changed in the
future, you will need to modify only the declaration statement, rather than all of the statements
that use the value.

For more
examples
of declar-
ing vari-
ables and

named constants, see
the Declaring Memory
Locations section in the
Ch03WantMore.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

64

Mini-Quiz 3-3

1.	 Which of the following is a character literal constant?

a.	 '$'

b.	 '56'

c.	 'No'

d.	 all of the above

2.	 Which of the following is a string literal constant?

a.	 "$"

b.	 "56"

c.	 "No"

d.	 all of the above

3.	 If you assign the number 3.49 to an int variable, what will the computer store in the
variable?

4.	 Write a C++ statement that declares and initializes an int variable named population.

5.	 Write a C++ statement that declares the INTEREST_RATE named constant. The
constant should have the double data type and contain the number 0.05.

6.	 If you earn $10.25 per hour and worked 20 hours, how much less would you be paid if
your hourly rate were inadvertently assigned to an int variable in a program?

Lab 3-1  Stop and Analyze
Study the IPO chart shown in Figure 3-15, and then answer the questions.The answers

to the labs are
contained in the
Answers.pdf file.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Figure 3-15   IPO chart for Lab 3-1

Input Processing Output
quantity sold Processing items: profit
item cost ($5.45) price and cost difference
item selling price

Algorithm:
1. enter the quantity sold and item selling price
2. calculate the price and cost difference by subtracting the
 item cost from the item selling price
3. calculate the profit by multiplying the price and cost
 difference by the quantity sold
4. display the profit

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

65

Declaring a Memory Location 	﻿

Questions

1.	 How many memory locations will the problem require?

2.	 How many of the memory locations will be variables, and how many will be named
constants? Why did you choose one type over the other?

3.	 How would you write the appropriate declaration statements? Use the int data type for
the quantity sold, and the double data type for the remaining input, processing, and out-
put items.

Lab 3-2  Plan and Create
In this lab, you will plan and create an algorithm that displays a 10% commission on a
sales amount. The problem specification is shown in Figure 3-16.

Figure 3-16   Problem specification for Lab 3-2

First, analyze the problem, looking for the output first and then for the input. Recall that the
output answers the question What does the user want to see displayed on the screen, printed
on paper, or stored in a file?, and the input answers the question What information will the
computer need to know to display, print, or store the output items? In this case, the user wants
to see the commission amount displayed on the screen. To do this, the computer will need to
know the commission rate and the sales amount. The sales amount will be entered by the user,
whereas the problem specification indicates that the value to use for the commission rate is 10%.
Figure 3-17 shows the input and output items entered in an IPO chart.

Problem specification
Boughton Inc. wants a program that calculates and displays the amount of a salesperson’s
commission. The commission is calculated by multiplying the salesperson’s sales amount
by 10%.

Input Processing Output
commission rate (10%) Processing items: none commission
sales amount

Algorithm:

Figure 3-17   Partially completed IPO chart showing the input and output items

After determining a problem’s output and input, you then plan its algorithm. Recall that most
algorithms begin with an instruction to enter the input items into the computer, followed
by instructions that process the input items, typically including the items in one or more
calculations. Most algorithms end with one or more instructions that display, print, or store the
output items. Figure 3-18 shows the completed IPO chart for the commission problem.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

66

Input Processing Output
commission rate (10%) Processing items: none commission
sales amount

Algorithm:
1. enter the sales amount
2. calculate the commission by multiplying
 the sales amount by the commission rate
3. disp lay the commission

Figure 3-18   Completed IPO chart for Lab 3-2

After completing the IPO chart, you then move on to the third step in the problem-solving
process, which is to desk-check the algorithm. You begin by choosing a set of sample data for
the input values. You then use the values to manually compute the expected output. You will
desk-check the current algorithm twice: first using $1328.50 as the sales amount and then using
$267.90. For the first desk-check, the commission should be $132.85; for the second desk-check,
it should be $26.79. The manual calculations for both desk-checks are shown in Figure 3-19.

First desk-check calculation Second desk-check calculation
1328.50 (sales amount) 267.90 (sales amount)

* .1 (commission rate in decimal form) * .1 (commission rate in decimal form)
132.85 (commission) 26.79 (commission)

Figure 3-19   Manual commission calculation for the two desk-checks

Next, you create a desk-check table that contains one column for each input, processing, and
output item. You then begin desk-checking the algorithm. Figure 3-20 shows the completed
desk-check table. Notice that the amounts in the commission column agree with the results of
the manual calculations shown in Figure 3-19.

commission rate sales amount commission
.1 1328.50 132.85
.1 267.90 26.79

Figure 3-20   Completed desk-check table for Lab 3-2

After desk-checking an algorithm to ensure that it works correctly, you can begin coding it.
You begin by declaring memory locations that will store the values of the input, processing (if
any), and output items. The commission problem will need three memory locations to store
the commission rate, sales amount, and commission. The sales amount and commission should
be stored in variables because the user should be allowed to change the sales amount, which
then will change the commission, while the program is running. The commission rate, however,
will be stored in a named constant because its value should not change during runtime. The
variables and named constant will store real numbers, so you will use the double data type for
each one. Figure 3-21 shows the input, processing, and output items from the IPO chart, along
with the corresponding C++ statements.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

67

Declaring a Memory Location 	﻿

IPO chart information C++ instructions

Input
commission rate (10%)
sales amount

Processing
none

Output
commission

Figure 3-21   IPO chart information and C++ instructions for Lab 3-2

Lab 3-3  Modify
Modify the IPO chart shown earlier in Figure 3-18 so that it allows the user to enter
the commission rate. Then make the appropriate modifications to Figure 3-21.

Lab 3-4  What’s Missing?
Professor Merrita wants a program that calculates and displays the volume of a
cylinder, given the cylinder’s radius (r) and height (h). The formula for calculating the
volume is πr2h. Figure 3-22 contains a list of items and C++ instructions that you can
use for this lab. Enter the appropriate input, processing (if any), and output items in

a chart similar to the one shown in Figure 3-21. Also enter the corresponding C++ instructions.
Determine whether any items or C++ instructions are missing from the list.

Items C++ statements
height
pi (3.14)
radius
volume

Figure 3-22   Items and statements for Lab 3-4

LAB 3-5  Desk-Check
Create an appropriate algorithm for Lab 3-4, and then desk-check it twice. Use 9 and
6 as the height and radius for the first desk-check, then use 17 and 15.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

68

LAB 3-6  Debug
Correct the C++ instructions shown in Figure 3-23. The memory locations will store
real numbers.

IPO chart information C++ instructions

Input
first number
second number
third number

Processing
sum

Output
average

Figure 3-23   IPO chart information and C++ instructions for Lab 3-6

Chapter Summary

The fourth step in the problem-solving process is to code the algorithm, which means to
translate it into a language that the computer can understand. You begin by declaring a memory
location for each unique input, processing, and output item listed in the IPO chart. The memory
locations will store the values of those items while the program is running.

Numeric data is stored in the computer’s internal memory using the binary number system.
Character data is stored using the ASCII coding scheme.

A memory location can store only one value at a time.

A memory location’s data type determines how a value is stored in the location, as well as how
the value is interpreted when retrieved.

Programmers can declare two types of memory locations: variables and named constants. You
declare a memory location using a statement that assigns a name, a data type, and an initial
value to the memory location. The initial value is required when declaring named constants
but is optional when declaring variables. However, it is highly recommended that variables be
initialized to ensure they don’t contain garbage.

In most cases, memory locations are initialized using a literal constant. The exception to this is a
bool memory location, which is initialized using a C++ keyword (either true or false).

The data type of a literal constant assigned to a memory location should be the same as the memory
location’s data type. If the data types do not match, the computer uses implicit type conversion to
either promote or demote the value to fit the memory location. Promoting a value does not usually
affect a program’s output; however, demoting a value may cause a program’s output to be incorrect.

The C++ programming language has a set of rules, called syntax, which you must follow when
using the language. One rule is that all statements in C++ must end with a semicolon.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

69

Key Terms 	

Key Terms
ASCII—a coding scheme used to represent character data; stands for American Standard Code
for Information Interchange

Binary number system—a system that uses only the two digits 0 and 1; used to represent
numeric data in the computer’s internal memory

Camel case—a naming convention that capitalizes only the first letter in the second and
subsequent words in a memory location’s name

Character—a letter, a symbol, or a number that will not be used in a calculation

Character literal constant—one character enclosed in single quotation marks

const—the keyword used to declare a named constant in C++

Decimal number system—a system that represents numbers using the digits 0 through 9

Demoted—refers to the conversion of a number from one data type to another data type that
can store only smaller numbers

Empty string—two quotation marks with no space between, like this “”

Fundamental data types—the basic data types built into the C++ language; also called primitive
data types or built-in data types

Implicit type conversion—the process the computer follows when converting a numeric value
to fit a memory location that has a different data type

Initializing—assigning a beginning value to a memory location

Integer—a whole number, which is a number without a decimal place

Keyword—a word that has a special meaning in the programming language you are using

Literal constant—an item of data that can appear in a program instruction and be stored in a
memory location

Named constant—a memory location whose value cannot be changed while a program is
running

Numeric literal constants—numbers

Promoted—refers to the conversion of a number from one data type to another data type that
can store larger numbers

Real numbers—numbers that contain a decimal place

Runtime—occurs while a program is running

Statement—a C++ instruction that causes the computer to perform some action after being
executed (processed) by the computer; all statements in C++ must end with a semicolon

String literal constant—zero or more characters enclosed in double quotation marks

Syntax—the rules you must follow when using a programming language; every programming
language has its own syntax

Text—a group of characters treated as one unit and not used in a calculation

User-defined data type—a data type added to the C++ language through the use of a class; an
example is the string data type

Variable—a memory location whose value can change (vary) while a program is running

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

70

Review Questions
1.	 The rules you must follow when using a programming language are called its

_____________________ .

a.	 guidelines

b.	 procedures

c.	 regulations

d.	 syntax

2.	 Which of the following declares a variable that can store an integer?

a.	 int quantity = 0;

b.	 integer quantity = 0;

c.	 quantity = 0;

d.	 Int quantity = 0;

3.	 A C++ statement must end with a _____________________ .

a.	 colon

b.	 comma

c.	 period

d.	 semicolon

4.	 The declaration statement for a named constant requires _____________________ .

a.	 a data type

b.	 a name

c.	 a value

d.	 all of the above

5.	 Which of the following creates a variable that can store real numbers?

a.	 double totalDue = '0.0';

b.	 double totalDue = 0.0;

c.	 double totalDue = "0.0";

d.	 totalDue = 0.0;

6.	 Which of the following is a valid name for a variable?

a.	 amount-sold

b.	 amountSold

c.	 1stQtrAmountSold

d.	 both b and c

7.	 Which of the following declares a char named constant called TOP_GRADE?

a.	 const char TOP_GRADE = 'A';	 c.	 const char TOP_GRADE;

b.	 const char TOP_GRADE = "A";	 d.	 both a and c

8.	 If a memory location’s data type is int, how will it store the number 54?

a.	 01110110

b.	 00110110

c.	 00110111

d.	 none of the above

9.	 If memory location’s data type is char, how will it store the character 6?

a.	 01110110

b.	 00110111

c.	 00110110

d.	 none of the above

10.	 If you use a real number to initialize an int variable, the real number will be
_____________________ before it is stored in the variable.

a.	 demoted

b.	 promoted

c.	 reduced

d.	 upgraded

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

71

Exercises 	

Exercises

Pencil and Paper

1.	 Complete the C++ instructions column in Figure 3-24. Use the double data type for the
input and output items. (The answers to TRY THIS Exercises are located at the end of
the chapter.)

IPO chart information C++ instructions

Input
food
rent
utilities
car payment

Processing
none

Output
total expenses

Figure 3-24  

2.	 Complete the C++ instructions column in Figure 3-25. The numbers of latex and
Mylar balloons purchased will be integers. All of the remaining items will be real
numbers. Use the int and double data types. (The answers to TRY THIS Exercises
are located at the end of the chapter.)

IPO chart information C++ instructions

Input
latex price
Mylar price
latex purchased
Mylar purchased
sales tax rate (6%)

Processing
total latex cost
total Mylar cost
subtotal
sales tax

Output
total cost

Figure 3-25  

TRY THIS

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

72

3.	 Complete TRY THIS Exercise 2, and then modify the IPO chart information and C++
instructions to indicate that the prices of the latex and Mylar balloons will always be
$2.25 and $3.75, respectively.

4.	 Aaron Lakely is going to the grocery store to buy some bananas and apples, both of
which are sold by the pound. He wants a program that calculates and displays the total
cost of his order, including a 3% sales tax. First, create an IPO chart for this problem,
and then desk-check the algorithm twice. For the first desk-check, use 2 and 3.5 as the
number of pounds of bananas and apples, respectively. And use $0.99 and $1.89 as the
price per pound of bananas and apples, respectively. For the second desk-check, use
your own set of data. After desk-checking the algorithm, list the input, processing, and
output items in a chart similar to the one shown in Figure 3-25, and then enter the
appropriate C++ declaration statements.

5.	 Archie wants a program that calculates and displays a team’s final score in a football
game, given the numbers of the team’s field goals, touchdowns, one-point conversions,
two-point conversions, and safeties. First, create an IPO chart for this problem, and
then desk-check the algorithm twice. For the first desk-check, use 3, 2, 2, 0, and 1 as
the numbers of field goals, touchdowns, one-point conversions, two-point conversions,
and safeties. For the second desk-check, use your own set of data. After desk-checking
the algorithm, list the input, processing, and output items in a chart similar to the one
shown in Figure 3-25, and then enter the appropriate C++ declaration statements.

6.	 Builders Inc. wants a program that allows its salesclerks to enter the diameter of a cir-
cle and the price of railing material per foot. The program should calculate and dis-
play the total price of the railing material. Use 3.1416 as the value of pi. First, create
an IPO chart for this problem, and then desk-check the algorithm twice. For the first
desk-check, use 35 feet as the diameter and $2 as the price per foot. For the second
desk-check, use 15.5 and $3.50. After desk-checking the algorithm, list the input,
processing, and output items in a chart similar to the one shown in Figure 3-25, and
then enter the appropriate C++ declaration statements.

7.	 Michael wants a program that calculates and displays the percentage of the total points he
contributed to his basketball team’s final score. Michael will provide the number of two-
point baskets, the number of three-point baskets, and the number of free throw points
his team made. He will also provide the number of two-point baskets, number of three-
point baskets, and number of free throw points he made. First, create an IPO chart for
this problem, and then desk-check the algorithm twice. For the first desk-check, use 25,
14, 10, 11, 4, and 3. The first three values represent the team’s two-point baskets, three-
point baskets, and free throw points. The last three values represent Michael’s two-point
baskets, three-point baskets, and free throw points. For the second desk-check, use your
own set of data. When recording the percentage in the desk-check table, you can round it
to one decimal place—for example, 36.3. After desk-checking the algorithm, list the input,
processing, and output items in a chart similar to the one shown in Figure 3-25, and then
enter the appropriate C++ declaration statements.

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

73

Exercises 	

8.	 Gabrielle receives 52 paychecks each year. She always deposits a specific percentage
of her gross pay into her savings account. She also receives a bonus check, which is
always more than $250, at the end of the year. She always deposits $150 of her bonus
into her savings account. Gabrielle wants a program that calculates and displays the
total amount she deposited during the year. Complete an IPO chart for this problem.
Desk-check the algorithm twice, using your own sets of data. After desk-checking the
algorithm, list the input, processing, and output items in a chart similar to the one
shown in Figure 3-25, and then enter the appropriate C++ declaration statements.

9.	 Cranston Berries sells three types of berries: strawberries, blueberries, and raspberries.
Sales have been booming this year and are expected to increase next year. The sales
manager wants a program that allows him to enter the projected increase (expressed as
a decimal number) in berry sales for the following year. He will also enter the current
year’s sales for each type of berry. The program should display the projected sales for
each berry type. Complete an IPO chart for this problem. Desk-check the algorithm
twice, using your own sets of data. After desk-checking the algorithm, list the input,
processing, and output items in a chart similar to the one shown in Figure 3-25, and
then enter the appropriate C++ declaration statements.

10.	 Juan wants a program that calculates and displays the number of miles per gallon he
drove his car on a recent trip. When he started the trip, the car’s gas tank was full and
its odometer read 5500. Before reaching his final destination, Juan stopped at two
different gas stations to purchase gas. At the first stop, he purchased 15.5 gallons of gas;
at that time, the odometer read 5860. At the second stop, he purchased 18.7 gallons of
gas; at that time, the odometer read 6280. First, create an IPO chart for this problem.
Although specific values are provided for the odometer readings and gallons of gas,
do not use named constants for those values. After creating the IPO chart, desk-check
the algorithm twice. For the first desk-check, use the values provided in this exercise.
For the second desk-check, use your own set of data. After desk-checking the algo-
rithm, list the input, processing, and output items in a chart similar to the one shown in
Figure 3-25, and then enter the appropriate C++ declaration statements.

11.	 Correct the C++ instructions shown in Figure 3-26.

IPO chart information C++ instructions

Input
original price
discount rate (10%)

Processing
discount

Output
new price

Figure 3-26

INTERMEDIATE

INTERMEDIATE

ADVANCED

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 3 Variables and Constants

74

Answers to TRY THIS Exercises

1.	 See Figure 3-27.

IPO chart information C++ instructions

Input
food
rent
utilities
car payment

Processing
none

Output
total expenses

double food = 0.0;

double rent = 0.0;

double utilities = 0.0;

double car = 0.0;

double totalExpenses = 0.0;

Figure 3-27

2.	 See Figures 3-28.

Processing

IPO chart information C++ instructions

Input
latex price
Mylar price
latex purchased
Mylar purchased
sales tax rate (6%)

total latex cost
total Mylar cost
subtotal
sales tax

Output
total cost

Figure 3-28

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4
Completing the Problem-
Solving Process

After studying Chapter 4, you should be able to:

�� Get numeric and character data from the keyboard

�� Display information on the computer screen

�� Write arithmetic expressions

�� Type cast a value

�� Write an assignment statement

�� Code the algorithm into a program

�� Desk-check a program

�� Evaluate and modify a program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

76

Finishing Step 4 in the Problem-Solving Process
The fourth step in the problem-solving process is to code the algorithm into a program. As you
learned in Chapter 3, the programmer begins the fourth step by declaring a memory location for
each unique input, processing, and output item listed in the problem’s IPO chart. The memory
locations will store the values of those items while the program is running. Recall that each
memory location must be assigned a name and data type. If the memory location is a named
constant, it must also be assigned a value. Assigning an initial value to a variable is optional but
highly recommended to ensure that the variable does not contain garbage.

Figure 4-1 shows the problem specification, IPO chart information, and variable declaration
statements for the Addison O’Reilly problem from Chapter 3. Recall that the double data type
was selected for these variables because it allows each to store a real number with the greatest
precision.

Ch04-Preview

After declaring the necessary memory locations, the programmer begins coding the algorithm. The
first instruction in the algorithm shown in Figure 4-1 is to enter the two input items. You will have
the user enter the items at the keyboard.

Getting Data from the Keyboard
In C++, you use objects to perform standard input and output operations, such as getting a
program’s input items and displaying its output items. The objects are called stream
objects because they handle streams. A stream is defined in C++ as a sequence of
characters.

Ch04-cin

Figure 4-1   Problem specification, IPO chart information, and variable declaration statements

IPO chart information

Addison O’Reilly wants a program that calculates and displays the cost of a 4K Ultra HD TV, which
is finally on sale at one of the stores in her area. The program should calculate the cost by
multiplying the sale price by the state sales tax rate and then adding the result to the sale price.

C++ instructions
Input

sale price
sales tax rate

Processing
sales tax

Output
cost

1. enter the sale price and sales tax rate
2. calculate the sales tax by multiplying the sale
 price by the sales tax rate
3. calculate the cost by adding the sales tax to the
 sale price
4. display the cost

Algorithm:

Problem specification

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

77

Getting Data from the Keyboard 	﻿

In this section, you will learn about the standard input stream object, cin (pronounced see in).
The cin object tells the computer to pause program execution while the user enters one or
more characters at the keyboard; the object temporarily stores the characters as they are typed.

The cin object is not a physical object that can be seen or touched. Rather, it is an object created
through the use of a class, and it resides in a special area of the computer’s internal memory. As you
learned in Chapter 3, a class is a group of instructions that the computer uses to create an object.

The cin object is typically used with the extraction operator (>>), which extracts (removes)
characters from the object and sends them “in” to the data area of the computer’s internal
memory. The cin object and extraction operator allow the user to communicate with the
computer while a program is running.

Figure 4-2 illustrates the relationship among the keyboard, cin object, extraction operator, and
internal memory. As the figure indicates, the characters you type at the keyboard are sent first to
the cin object, where they remain until the extraction operator removes them, sending them to
the data area of the computer’s internal memory.

The extraction operator stops removing characters from the cin object when it encounters a
white-space character, which can be a newline, tab, or blank. You enter a newline character
when you press the Enter key on your keyboard. You enter a tab character when you press the
Tab key, and you enter a blank character when you press the Spacebar.

Because many strings entered at the keyboard contain one or more blank characters (for
example, the string San Francisco, CA), the extraction operator is used mainly to get numeric
and character data, but not string data. Recall from Chapter 3 that numeric data is a number that
will be used in a calculation, while character data is a letter, a symbol, or a number that will not
be used in a calculation. String data is zero or more characters treated as one unit. This chapter
covers inputting numeric and character data only; inputting string data is covered in Chapter 13.

Figure 4-3 shows the syntax and examples of statements that use cin and the extraction
operator to get numeric and character input from the keyboard. (For clarity, the variable
declaration statements are included in the examples.) You can tell that the syntax and examples
are statements because a semicolon appears at the end of each. Recall that a statement is a C++
instruction that causes the computer to perform some action after being executed (processed)
by the computer. The cin portion of the cin >> price; statement, for example, tells the
computer to pause program execution to allow the user to enter the price at the keyboard. The
cin object temporarily stores the price as the user types it. When the user presses the Enter
key, the extraction operator in the statement removes the price from the cin object and sends
it to the computer’s internal memory, where it is stored in the price variable. Similarly, the
cin >> middleInitial; statement waits for the user to enter a character and ultimately stores
the user’s response in the middleInitial variable.

Figure 4-2   Relationship among the keyboard, cin object, extraction operator, and internal memory

keyboard object (extraction operator) internal memory (data area)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

78

The input items in the Addison O’Reilly problem are numeric, so you can use the cin object and
extraction operator to get the items from the user at the keyboard. The appropriate statements
are shaded in Figure 4-4.

When the cin >> salePrice; statement is processed by the computer while the program
is running, a blank window containing a blinking cursor will appear on the computer screen.
The blinking cursor indicates that the computer is waiting for the user to enter something, but
it does not indicate what that something is. Should the user enter an age, a price, or a middle
initial? You indicate the type of information to enter by displaying a message, called a prompt,
on the computer screen.

Displaying Messages on the Computer Screen
As you learned earlier, you use objects to perform standard input and output operations in C++.
In this section, you will learn about the standard output stream object, cout (pronounced
see out). The cout object is used with the insertion operator (<<) to send information “out” to

Ch04-cout

Figure 4-4   Input statements for the Addison O’Reilly problem

IPO chart information C++ instructions
Input

sale price
sales tax rate

Processing
sales tax

Output
cost

Algorithm:
1. enter the sale price and sales tax rate

2. calculate the sales tax by multiplying the sale
 price by the sales tax rate
3. calculate the cost by adding the sales tax to the
 sale price
4. display the cost

How To �Use cin and >> to Get Numeric or Character Data

Syntax
 variableName;

Example 1

Example 2

semicolon

extraction operator

Figure 4-3   How to use cin and >> to get numeric or character data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

79

Displaying Messages on the Computer Screen 	﻿

the user via the computer screen. The information can be any combination of literal constants,
named constants, or variables. The cout object and insertion operator allow the computer to
communicate with the user while a program is running.

Figure 4-5 shows the syntax and examples of statements that use cout and the insertion
operator. Notice the required semicolon that appears at the end of the syntax and
examples. Also notice that you can include more than one insertion operator in a
statement. The four cout statements in the figure tell the computer to display different
types of messages on the computer screen. The first two messages prompt the user to enter
specific items of data: a price and a middle initial. The third message simply alerts the user
that the program has ended. The message displayed by the last cout statement contains
the string “Bonus: $” and the contents of the bonusAmt variable. If the variable contains the
number 540.75, the statement will display the message “Bonus: $540.75” on the computer
screen. The endl in the last cout statement is one of the stream manipulators in C++.
A stream manipulator allows you to manipulate (or manage) the characters in either the
input or output stream. When used with the cout object, the endl stream manipulator
advances the cursor to the next line on the computer screen, which is equivalent to
pressing the Enter key. When typing endl (which stands for end of line) in a statement, be
sure to type the lowercase letter l rather than the number 1.

The Addison O’Reilly program will use the cout object and insertion operator to display a meaningful
prompt for each of the input items. Each prompt should be entered above its corresponding cin
statement so that it will appear before the user is expected to enter the information. The two prompts
are shaded in Figure 4-6. Keep in mind that the prompts merely display a message on the computer
screen. They don’t allow the user to actually enter the data being requested; for that, you need the cin
object and extraction operator.

Also shaded in Figure 4-6 is the statement that displays the cost of the TV on the computer screen; the
statement corresponds to the last instruction in the algorithm. Although it is customary to code an algorithm’s
instructions in the order they appear in the algorithm, the statement to display the cost is included now simply
because this section covers displaying messages on the computer screen.

Like the cin
object, the
cout object is
created in the
computer’s

internal memory through
the use of a class.

How To �Use the cout Object
insertion operator

Syntax
 item1 [item2 itemN]

Examples

Note: The last statement is equivalent to the following three lines of code:

stream manipulator

semicolon

Figure 4-5   How to use the cout object

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

80

Mini-Quiz 4-1

1.	 Which of the following stores the value entered at the keyboard in a variable named
population?

a.	 cin >> population;

b.	 cin << population;

c.	 cout >> population;

d.	 population << cout;

2.	 Which of the following displays the contents of the quantity variable on the computer
screen?

a.	 cin >> quantity;

b.	 cin << quantity;

c.	 cout >> quantity;

d.	 cout << quantity;

3.	 Which of the following is considered a white-space character in C++?

a.	 a blank
b.	 a tab
c.	 a newline
d.	 all of the above

4.	 The insertion operator looks like this: _________________________ .

IPO chart information C++ instructions
Input

sale price
sales tax rate

Processing
sales tax

cost

Algorithm:
1. enter the sale price and sales tax rate

2. calculate the sales tax by multiplying
 the sale price by the sales tax rate
3. calculate the cost by adding the sales tax
 to the sale price
4. display the cost

Output

Figure 4-6   Prompts and output statement for the Addison O’Reilly problem

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

81

Arithmetic Operators in C++ 	﻿

Arithmetic Operators in C++
Instructions 2 and 3 in the algorithm shown in Figure 4-6 involve arithmetic calculations.
You direct the computer to perform a calculation by writing an arithmetic expression that
contains one or more arithmetic operators. Figure 4-7 lists the standard arithmetic operators
available in C++, along with their precedence numbers. The precedence numbers indicate
the order in which the computer performs the operation in an expression. Operations with
a precedence number of 1 are performed before operations with a precedence number
of 2, and so on. However, you can use parentheses to override the order of precedence
because operations within parentheses are always performed before operations outside of
parentheses.

Although the negation and subtraction operators use the same symbol (a hyphen), there is a
difference between both operators: The negation operator is unary, whereas the subtraction
operator is binary. Unary and binary refer to the number of operands required by the operator.
Unary operators require one operand, whereas binary operators require two operands. The
expression -7 uses the unary negation operator to turn the positive number 7 into a negative
number. The expression 9 - 4, on the other hand, uses the binary subtraction operator to
subtract the number 4 from the number 9.

One of the arithmetic operators listed in Figure 4-7, the modulus (or remainder) operator
(%), might be less familiar to you. The modulus operator is used to divide two integers and
returns the remainder of the division; the remainder is always an integer. For example, the
expression 211 % 4 (read 211 mod 4) equals 3, which is the remainder after dividing 211 by
4. A common use for the modulus operator is to determine whether a number is even or odd.
If you divide a number by 2 and the remainder is 0, the number is even; if the remainder is 1,
however, the number is odd.

Some of the operators listed in Figure 4-7, like the addition and subtraction operators,
have the same precedence number. When an expression contains more than one operator
having the same priority, those operators are evaluated from left to right. In the expression
13 + 8 / 4 – 2 * 6, the division is performed first, followed by the multiplication,
addition, and subtraction. The result of the expression is the number 3, as shown in
Figure 4-8. You can use parentheses to change the order in which the operators in an
expression are evaluated, like this: 13 + 8 / (4 - 2) * 6. The expression containing the
parentheses evaluates to 37 rather than to 3, as shown in Figure 4-8. This is because the
parentheses tell the computer to perform the subtraction operation first.

Figure 4-7   Standard arithmetic operators and their order of precedence

Operator Operation Precedence number
() override normal precedence rules 1
– negation (reverses the sign of a number) 2

+, – addition and subtraction 4
*, /, % multiplication, division, and modulus arithmetic 3

Ch04-Arithmetic
Operators

The modulus
operator is
used to divide
integers only,
and the result

(remainder) is always an
integer.

C++ also pro-
vides arithme-
tic assignment
operators,
which you will

learn about later in this
chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

82

Ch04-Type
Conversions

Type Conversions in Arithmetic Expressions
In Chapter 3, you learned about implicit type conversions in statements that declare memory
locations. Recall that, if necessary, the computer will either promote or demote the value in a
declaration statement to match the memory location’s data type. The computer also makes implicit
type conversions when performing an arithmetic operation with two values having different data
types. In those cases, the value with the lower-ranking data type is always promoted, temporarily, to
the higher-ranking data type. A data type ranks higher than another data type if it can store larger
numbers. The value returns to its original data type after the arithmetic operation is performed.

Figure 4-9 shows examples of expressions that require implicit type conversions. As you study
the examples, keep in mind that a number with a decimal place is considered a double number
in C++. The figure also explains how each expression is evaluated by the computer. In Examples
2 and 4, num is an int variable that contains the number 10. When a variable name appears in an
expression, the computer uses the value stored in the variable when evaluating the expression.

Original expression
The division is performed first
The multiplication is performed next
The addition is performed next
The subtraction is performed last

Original expression
The subtraction is performed first
The division is performed next
The multiplication is performed next
The addition is performed last

Figure 4-8   Expressions containing more than one operator having the same precedence

Example 1
The integer 2 is implicitly promoted to the number 2.0 before being
multiplied by the number 75.5. The result is the number 151.0.

Example 2
1. The value stored in the variable (the integer 10) is implicitly promoted to the
 number 10.0 before it is added to the number 1.5. The result
 is the number 11.5.
2. The integer 3 is implicitly promoted to the number 3.0 before being
 multiplied by the number 11.5 (the result of Step 1). The result is the

 number 34.5.
Example 3
The integer 15 is implicitly promoted to the number 15.0 before it is
divided by the number 0.4. The result is the number 37.5.

Example 4
The value stored in the variable (the integer 10) is implicitly promoted to the

 number 10.0 before being divided by the number 4.0. The result
is the number 2.5.

Figure 4-9   Examples of expressions that require implicit type conversions

When both
operands in
an expression
are integers,
the result is

an integer. When both
are double numbers,
the result is a double
number. When one
operand is an integer
and the other is a
double number, the
result is a double
number.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

83

Arithmetic Operators in C++ 	﻿

How To �Use the static_cast Operator

Syntax
dataType data

Example 1
1. The integer (18) is explicitly promoted to the number 18.0.
2. The integer (4) is explicitly promoted to the number 4.0.
3. Step 1’s result (18.0) is divided by Step 2’s result (4.0), giving the
 number 4.5.

Example 2
1. The integer (18) is explicitly promoted to the number 18.0.
2. The integer (4) is implicitly promoted to the number 4.0.
3. Step 1’s result (18.0) is divided by Step 2’s result (4.0), giving the
 number 4.5.

Example 3
1. The integer (4) is explicitly promoted to the number 4.0.
2. The integer (18) is implicitly promoted to the number 18.0.
3. Step 2’s result (18.0) is divided by Step 1’s result (4.0), giving the
 number 4.5.

Example 4
1. The integer (18) is explicitly promoted to the number 18.0.
2. Step 1’s result (18.0) is multiplied by the number 7.35, giving the
 number 132.3.

Example 5
The number 35.98 is explicitly demoted to the data type before
being stored in the named constant.

Note: The operator is not required in Example 4 because the
computer will implicitly convert the contents of the variable to the
data type before performing the multiplication operation.

Figure 4-10   How to use the static_cast operator (continues)

At this point, it is important to highlight what happens when you divide one integer by another
integer in C++ because the result may not be what you expect. When both the dividend and
divisor are integers, the quotient is always an integer in C++. For example, the result of the
expression 24 / 10 is the integer 2 rather than the real number 2.4. So how do you get the
quotient as a real number? You do so by converting at least one of the integers involved in the
division operation to a real number. If the integer is a numeric literal constant, you can convert
it to a real number by adding .0 to it, like this: 24.0 / 10. When the computer evaluates the
24.0 / 10 expression, it will implicitly convert the integer 10 to the double number 10.0
before dividing it into the double number 24.0; the result will be the double number 2.4. You
can also use either the expression 24 / 10.0 or the expression 24.0 / 10.0; both expressions
evaluate to 2.4. Similarly, if the num variable contains the integer 10, the result of the expression
24.0 / num is also 2.4. This is because the integer stored in the num variable will be implicitly
promoted to the double data type before the division is performed.

But what if neither of the integers involved in the division operation is a literal constant? For
example, what if both the dividend and divisor are int variables? Now how do you get the
quotient as a real number? In that case, you need to explicitly convert the value stored in at least
one of the int variables in the expression to either the double or float data type. (However,
recall that the programs in this book will use the double data type for real numbers.) You can
use the static_cast operator to perform the conversion.

The static_cast Operator
C++ provides the static_cast operator for explicitly converting data from one data type
to another. This type of conversion is called an explicit type conversion or a type cast. In
the operator’s syntax, which is shown in Figure 4-10, data can be a literal constant, a named
constant, or a variable, and dataType is the data type to which you want the data converted.
When the computer processes the operator, it first makes a temporary copy of the data’s value
in memory. It then converts only the copied value to the specified data type; the static_cast
operator does not affect the original value.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

84

Study closely the examples shown in Figure 4-10. In the examples, numA and numB are int
variables that contain the numbers 18 and 4, respectively. When processing the expression
in Example 1, the computer makes a copy of the integer 18 and a copy of the integer 4 in its
internal memory. It then converts only the copied integers to the double numbers 18.0 and 4.0,
respectively. The values stored in the numA and numB variables are not converted; they are still
integers. After performing the division, which results in a quotient of 4.5, the computer removes
the copied values from its internal memory. A similar process is followed when the computer
processes the expressions shown in Examples 2 and 3, either of which can also be used to divide
the numA integer by the numB integer, returning a double number as the quotient.

The expression in Example 4 uses the static_cast operator to explicitly promote the integer
stored in the numA variable to the double data type before it is multiplied by the double number
7.35. Although the same answer would be achieved with implicit type conversion, the type
casting makes the programmer’s intent clear to anyone reading the program. The statement in
Example 5 uses the static_cast operator to explicitly demote the double number 35.98 to
the float data type. (Recall that the double data type ranks higher than the float data type
because it can store larger numbers and also store numbers with greater precision.)

In most cases, the result of an arithmetic expression is assigned to a variable in a program. You
do this using an assignment statement.

Assignment Statements
You can use an assignment statement to assign a value to a variable while a program is
running. It cannot, however, be used to assign a value to a named constant because the contents
of a named constant cannot be changed during runtime. When a value is assigned to a variable,
it replaces the existing value in the memory location; this is because a variable can store only
one value at any time.

For more
examples
of type
conver-
sions in

arithmetic expressions,
see the Type Conver-
sions section in the
Ch04WantMore.pdf file.

Syntax
dataType data

Example 1
1. The integer (18) is explicitly promoted to the number 18.0.
2. The integer (4) is explicitly promoted to the number 4.0.
3. Step 1’s result (18.0) is divided by Step 2’s result (4.0), giving the
 number 4.5.

Example 2
1. The integer (18) is explicitly promoted to the number 18.0.
2. The integer (4) is implicitly promoted to the number 4.0.
3. Step 1’s result (18.0) is divided by Step 2’s result (4.0), giving the
 number 4.5.

Example 3
1. The integer (4) is explicitly promoted to the number 4.0.
2. The integer (18) is implicitly promoted to the number 18.0.
3. Step 2’s result (18.0) is divided by Step 1’s result (4.0), giving the
 number 4.5.

Example 4
1. The integer (18) is explicitly promoted to the number 18.0.
2. Step 1’s result (18.0) is multiplied by the number 7.35, giving the
 number 132.3.

Example 5
The number 35.98 is explicitly demoted to the data type before
being stored in the named constant.

Note: The operator is not required in Example 4 because the
computer will implicitly convert the contents of the variable to the
data type before performing the multiplication operation.

Figure 4-10   How to use the static_cast operator

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

85

Assignment Statements 	﻿

Figure 4-11 shows both the syntax and examples of an assignment statement in C++. (For clarity,
the variable declaration statements are included in the examples.) The = symbol in an assignment
statement is called the assignment operator. When the computer processes an assignment
statement, it first evaluates the expression that appears on the right side of the assignment operator
and then stores the result in the variable whose name appears on the left side of the assignment
operator. The expression can include one or more items, and the items can be literal constants,
named constants, variables, or operators such as arithmetic operators or the static_cast operator.

As with declaration statements, the data type of the expression in an assignment
statement must match the data type of the variable to which the expression is assigned;
otherwise, the computer implicitly converts the value to fit the memory location. However,
recall from Chapter 3 that implicit type conversions—more specifically, those that demote
the value—do not always give you the expected results. Therefore, it is considered a good
programming practice to use a type cast, if necessary, to explicitly convert the value of the
expression to fit the memory location. For example, the static_cast operator in Example 3 in
Figure 4-11 explicitly converts the integer stored in the numA variable to the double data type.

Ch04-Assignment
Statement

How To �Write an Assignment Statement

Syntax
variableName = expression;

Example 1

The assignment statement assigns the integer 5600 to the variable.

Example 2

The assignment statement assigns the integer 12 to the variable.

Example 3

The assignment statement assigns the number 4.5 to the variable.

Example 4

The assignment statement assigns the letter P to the variable.

Example 5

The assignment statement assigns the string “NJ” to the variable.

Example 6

The assignment statement assigns the number 2.25 to the variable.

Example 7

The assignment statement assigns the number 95.0 to the variable.

Figure 4-11   How to write an assignment statement (continues)

When writing
assignment
statements
that contain
a calculation,

remember to “compute
on the right and assign
to the left.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

86

For more
examples
of coding
algorithms,
see the

Coding Algorithms
section in the
Ch04WantMore.pdf file.

Syntax
variableName = expression;

Example 1

The assignment statement assigns the integer 5600 to the variable.

Example 2

The assignment statement assigns the integer 12 to the variable.

Example 3

The assignment statement assigns the number 4.5 to the variable.

Example 4

The assignment statement assigns the letter P to the variable.

Example 5

The assignment statement assigns the string “NJ” to the variable.

Example 6

The assignment statement assigns the number 2.25 to the variable.

Example 7

The assignment statement assigns the number 95.0 to the variable.

Figure 4-11   How to write an assignment statement

It is easy to confuse an assignment statement with a variable declaration statement in C++.
For example, the assignment statement quantity = 75; looks very similar to the variable
declaration statement int quantity = 75;. The noticeable difference is the data type that
appears at the beginning of the declaration statement. However, keep in mind that a variable
declaration statement creates (and optionally initializes) a new variable. An assignment
statement, on the other hand, assigns a value to an existing variable.

Shaded in Figure 4-12 are the appropriate calculation statements for the Addison O’Reilly
problem. Because all of the items in both calculation statements have the same data type, neither
statement requires any implicit or explicit type conversions.

Figure 4-12   Calculation statements for the Addison O’Reilly problem

double salePrice = 0.0;
double taxRate = 0.0;

Processing
 sales tax
Output
 cost

Algorithm:
1. enter the sale price and sales tax rate

2. calculate the sales tax by multiplying
 the sale price by the sales tax rate
3. calculate the cost by adding the sales
 tax to the sale price

double salesTax = 0.0;

double cost = 0.0;

salesTax = salePrice * taxRate;

cost = salePrice + salesTax;

cout << "Enter the sale price: ";
cin >> salePrice;
cout << "Enter the sales tax rate: ";
cin >> taxRate;

4. display the cost cout << "Cost: $" << cost << endl;

IPO chart information C++ instructions
Input
 sale price
 sales tax rate

You have finished coding the algorithm, which is Step 4 in the problem-solving process.
At this point, it is important to caution you about a problem you might encounter when
using real numbers in calculations. As mentioned in Chapter 3, not all real numbers can
be represented exactly within the computer’s internal memory. As a result, the answer to
some calculations may not be accurate to the penny. For example, the expression 7.0 /
3.0 yields a quotient of 2.333333... (with the number 3 repeating indefinitely). The number
2.333333... can be stored only as an approximation in the computer’s internal memory.
Because many real numbers cannot be stored precisely, some programmers do not use
them in monetary calculations where accuracy to the penny is required. Instead, some

For more
examples
of assign-
ment state-
ments, see

the Assignment State-
ments section in the
Ch04WantMore.pdf file.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

87

Assignment Statements 	﻿

programmers use integers, while others use special classes designed to perform precise
calculations using real numbers. These special classes can be purchased from third-party
vendors, such as Rogue Wave Software. You can learn more about the problem of using
real numbers in monetary calculations by completing Computer Exercise 16 at the end
of this chapter. The exercise also allows you to explore the use of integers in calculations.
(Your instructor may require you to use integers in monetary calculations; however, for
simplicity, this book will use real numbers.)

Arithmetic Assignment Operators
In addition to the standard arithmetic operators listed earlier in Figure 4-7, C++ also provides
several arithmetic assignment operators, which can be used to abbreviate assignment
statements that contain an arithmetic operator. However, the assignment statement must have
the following format, in which variableName is the name of the same variable: variableName =
variableName arithmeticOperator value;. For example, you can use the multiplication assignment
operator (*=) to abbreviate the statement price = price * 1.05; as follows: price *= 1.05;.
Both statements tell the computer to multiply the contents of the price variable by 1.05 and then
store the result in the price variable. Arithmetic assignment operators are also called compound
assignment operators or shortcut operators.

Figure 4-13 shows the syntax of a C++ statement that uses an arithmetic assignment
operator. The figure also lists the most commonly used arithmetic assignment operators;
each consists of an arithmetic operator followed immediately by the assignment operator (=).
The arithmetic assignment operators do not contain a space; in other words, the addition
assignment operator is +=, not + =. Including a space in an arithmetic assignment operator is
a common syntax error. Also included in the figure are examples of using the operators. To
abbreviate an assignment statement, you simply remove the variable name that appears on
the left side of the assignment operator (=), and then put the assignment operator
immediately after the arithmetic operator.

In the
assignment
statement’s
syntax, value is
usually either

a constant (literal or
named) or the name of
a different variable.

Ch04-Arithmetic
Assignment Operators

Figure 4-13   How to use an arithmetic assignment operator

How To �Use an Arithmetic Assignment Operator

Syntax
variableName arithmeticAssignmentOperator value;

Operator Purpose
 addition assignment
 subtraction assignment
 multiplication assignment
 division assignment
 modulus assignment

Example 1
Original statement:
Abbreviated statement:

Original statement:
Abbreviated statement:

Example 2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

88

Mini-Quiz 4-2
1.	 Write a C++ assignment statement that multiplies the value stored in an int variable

named quantity by the number 2.5, and then assigns the result to a double variable
named totalDue. Use implicit type conversion.

2.	 Rewrite the answer to Question 1 using a type cast (explicit type conversion).

3.	 In C++, the expression 9 / 2 + 1.5 will evaluate to _________________________ ,
when it should evaluate to _________________________ . Why does the expression
evaluate incorrectly?

4.	 Rewrite the expression from Question 3 so that it will evaluate correctly.

5.	 Rewrite the ordered = ordered - 7; statement using an arithmetic assignment
operator.

Step 5—Desk-Check the Program
The fifth step in the problem-solving process is to desk-check the program to make sure
that each instruction in the algorithm was translated correctly. You should desk-check the
program using the same sample data used to desk-check the algorithm, and the results of both
desk-checks should be the same. For your convenience when comparing the results of both
desk-checks later in this section, Figure 4-14 shows the desk-check table that you completed for
the Addison O’Reilly algorithm in Chapter 2.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Ch04-Addison
Desk-Check

sale price sales tax cost
2300
5200

sales tax rate
.05
.03

115
156

2415
5356

Figure 4-14   Algorithm’s desk-check table from Chapter 2

When desk-checking a program, you first place the names of the declared memory locations
(variables and named constants) in a new desk-check table, along with each memory location’s
initial value. Figure 4-15 shows the result of desk-checking the variable declaration statements
shown earlier in Figure 4-12.

salePrice
0.0

taxRate
0.0

salesTax
0.0

cost
0.0

Figure 4-15   Variable names and initial values entered in the program’s desk-check table

Next, you desk-check the remaining C++ instructions in order, recording in the desk-check table
any changes made to the contents of the variables. In the Addison O’Reilly program, the first
instruction following the declaration statements is the cout << "Enter the sale price: ";
statement. The statement displays a prompt on the computer screen, but it does not make any
changes to the contents of the program’s variables; therefore, no entry is necessary in the desk-
check table.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

89

Step 5—Desk-Check the Program 	﻿

The next statement, cin >> salePrice;, allows the user to enter the sale price, and it stores
the user’s response in the salePrice variable. If the user enters the number 2300, the statement
stores the number 2300.0 in the variable because the variable has the double data type.
Therefore, you record 2300.0 in the salePrice column in the desk-check table. (As you learned
in Chapter 2, some programmers find it helpful to lightly cross out the previous value in a
column before recording a new value; however, this is not a requirement.)

The next statement in the program is a cout statement that merely prompts the user to enter
the sales tax rate. The cin >> taxRate; statement that follows it waits for the user’s response
and then stores the response in the taxRate variable. If the user enters the number .05, you
record .05 in the desk-check table’s taxRate column. Figure 4-16 shows the input values
recorded in the program’s desk-check table.

salePrice
0.0

2300.0

taxRate
0.0

salesTax
0.0

cost
0.0

.05

Figure 4-16   Input values entered in the program’s desk-check table

The salesTax = salePrice * taxRate; statement in the program multiplies the contents
of the salePrice variable (2300.0) by the contents of the taxRate variable (.05) and then
stores the result (115.0) in the salesTax variable. As you learned earlier, the expression that
appears on the right side of the assignment operator is always evaluated first, and then the result
is stored in the variable whose name appears on the left side of the assignment operator. As a
result of this statement, you record 115.0 in the salesTax column in the desk-check table, as
shown in Figure 4-17.

salePrice
0.0

2300.0 115.0

taxRate
0.0

cost
0.0

salesTax
0.0

.05

Figure 4-17   Sales tax amount entered in the desk-check table

The next statement, cost = salePrice + salesTax;, adds the contents of the salePrice
variable (2300.0) to the contents of the salesTax variable (115.0) and then stores the result
(2415.0) in the cost variable. In the desk-check table, you record the number 2415.0 in the cost
column, as shown in Figure 4-18.

2415.0

cost
0.0

salePrice
0.0

2300.0 115.0

salesTax
0.0

taxRate
0.0
.05

Figure 4-18   Cost amount entered in the desk-check table

The last statement in the program displays a message along with the contents of the cost
variable. You have completed desk-checking the program using the first set of test data. If you
compare the second row of values in Figure 4-18 with the first row of values shown earlier in

�Remember that
assignment
statements
“compute on
the right and
assign to the
left.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

90

Figure 4-14, you will notice that the results obtained when desk-checking the program are the
same as the results obtained when desk-checking the algorithm.

For this program, you will perform one more desk-check. However, you should always
perform several desk-checks (using different data) to make sure that a program works
correctly. For the second desk-check, you will use 5200 and .03 as the sale price and sales
tax rate, respectively. Each time you desk-check a program, remember to complete all of the
program’s statements, beginning with the first statement and ending with the last statement.
In this case, the first statement declares and initializes the salePrice variable, and the last
statement displays the cost on the computer screen. The completed desk-check table is shown
in Figure 4-19. Here again, if you compare the fourth row of values in Figure 4-19 with the
second row of values in Figure 4-14, you will notice that the program’s results are the same as
the algorithm’s results.

2415.0
cost
0.0

salePrice
0.0

2300.0 115.0
salesTax

0.0
taxRate

0.0
0.00.0 0.0 0.0

.05
5356.05200.0 156.0.03

Figure 4-19   Program’s desk-check table showing the results of the second desk-check

Step 6—Evaluate and Modify the Program
The final step in the problem-solving process is to evaluate and modify (if necessary) the
program. You evaluate a program by entering your C++ instructions into the computer,
along with other instructions that you will learn about later in this section, and then
using the computer to run (execute) the program. While the program is running, you
enter the same sample data used when desk-checking the program. If the results obtained
when running the program differ from those shown in the program’s desk-check table,
it indicates that the program contains errors, referred to as bugs. The bugs must be
located and removed from the program before the program is released to the user. The
programmer’s job is not finished until the program runs without errors and produces the
expected results.

The process of locating and correcting the bugs in a program is called debugging. Program
bugs are typically caused by either syntax errors or logic errors. A syntax error occurs when
you break one of the programming language’s rules. Most syntax errors are a result of typing
errors that occur when entering instructions, such as typing cut (instead of cout) or neglecting
to enter a semicolon at the end of a statement. In most cases, syntax errors are easy to both
locate and correct because they trigger an error message from the C++ compiler. The error
message indicates the general vicinity of the error and includes a brief description of the error.
Appendix C contains a list of common syntax errors.

Unlike syntax errors, logic errors are much more difficult to find because they do not
trigger an error message from the compiler. A logic error can occur for a variety of reasons,
such as forgetting to enter an instruction or entering the instructions in the wrong order.
Some logic errors occur as a result of calculation statements that are correct syntactically
but incorrect mathematically. For example, consider the statement average = midterm
+ final / 2;, which is supposed to calculate the average of two numeric test scores. The
statement’s syntax is correct, but it is incorrect mathematically because it tells the computer
to divide the contents of the final variable by 2 and then add the quotient to the contents

Another type of
error, called a
runtime error,
can occur while
a program is

running. Entering a
letter when a number is
expected will cause a
runtime error.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

91

Step 6—Evaluate and Modify the Program 	﻿

of the midterm variable. (Recall that division is performed before addition in an arithmetic
expression.) The correct instruction for calculating the average is average = (midterm
+ final) / 2;. The parentheses tell the computer to perform the addition before the
division.

In order to enter your C++ instructions into the computer, you need to have access to a text
editor, more simply referred to as an editor. The instructions you enter are called source code.
You save the source code in a file on a disk, giving it the filename extension .cpp (which stands
for C plus plus). The .cpp file is called the source file.

In order to run (execute) the code contained in the source file, you need a C++ compiler. As
you learned in Chapter 1, a compiler translates high-level instructions into machine code—
the 0s and 1s that the computer can understand. Machine code is usually called object code.
The compiler generates the object code and saves it in a file whose filename extension is .obj
(which stands for object). The file containing the object code is called the object file.

After the compiler creates the object file, it then invokes another program called a linker.
The linker combines the object file with other machine code necessary for your C++ program
to run correctly, such as machine code that allows the program to communicate with input and
output devices. The linker produces an executable file, which is a file that contains all of the
machine code necessary to run your C++ program as many times as desired without the need
for translating the program again. The executable file has an extension of .exe on its filename.
(The exe stands for executable.) Figure 4-20 illustrates the sequence of steps followed when
translating your source code into executable code.

source
code

object
code

executable
code

additional
code

compiler

linker

Figure 4-20   Process by which source code is translated into executable code

Many C++ development tools contain both the editor and compiler in one integrated environment,
referred to as an IDE (Integrated Development Environment). Examples include Microsoft Visual
C++, Dev C++, Code::Blocks, and Xcode. Other C++ development tools, called command-line
compilers, contain only the compiler and require you to use a general-purpose editor (such as
Notepad, WordPad, or vi) to enter the program instructions into the computer. As noted in this

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

92

Figure 4-21   Addison O’Reilly program

book’s Read This Before You Begin page, this book is accompanied by video files that show you
how to install various development tools on your computer. Also accompanying this book are files
containing step-by-step directions for using these development tools to enter and run some of the
C++ programs in this book; the files are in PDF format. However, keep in mind that you are not
limited to the development tools supported by the videos and PDF files. You can enter and run the
programs in this book using most C++ development tools, often with little or no modification. Your
instructor or technical support person will provide you with the appropriate instructions if you are
using a different development tool.

Figure 4-21 shows the source code for the Addison O’Reilly program. Each line in the figure is
numbered so that it is easier to refer to it in the text; you do not enter the line numbers in the
program. The unshaded lines of code are your C++ instructions from Figure 4-12. You do not
have to align the initial values in the declaration statements as shown in the figure. However,
doing so makes it easier to verify that each memory location has been initialized.

Besides entering your C++ instructions, you also need to enter other instructions in the
source file. Some of the additional instructions are required by the C++ compiler, while
others are optional but highly recommended. The additional instructions are shaded in
Figure 4-21.

The two forward slashes (//) on lines 1, 2, 9, 15, 21, 25, and 29 indicate that what follows
on that line is a comment. A comment is simply a message to the person reading the
program and is referred to as internal documentation. The comments on lines 1 and 2
indicate the program’s name and purpose, as well as the programmer’s name and the date
the program was either created or revised. The remaining comments explain various
sections of the code.

function header

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

93

Step 6—Evaluate and Modify the Program 	﻿

The C++ compiler does not require you to include comments in a program. However,
it is a good programming practice to do so because they make your code more
readable and easier to understand by anyone viewing it. The compiler does not
process (execute) the comments; instead, it ignores them when it translates the source
code into object code. Comments do not end with a semicolon because they are not
statements in C++.

Lines 4 and 5 in Figure 4-21 are directives. C++ programs typically contain at least one
directive, and most contain many directives. Line 4 is a #include directive and line 5 is a
using directive. A #include directive provides a convenient way to merge the source code
from one file with the source code in another file, without having to retype the code. The
#include <iostream> directive, for example, tells the C++ compiler to include the contents
of the iostream file in the current program. The iostream file must be included in any program
that uses the cin or cout objects. A #include directive is not a C++ statement; therefore, it
does not end with a semicolon.

A using directive, on the other hand, is a statement and must end with a semicolon. A using
directive tells the compiler where (in the computer’s internal memory) it can find the definitions
of keywords and classes, such as double or string. The using namespace std; directive
indicates that the definitions of the standard C++ keywords and classes are located in the std
(which stands for standard) namespace. A namespace is a special area in the computer’s internal
memory.

In line 7 of the program, main is the name of a function and must be typed using
lowercase letters. A function is a block of code that performs a task. Functions have
parentheses following their names, like this: main(). Depending on the function, you
may or may not need to enter information between the parentheses. Every C++ program
must have a main function because that is where the execution of a C++ program always
begins. Although a C++ program can contain many functions, only one can be the main
function.

Some functions, like main, return a value after completing their assigned task. If a
function returns a value, the data type of the value it returns appears to the left of
the function name; otherwise, the keyword void appears to the left of the name. The
int in line 7 indicates that the main function returns an integer. The entire line of code,
int main(), is referred to as a function header because it marks the beginning of the
function.

Following the function header is the code that directs the function on how to perform
its assigned task. Examples of such code include statements that declare variables, as
well as statements that input, calculate, and output data. The code must be enclosed
within a set of braces ({}). In Figure 4-21, the main function’s opening brace appears
on line 8, immediately below the function’s header, and the closing brace appears on
line 29.

Everything between the opening and closing braces in Figure 4-21 is included in the main
function and is referred to as the function body. Notice that you can include a comment (in this
case, //end of main function) on the same line with a C++ instruction. However, you must
be sure to enter the comment after the instruction because any text appearing after the two
forward slashes (//) on a line is interpreted as a comment.

The return 0; statement on Line 28 in Figure 4-21 returns the number 0 to the operating
system to indicate that the program ended normally. (As mentioned earlier, the main function
returns an integer.) Figure 4-22 shows a sample run of the program, which appears in a
Command Prompt window.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

94

LAB 4-1  Stop and Analyze
Study the four examples shown in Figure 4-23 and then answer the questions.

Mini-Quiz 4-3
1.	 Entering the cout < "Hello"; statement in a program is an example of a(n)

_________________________ error.

2.	 The .cpp file that contains your C++ instructions is called the
_________________________ file.

3.	 In a C++ program, the body of a function is enclosed in _________________________ .

Example 1

Example 4

Example 2

Example 3

Figure 4-23   Examples for Lab 4-1

Figure 4-22   Command Prompt window

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

The answers
to the labs are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

95

Step 6—Evaluate and Modify the Program 	﻿

1.	 Explain how the computer evaluates the assignment statement in Example 1. What value
will be assigned to the amountDue variable? Is the value correct? If not, how can you fix
the statement so it evaluates correctly?

2.	 Explain how the computer evaluates the assignment statement in Example 2. What value
will be assigned to the total variable? Is the value correct? If not, how can you fix the
statement so it evaluates correctly?

3.	 Explain how the computer evaluates the assignment statement in Example 3. What value
will be assigned to the avgSales variable? Is the value correct? If not, how can you fix
the statement so it evaluates correctly?

4.	 Explain how the computer evaluates the assignment statement in Example 4. What value
will be assigned to the average variable? Is the value correct? If not, how can you fix the
statement so it evaluates correctly?

QUESTIONS

LAB 4-2  Plan and Create
In Chapter 3’s Lab 3-2, you planned, created, and desk-checked an algorithm that
displays a 10% commission on a sales amount. Figure 4-24 shows the algorithm, along
with the input and output items and their corresponding C++ statements. It also
includes the desk-check table you completed in Lab 3-2.

IPO chart information

Input

C++ instructions

Processing
none

commission
Output

commission rate (10%)
sales amount

1. enter the sales amount
2. calculate the commission by multiplying
 the sales amount by the commission rate
3. display the commission

commission rate sales amount commission
.1 1328.50 132.85
.1 267.90

Algorithm

26.79

The first instruction in the algorithm is to enter the sales amount. You will code this instruction
using both a cout statement and a cin statement. The cout statement will prompt the user for
the sales amount, and the cin statement will store the user’s response in the sales variable.

Figure 4-24   IPO chart information, C++ instructions, and desk-check table from Lab 3-2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

96

After coding the algorithm, you then need to desk-check the program. You begin by placing
the names of the declared variables and named constants in a new desk-check table, along with
their values. You then desk-check the remaining C++ instructions in order, recording in the
desk-check table any changes made to the variables. Figure 4-26 shows the completed desk-
check table for the program. The results agree with the algorithm’s desk-check table shown
earlier in Figure 4-24.

Figure 4-26   Program’s desk-check table

COMM_RATE sales commission
0.1 0.0 0.0

1328.50 132.85
0.1 0.0 0.0

267.90 26.79

first desk check

The final step in the problem-solving process is to evaluate and modify (if necessary) the
program. Recall that you evaluate a program by entering its instructions into the computer and
then using the computer to run (execute) it. While the program is running, you enter the same
sample data used when desk-checking the program.

The next instruction in the algorithm calculates the commission by multiplying the sales
amount by the commission rate. You will code this instruction using an assignment statement
that multiplies the contents of the sales variable by the contents of the COMM_RATE named
constant, assigning the result to the commission variable.

The last instruction in the algorithm displays the commission on the computer screen.
You will code this instruction using a cout statement. Figure 4-25 shows the program
statements entered in the C++ instructions column.

Processing
none

commission
Output

commission rate (10%)
sales amount

1. enter the sales amount
2. calculate the commission by multiplying
 the sales amount by the commission rate
3. display the commission

IPO chart information

Input

C++ instructions

Algorithm

Figure 4-25   Completed IPO chart and C++ instructions for Lab 4-2

second desk check

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

97

Step 6—Evaluate and Modify the Program 	﻿

DIRECTIONS

 1.	 Determine whether your C++ development tool has been installed on your computer. If it
hasn’t, then you will need to install it before you can enter and run the program shown in
Figure 4-27. If you need help with the installation, watch the video that corresponds to your
development tool. The videos are named Ch04-Installation developmentTool, where
developmentTool is the name of the C++ development tool covered in the video. If your
development tool is not covered in any of these videos, you will need to contact your
instructor or technical support person for the appropriate installation instructions.

2.	 The Cpp8\Chap04 folder contains several files named Ch04-Lab4-2 developmentTool.pdf.
Each file corresponds to a specific C++ development tool and provides step-by-step
directions for creating, entering, saving, and running the program shown in Figure 4-27. If
the Cpp8\Chap04 folder contains a PDF file for your C++ development tool, open the PDF
file and then follow the directions listed in the file. (You can use Adobe Reader to open a
PDF file. If you don't have Adobe Reader on your computer system, you can download it for
free at www.adobe.com.)

3.	 If the Cpp8\Chap04 folder does not contain a PDF file for your C++ development tool,
contact your instructor or technical support person for the appropriate instructions. Follow
the instructions you are given for starting and using your C++ development tool. Enter
the instructions shown in Figure 4-27 in a source file named Lab4-2.cpp. (Do not enter
the line numbers.) Save the file in the Cpp8\Chap04 folder. Now follow the appropriate
instructions for running the Lab4-2.cpp file. Run the program twice, using the sample data
values of 1328.50 and 267.90 for the sales amount. If necessary, correct any bugs (errors) in
the program. Note: If your C++ development tool does not automatically pause program
execution and display the Press any key to continue message when the program ends, enter
the system("pause"); statement above the return 0; statement in the program.

Ch04-Installation
developmentTool

Figure 4-27   Commission program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

98

LAB 4-3  Modify
In this lab, you will modify the program from Lab 4-2 to allow the user to enter the
commission rate (in decimal form).

The Cpp8\Chap04 folder contains several files named Ch04-Lab4-3
developmentTool.pdf. Each file corresponds to a specific C++ development tool and

provides step-by-step directions for completing Lab 4-3. If the Cpp8\Chap04 folder contains a
PDF file for your C++ development tool, open the PDF file, and then follow the directions listed
in the file. (You can use Adobe Reader to open a PDF file.)

If the Cpp8\Chap04 folder does not contain a PDF file for your C++ development tool, start your
development tool and then copy the program instructions from Lab 4-2 into a new source file
named Lab4-3.cpp. (You may need to contact your instructor or technical support person for
how to perform this task.) Be sure to change Lab4-2.cpp in the first comment to Lab4-3.cpp.
Test the program twice. For the first test, use 1328.50 and .1 as the sales amount and commission
rate, respectively. For the second test, use 267.90 and .15. (Don’t be concerned that the $40.185
has three decimal places. You will learn how to format numbers in Chapter 5.)

LAB 4-4  What’s Missing?
The program in this lab should calculate and display the volume of a cylinder, given
the cylinder’s radius (r) and height (h), and using 3.14 as the value of pi. The formula
for calculating the volume is πr2h.

The Cpp8\Chap04 folder contains several files named Ch04-Lab4-4
developmentTool.pdf. Each file corresponds to a specific C++ development tool and provides
step-by-step directions for completing Lab 4-4. If the Cpp8\Chap04 folder contains a PDF file
for your C++ development tool, open the PDF file and then follow the directions listed in the
file. (You can use Adobe Reader to open a PDF file.) The directions will guide you in putting the
C++ instructions in the proper order and then locating the three missing instructions.

If the Cpp8\Chap04 folder does not contain a PDF file for your C++ development tool, start your
development tool and then open the Lab4-4.cpp file. Put the C++ instructions in the proper
order and then determine the one or more missing instructions. (Hint: Three instructions are
missing from the program.) Test the program twice. For the first test, use 10 and 5 as the height
and radius, respectively. For the second test, use 15 and 20.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

99

Chapter Summary ﻿ 	

LAB 4-5  Desk-Check
Desk-check the seven lines of code shown in Figure 4-28.

Figure 4-28   Code for Lab 4-5

LAB 4-6  Debug
�The Cpp8\Chap04 folder contains several files named Ch04-Lab4-6
developmentTool.pdf. Each file corresponds to a specific C++ development tool and
provides step-by-step directions for completing Lab 4-6. If the Cpp8\Chap04 folder
contains a PDF file for your C++ development tool, open the PDF file and then
follow the directions listed in the file. (You can use Adobe Reader to open a PDF file.)

If the Cpp8\Chap04 folder does not contain a PDF file for your C++ development tool, start your
C++ development tool and then open the Lab4-6.cpp file. The program should calculate and
display the area of a triangle, but it is not working correctly. Run and then debug the program.

Chapter Summary

The fourth step in the problem-solving process is to code the algorithm. You begin by declaring
a memory location for each unique input, processing, and output item listed in the IPO chart.
You then translate each instruction in the algorithm into one or more C++ statements.

In C++, standard input and output operations are performed using stream objects. The standard
input stream object is called cin. The standard output stream object is called cout.

You use cin along with the extraction operator (>>) to get either numeric or character input
from the computer keyboard. You use cout along with the insertion operator (<<) to display
information on the computer screen.

The extraction operator stops removing characters from the cin object when it encounters a
white-space character.

The endl stream manipulator advances the cursor to the next line on the computer screen.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

100

C H A P T E R 4 Completing the Problem-Solving Process

A program should display (on the computer screen) a separate and meaningful prompt for each
item of data the user should enter.

You direct the computer to perform a calculation by writing an arithmetic expression that
contains one or more arithmetic operators.

Each arithmetic operator is associated with a precedence number, which controls the order in
which the operation is performed in an expression. When an arithmetic expression contains
more than one operator having the same priority, those operators are evaluated from left to
right. You can use parentheses to override the normal order of precedence.

When an arithmetic operation involves two values having different data types, the computer
implicitly promotes the value with the lower-ranking data type to the higher-ranking data type.
The value returns to its original data type upon completion of the arithmetic operation.

The quotient obtained by dividing one integer by another integer is always an integer in C++.

You can use the static_cast operator to explicitly convert data from one data type to another.

You can use an assignment statement to assign a value to a variable during runtime.

An assignment statement tells the computer to evaluate the expression that appears on the right
side of the assignment operator (=) and then store the result in the variable whose name appears
on the left side of the assignment operator.

C++ provides arithmetic assignment operators (also called compound assignment operators
or shortcut operators) for abbreviating an assignment statement that has the following format,
in which variableName is the name of the same variable: variableName = variableName
arithmeticOperator value;. The abbreviated statement will have the following format:
variableName arithmeticAssignmentOperator value;.

The fifth step in the problem-solving process is to desk-check the program. You should use the
same sample data used to desk-check the algorithm.

The sixth (and final) step in the problem-solving process is to evaluate and modify (if necessary)
the program.

The errors in a program are called bugs and typically fall into one of two categories: syntax
errors or logic errors.

In order for you to enter your C++ instructions into the computer and then run the program,
you need to have access to a text editor and a C++ compiler.

The C++ instructions entered in a program are called source code and are saved in a source file,
which has a .cpp filename extension.

The compiler translates source code into machine code, also called object code.

The linker produces an executable file that contains all the machine code necessary to run a
C++ program. The executable file has an .exe filename extension.

Programmers use comments to document a program internally. Doing this makes the program
easier to understand by anyone viewing it. Comments are not statements and are ignored by the
compiler. Comments begin with two forward slashes (//).

The #include <iostream> directive tells the computer to include the contents of the
iostream file in the current program.

The using namespace std; directive indicates that the definitions of standard
C++ keywords and classes are located in the std namespace. A namespace is a special area
in the computer’s internal memory.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

101

Key Terms 	

The execution of a C++ program begins with the main function. Therefore, every C++ program
must have one (and only one) main function.

The first line in a function is called the function header. Following the function header is the
function body, which must be enclosed in braces.

Key Terms
#include directive—an instruction that tells the computer to merge the source code from one
file with the source code from another file

%—modulus (remainder) operator; divides two integers and returns the remainder as an integer

<<—the insertion operator in C++

>>—the extraction operator in C++

Arithmetic assignment operators—operators composed of an arithmetic operator followed
immediately by the assignment operator; used to abbreviate an assignment statement that
follows a specific format; also called compound assignment operators or shortcut operators

Assignment operator—the = symbol in an assignment statement

Assignment statement—used to assign a value to a variable during runtime

Bugs—the errors in a program

cin—the standard input stream object in C++; tells the computer to pause program execution
while the user enters one or more characters or numbers at the keyboard; temporarily stores the
characters or numbers entered at the keyboard

Comment—a message used to document a program internally; begins with two forward
slashes (//) in C++

cout—the standard output stream object in C++; used with the insertion operator to display
information on the computer screen

Debugging—the process of locating and correcting any errors in a program

endl—a stream manipulator that can be used to advance the cursor to the next line on the
computer screen

Executable file—a file that contains all of the machine code necessary to run a program;
executable files have an .exe filename extension

Explicit type conversion—the explicit conversion of data from one data type to another; usually
performed with the static_cast operator; also called a type cast

Extraction operator—two greater-than signs (>>); extracts (removes) characters from the cin
object and sends them “in” to the computer’s internal memory

Function—a block of code that performs a task

Function body—the code contained between a function’s opening and closing braces

Function header—the first line in a function; marks the beginning of the function

IDE—the acronym for Integrated Development Environment

Insertion operator—two less-than signs (<<); used with the cout object to send information
“out” to the user via the computer screen

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

102

Integrated Development Environment—a system that includes both an editor and a compiler

Linker—a program that combines the code contained in a C++ program’s object file with other
machine code necessary to run the C++ program

Logic error—an error (bug) that occurs when you neglect to enter a program instruction or
enter the instructions in the wrong order; also occurs as a result of calculation statements that
are correct syntactically but incorrect mathematically

Modulus operator—the percent sign (%); divides two integers and returns the remainder as an
integer

Object code—another name for machine code

Object file—a file that contains the object code associated with a program; automatically
generated by the compiler

Prompt—a message (displayed on the computer screen) indicating the type of data the user
should enter at the keyboard

Source code—the program instructions you enter using an editor; the instructions are saved in
a source file

Source file—a file that contains a program’s source code; source files have a .cpp filename
extension

static_cast operator—explicitly converts (or type casts) data from one data type to another

Stream—a sequence of characters

Stream manipulator—allows a C++ program to manipulate (or manage) the characters in either
the input or output stream

Stream objects—objects used to perform standard input and output operations in C++

Syntax error—an error (bug) that occurs when a program instruction violates a programming
language’s syntax

Type cast—another term for an explicit type conversion

using directive—an instruction that tells the computer where it can find the definitions of
keywords and classes

White-space character—a newline character, a tab character, or a blank (space) character

Review Questions
1.	 Which of the following prompts the user to enter an hourly pay rate?

a.	 cout >> "Pay rate per
hour? ";

b.	 cout << "Pay rate per
hour? ";

c.	 cout >> "Pay rate per
hour? ":

d.	 cout << "Pay rate per
hour? ":

2.	 Which of the following sends keyboard input to a variable named payRate?

a.	 cin >> payRate;

b.	 cin << payRate;

c.	 cin <> payRate;

d.	 cin > payRate;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

103

Review Questions 	

  3.	 If the payRate variable has the double data type, which of the following statements
will require an explicit type conversion to evaluate correctly?

a.	 payRate = 25;

b.	 payRate = payRate * 1.05;

c.	 payRate /= 2;

d.	 none of the above

  4.	 The num1 and num2 variables have the int data type and contain the numbers 13 and
5, respectively. The answer variable has the double data type. Which of the following
statements will require an explicit type conversion to evaluate correctly?

a.	 answer = num1 / 4.0;

b.	 answer = num1 + num1 /
num2;

c.	 answer = num1 - num2;

d.	 none of the above

  5.	 Which of the following assigns the letter T to a char variable named insured?

a.	 insured = 'T';

b.	 insured = "T":

c.	 insured = "T";

d.	 insured = 'T':

  6.	 Which of the following explicitly converts the contents of an int variable named
quantity to the double data type?

a.	 castToDouble(quantity)

b.	 explicit_cast
<double>(quantity)

c.	 static_cast
<double>(quantity)

d.	 type_cast
<double>(quantity)

  7.	 Which of the following statements advances the cursor to the next line on the
computer screen?

a.	 cout << endl;

b.	 cout << endline;

c.	 cout << newline;

d.	 none of the above

  8.	 Which of the following tells the compiler to merge the code contained in the iostream
file with the current file’s code?

a.	 #include iostream;

b.	 #include <iostream>

c.	 #include <iostream>;

d.	 #include (iostream)

  9.	 Which of the following is equivalent to the rate = rate / 100; statement?

a.	 rate =/ 100;

b.	 rate /= 100:

c.	 rate / = 100;

d.	 rate /= 100;

10.	 Which of the following is a valid comment in C++?

a.	 **This is a comment

b.	 @/This is a comment

c.	 /This is a comment

d.	 none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

104

Exercises

Pencil and Paper

1.	 �Complete the C++ instructions column in Figure 4-29. (The answers to TRY THIS
Exercises are located at the end of the chapter.)

TRY THIS

IPO chart information

Input

C++ instructions

Processing
none

Output

Algorithm:

food
rent
utilities
car payment

total expenses

1. enter food, rent, utilities, and car payment
2. calculate total expenses by adding together
 food, rent, utilities, and car payment
3. display total expenses

Figure 4-29  

2.	 Complete the C++ instructions column in Figure 4-30. (The answers to TRY THIS
Exercises are located at the end of the chapter.)

IPO chart information

Input

C++ instructions

Processing
total latex cost
total Mylar cost
subtotal
sales tax

total cost
Output

latex price
Mylar price
latex purchased
Mylar purchased
sales tax rate (6%)

1. enter latex price, Mylar price, latex purchased,
 and Mylar purchased

Algorithm:

double latexPrice = 0.0;
double mylarPrice = 0.0;
int latexPurchased = 0;
int mylarPurchased = 0;
const double TAX_RATE = .06;

double totalLatexCost = 0.0;
double totalMylarCost = 0.0;
double subtotal = 0.0;
double salesTax = 0.0;

double totalCost = 0.0;

Figure 4-30  (continues)

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

105

Exercises 	

2. calculate total latex cost by multiplying
 latex purchased by latex price
3. calculate total Mylar cost by multiplying
 Mylar purchased by Mylar price
4. calculate subtotal by adding total latex
 cost to total Mylar cost
5. calculate sales tax by multiplying
 subtotal by sales tax rate
6. calculate total cost by adding sales tax
 to subtotal
7. display total cost

Figure 4-30

3.	 Complete TRY THIS Exercise 1, and then modify the IPO chart information and C++
instructions so that the car payment will always be $253.75.

4.	 Complete the C++ instructions column in Figure 4-31.

MODIFY THIS

INTRODUCTORY

Processing
none

cost per item
Output

double itemCost = 0.0;

quantity
total cost

1. enter the quantity and total cost

2. calculate the cost per item by dividing the
 total cost by the quantity
3. display the cost per item

IPO chart information C++ instructions
Input

Algorithm:

int quantity = 0;
double total = 0.0;

cout << "Quantity: ";
cin >> quantity;

cout << "Cost per item: $" <<
itemCost << endl;

Figure 4-31

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

106

 5.	 Complete the C++ instructions column in Figure 4-32.INTERMEDIATE

Processing
price and cost difference

profit
Output

double difference = 0.0;

double profit = 0.0;

quantity sold
item cost
item selling price

int quantity = 0;
double cost = 0.0;
double sellPrice = 0.0;

1. enter the quantity sold, item cost,
 and item selling price

2. calculate the price and cost difference by
 subtracting the item cost from the item
 selling price
3. calculate the profit by multiplying the price
 and cost difference by the quantity sold
4. display the profit

IPO chart information C++ instructions
Input

Algorithm:

cout << "Profit: $ " <<
profit << endl;

Figure 4-32

6.	 Complete the C++ instructions column in Figure 4-33.ADVANCED

Processing
none

number of pets per owner
Output

number of pets
number of owners

1. enter number of pets and number
 of owners

2. calculate number of pets per owner
 by dividing number of pets by
 number of owners
3. display number of pets per owner

IPO chart information C++ instructions
Input

Algorithm:

Figure 4-33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

107

Exercises 	

7.	 Correct the errors in the lines of code shown in Figure 4-34. (The code contains eight
errors.)

SWAT THE BUGS

#include <iostream>;

using namespace std

int main

}

 Int quantity = 0;

 cout >> "Enter the quantity ordered: ";

 cin << quantity;

 cout << "You entered " << quantity << endl

 return 0;

{ //end of main function

Figure 4-34

Computer

  8.	 First, complete TRY THIS Exercise 1. Then, if necessary, create a new project named
TryThis8 Project, and save it in the Cpp8\Chap04 folder. Enter the C++ instruc-
tions from TRY THIS Exercise 1 into a source file named TryThis8.cpp. Also enter
appropriate comments and any additional instructions required by the compiler. Test
the program using 250.75, 900, 100.87, and 205 as the food, rent, utilities, and car
payment, respectively. Then test it using your own set of data. (The answers to TRY
THIS Exercises are located at the end of the chapter.)

  9.	 First, complete TRY THIS Exercise 2. Then, if necessary, create a new project
named TryThis9 Project, and save it in the Cpp8\Chap04 folder. Enter the C++
instructions from TRY THIS Exercise 2 into a source file named TryThis9.cpp. Also
enter appropriate comments and any additional instructions required by the com-
piler. Test the program using 1.05, 1.65, 10, and 7 as the latex price, Mylar price,
number of latex purchased, and number of Mylar purchased, respectively. (Do not
be concerned that the output has three decimal places. You will learn how to
format numbers in Chapter 5.) Then test it using your own set of data. (The
answers to TRY THIS Exercises are located at the end of the chapter.)

10.	 First, complete TRY THIS Exercise 8. If necessary, create a new project named
ModifyThis10 Project, and save it in the Cpp8\Chap04 folder. Enter (or copy) the
instructions from the TryThis8.cpp file into a new source file named ModifyThis10.cpp.
The rent and car payment will always be $750 and $125.75, respectively. Modify the
code appropriately. Test the program using 199.74 and 126.45 as the food and utilities,
respectively. Then test it using your own set of data.

11.	 Jacob Weinstein wants a program that displays his savings account balance at the end of
the month, given the beginning balance, total deposits, and total withdrawals.

a.	 Using the chart shown earlier in Figure 4-12 as a guide, enter the input, processing,
and output items, as well as the algorithm, in the first column.

b.	 Desk-check the algorithm twice. For the first desk-check, use 2545.75, 409.43,
and 210.65 as the beginning balance, total deposits, and total withdrawals. For the
second desk-check, use 1125.33, 23, and 800.94.

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

108

INTRODUCTORY

c.	 Enter the C++ instructions in the second column of the chart, and then desk-check
the program using the same data used to desk-check the algorithm.

d.	 If necessary, create a new project named Introductory11 Project, and save it in
the Cpp8\Chap04 folder. Enter your C++ instructions into a source file named
Introductory11.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Test the program using the same data used to
desk-check the program.

12.	 The manager of Fish Haven wants a program that displays the number of gallons of
water a rectangular aquarium holds, given the aquarium’s length, width, and height
measurements in inches. (Hint: There are 231 cubic inches in a gallon.)

a.	 Using the chart shown earlier in Figure 4-12 as a guide, enter the input, processing,
and output items, as well as the algorithm, in the first column.

b.	 Desk-check the algorithm twice. For the first desk-check, use 20.5, 10.5, and 12.5 as the
length, width, and height measurements. For the second desk-check, use 30, 9, and 14.

c.	 Enter the C++ instructions in the second column of the chart, and then desk-check
the program using the same data used to desk-check the algorithm.

d.	 If necessary, create a new project named Introductory12 Project, and save it in
the Cpp8\Chap04 folder. Enter your C++ instructions into a source file named
Introductory12.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Test the program using the same data used to
desk-check the program.

13.	 The manager of Keystone Tile wants an application that displays the area of a rectangu-
lar floor, given its measurements in feet. It should also display the total cost of tiling the
floor, given the price per square foot of tile.

a.	 Using the chart shown earlier in Figure 4-12 as a guide, enter the input, processing,
and output items, as well as the algorithm, in the first column.

b.	 Desk-check the algorithm twice, using your own sets of data.
c.	 Enter the C++ instructions in the second column of the chart, and then desk-check

the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Intermediate13 Project, and save it in

the Cpp8\Chap04 folder. Enter your C++ instructions into a source file named
Intermediate13.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Test the program using the same data used to
desk-check the program.

14.	 Silvia’s Pizzeria sells four different sizes of pizzas: small, medium, large, and family. The
manager of the pizzeria wants a program that displays the total number of pizzas sold,
as well as the percentage of the total number contributed by each different size.

a.	 Using the chart shown earlier in Figure 4-12 as a guide, enter the input, processing,
and output items, as well as the algorithm, in the first column.

b.	 Desk-check the algorithm twice. For the first desk-check, use 25, 50, 50, and 75 as
the numbers of small, medium, large, and family pizzas. For the second desk-check,
use 30, 25, 85, and 73. Record the percentages with one decimal place.

c.	 Enter the C++ instructions in the second column of the chart, and then desk-check
the program using the same data used to desk-check the algorithm.

d.	 If necessary, create a new project named Intermediate14 Project, and save it in
the Cpp8\Chap04 folder. Enter your C++ instructions into a source file named
Intermediate14.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Test the program using the same data used to
desk-check the program.

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

109

Exercises 	

15.	 A local zoo offers three different memberships: an individual membership for $99 per year,
a dual membership for $175 per year, and a family membership for $225 per year. The
membership director wants a program that displays the total membership revenue for the
year, as well as the amount of the total revenue contributed by each membership type.

a.	 Using the chart shown earlier in Figure 4-12 as a guide, enter the input, processing,
and output items, as well as the algorithm, in the first column.

b.	 Desk-check the algorithm twice. For the first desk-check, use 50, 75, and 150 as
the numbers of individual, dual, and family memberships sold during the year.
For the second desk-check, use 35, 150, and 265. Record the percentages with
one decimal place.

c.	 Enter the C++ instructions in the second column of the chart, and then desk-check
the program using the same data used to desk-check the algorithm.

d.	 If necessary, create a new project named Advanced15 Project, and save it in
the Cpp8\Chap04 folder. Enter your C++ instructions into a source file named
Advanced15.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Test the program using the same data used to desk-check
the program.

16.	 In this exercise, you explore the use of integers in monetary calculations.

a.	 Follow the instructions for starting C++ and opening the Advanced16.cpp file. Run
the program. Enter 256.7 and 223.3 as the sales for Store 1 and Store 2, respectively.
The total that appears on the computer screen (504.00) is incorrect because it is not
the result of adding together the numbers 269.54 and 234.47. Press any key to stop
the program.

b.	 Review the code contained in the Advanced16.cpp file. The #include <iomanip>
directive tells the C++ compiler to include the contents of the iomanip file in the
current program. The file contains the definition of the setprecision stream
manipulator, which appears in the cout << fixed << setprecision(2) <<
endl; statement. The fixed stream manipulator, which is defined in the iostream
file, forces a real number to display a specific number of decimal places, as specified
by the setprecision stream manipulator. In this program, the output values will
display with two decimal places. You will learn about the directive and both stream
manipulators in Chapter 5.

c.	 Why does the total appear as 504.00 rather than 504.01? Hint: Change the cout <<
fixed << setprecision(2); statement to a comment, and then save and run
the program. Enter 256.7 and 223.3 as the sales for Store 1 and Store 2, respectively.
Study the output, and then stop the program. Change the comment back to a
statement.

d.	 Use the seven comments that appear below the main function to modify the
program’s code. Why do you need to add .5 to the expressions that calculate the
increased sales for both stores?

e.	 Save, run, and test the program to verify that it is working correctly, and then stop
the program.

17.	 Follow the instructions for starting C++ and opening the SwatTheBugs17.cpp file.
The program declares and initializes a double variable. It then adds 1.5 to the variable
before displaying the variable’s value. Run the program. (If you are asked whether you
want to run the last successful build, click the No button.) Debug the program.

ADVANCED

SWAT THE BUGS

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

110

Answers to TRY THIS Exercises

Pencil and Paper

1.	 See Figure 4-35.

Algorithm:
1. enter food, rent, utilities, and car payment

2. calculate total expenses by adding together
 food, rent, utilities, and car payment

3. display total expenses

Figure 4-35

2.	 See Figure 4-36.

Algorithm:
1. enter latex price, Mylar price, latex
 purchased, and Mylar purchased

2. calculate total latex cost by multiplying
 latex purchased by latex price

3. calculate total Mylar cost by multiplying
 Mylar purchased by Mylar price

4. calculate subtotal by adding total latex
 cost to total Mylar cost

5. calculate sales tax by multiplying
 subtotal by sales tax rate

6. calculate total cost by adding sales tax
 to subtotal

7. display total cost

Figure 4-36

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

111

Exercises 	

Computer

Figure 4-37

9.	 See Figure 4-38.

Figure 4-38  (continues)

8.	 See Figure 4-37.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 4 Completing the Problem-Solving Process

112

Figure 4-38

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5
The Selection Structure

After studying Chapter 5, you should be able to:

�� Include the selection structure in pseudocode and in a flowchart

�� Code a selection structure using the if statement

�� Include comparison operators in a selection structure’s condition

�� Include logical operators in a selection structure’s condition

�� Temporarily convert a character to either uppercase or lowercase

�� Format numeric output

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

114

Making Decisions
As you learned in Chapter 1, all computer programs are written using one or more of three
basic control structures: sequence, selection, and repetition. You used the sequence structure in
Chapter 4’s programs. Recall that during runtime, the instructions in those programs were processed
in the order they appeared in the program. Many times, however, a program will need the computer
to make a decision before selecting the next instruction to process. A payroll program, for example,
typically has the computer determine whether the number of hours an employee worked is greater
than 40. The computer would then select either an instruction that computes regular pay only or an
instruction that computes regular pay plus overtime pay. Programs that need the computer to make
a decision require the use of the selection structure (also called the decision structure).

The selection structure indicates that a decision (based on some condition) needs to be made,
followed by an appropriate action derived from that decision. But how does a programmer
determine whether a problem’s solution requires a selection structure? The answer to this
question is found by studying the problem specification. The first problem specification you will
examine in this chapter involves an evil scientist named Dr. N. The problem specification and an
illustration of the problem are shown in Figure 5-1 along with an appropriate algorithm. The
algorithm, which is written in pseudocode, requires only the sequence structure.

Ch05-Dr N

Algorithm:
1. press the orange button on the control deck to view the visitor on the screen
2. press the blue button on the control deck to open the door
3. say “Welcome”

Problem specification
Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck
to open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the orange
button on the control deck. Write the instructions that direct Dr. N to view the visitor first, and then
open the door and say “Welcome”.

Figure 5-1   A problem that requires the sequence structure only
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

115

Making Decisions 	﻿

Now we will make a slight change to the problem specification shown in Figure 5-1. In this case,
Dr. N should open the door only if the visitor knows the secret password. The modified problem
specification and algorithm are shown in Figure 5-2. The algorithm contains both the sequence
and selection structures. The selection structure’s condition, which is enclosed in parentheses in
the pseudocode, directs Dr. N to make a decision about the visitor’s password. More specifically,
he needs to determine whether the visitor’s password matches the secret password. As you may
remember from Chapter 1, the condition in a selection structure must be phrased so that it
evaluates to an answer of either true or false. In this case, either the visitor’s password matches
the secret password (true) or it doesn’t match the secret password (false). Only if both passwords
are the same does Dr. N need to follow the two indented instructions. The selection structure
in Figure 5-2 is referred to as a single-alternative selection structure because it requires one
or more actions to be taken only when its condition evaluates to true. Other examples of single-
alternative selection structures include “if it’s raining, take an umbrella” and “if you are driving
your car at night, turn on your car’s headlights”.

Figure 5-3 shows a modified version of the previous problem specification. In this version, Dr. N
will say “Sorry, you are wrong” and then destroy the visitor if the passwords do not match. Also
shown in Figure 5-3 are two possible algorithms; both produce the same result. The condition in
Algorithm 1’s selection structure determines whether the visitor’s password is correct, whereas
the condition in Algorithm 2’s selection structure determines whether it is incorrect.

Unlike the selection structure in Figure 5-2, which provides instructions for Dr. N to follow only
when the selection structure’s condition is true, the selection structures in Figure 5-3 require
Dr. N to perform one set of instructions when the condition is true but a different set of instruc-
tions when the condition is false. The instructions to follow when the condition evaluates to true
are called the true path. The true path begins with the instruction following the if, and it ends
with either the else (if there is one) or the end if. The instructions to follow when the condition
evaluates to false are called the false path. The false path begins with the instruction following
the else, and it ends with the end if. For clarity, the instructions in each path should be indented
as shown in Figure 5-3. Selection structures that contain instructions in both paths, like the ones
in Figure 5-3, are referred to as dual-alternative selection structures.

Figure 5-2   A problem that requires the sequence structure and a single-alternative selection structure

Problem specification
Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times, visitors
come to the door located at the rear of the lair. Before pressing the blue button on the control deck
to open the door, Dr. N likes to view the visitor on the screen. He can do so by pressing the
orange button on the control deck. Write the instructions that direct Dr. N to view the visitor first
and then ask the visitor for the password. He should open the door and say “Welcome” only if the
visitor knows the secret password.

Algorithm:
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if (the visitor’s password matches the secret password)
 press the blue button on the control deck to open the door
 say “Welcome”
 end if

condition

followed only when
the condition is true

In pseudocode,
programmers
use the words
if and end if
to denote the

beginning and end,
respectively, of a
selection structure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

116

Flowcharting a Selection Structure
As you learned in Chapter 2, many programmers use flowcharts (rather than pseudocode)
when planning solutions to problems. Figure 5-4 shows a problem specification along with
two correct algorithms in flowchart form. The diamond in a flowchart is called the decision
symbol because it is used to represent the condition (decision) in both the selection and
repetition structures. The diamonds in Figure 5-4 represent the conditions in selection
structures. Flowchart A contains a single-alternative selection structure because it requires
a set of actions to be taken only when its condition evaluates to true. Flowchart B contains
a dual-alternative selection structure because it requires two different sets of actions: one to
be taken only when its condition evaluates to true, and the other to be taken only when its
condition evaluates to false.

Problem specification
Dr. N is sitting in a chair in his lair, facing a control deck and an electronic screen. At times,
visitors come to the door located at the rear of the lair. Before pressing the blue button on
the control deck to open the door, Dr. N likes to view the visitor on the screen. He can do
so by pressing the orange button on the control deck. Write the instructions that direct Dr. N
to view the visitor first and then ask the visitor for the password. He should open the door
and say “Welcome” only if the visitor knows the secret password. If the visitor does not
know the secret password, Dr. N should say “Sorry, you are wrong” and then destroy the
visitor by pressing the big red button on the control deck.

Algorithm 1
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if (the visitor’s password matches the secret password)
 press the blue button on the control deck to open the door
 say “Welcome”
 else
 say “Sorry, you are wrong”
 press the big red button on the control deck to destroy the visitor
 end if

Algorithm 2
1. press the orange button on the control deck to view the visitor on the screen
2. ask the visitor for the password

3. if (the visitor’s password does not match the secret password)
 say “Sorry, you are wrong”
 press the big red button on the control deck to destroy the visitor
 else
 press the blue button on the control deck to open the door
 say “Welcome”
 end if

Figure 5-3  � A problem that requires the sequence structure and a dual-alternative selection structure

true path

true path

false path

false path

condition—determines
if password is incorrect

condition—determines
if password is correct

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

117

Flowcharting a Selection Structure 	﻿

Flowchart A—single-alternative
selection structure

Flowchart B—dual-alternative
selection structure

Problem speci�cation
Pete’s Pizzeria wants a program that displays an employee’s weekly gross pay, given the number of
hours worked and hourly pay rate. Employees working more than 40 hours are paid an additional
one-half of their hourly rate for the hours over 40.

start

enter hours
and rate

start

enter hours
and rate

gross = hours * rate hours
less than
or equal
to 40

hours
over 40

gross = gross +
(hours – 40) *

rate / 2

display gross

stop

display gross

stop

gross = hours *
rate + (hours –
40) * rate / 2

gross = hours *
rate F T

TF

Notice that the conditions in both diamonds evaluate to either true or false only. Also notice
that both diamonds have one flowline entering the symbol and two flowlines leaving the symbol.
One of the flowlines leading out of a diamond in a flowchart should be marked with a “T” (for
true) and the other should be marked with an “F” (for false). The “T” flowline points to the
next instruction to be processed when the condition evaluates to true. In Flowchart A, the next
instruction calculates the gross pay with overtime; in Flowchart B, it calculates the gross pay
without any overtime. The “F” flowline points to the next instruction to be processed when the
condition evaluates to false. In Flowchart A, that instruction displays the gross pay; in Flowchart B,
it calculates the gross pay with overtime. You can also mark the flowlines leading out of a diamond
with a “Y” and an “N” (for yes and no).

Figure 5-4  � Problem specification and two correct algorithms shown in flowchart form

For more
experience
in examining
problem
specifica-

tions, see the Problem
Specifications section in
the Ch05WantMore.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

118

Mini-Quiz 5-1

1.	 Most programmers use the words _________________________ to denote the end of a
selection structure in pseudocode.

2.	 The true path in a selection structure can contain only one instruction.

a.	 True
b.	 False

3.	 Which of the following is the decision symbol in a flowchart?

a.	 diamond
b.	 oval
c.	 parallelogram
d.	 rectangle

4.	 A problem specification states that only customers paying with the store’s credit card
receive a 5% discount on their purchase. Which type of selection structure would be
used to calculate the discount?

a.	 dual-alternative
b.	 single-alternative

5.	 A problem specification states that customers purchasing at least $100 in product
receive free shipping. All other customers must pay a $12 shipping fee. Which type of
selection structure would the solution to this problem require?

a.	 dual-alternative
b.	 single-alternative

Coding Selection Structures in C++
In the C++ programs in this book, you will use the if statement to code single-alternative and
dual-alternative selection structures. The statement’s syntax is shown in Figure 5-5. The square
brackets in the syntax indicate that the else portion, referred to as the else clause, is optional.
The boldfaced items in the syntax are required; however, the else keyword is necessary only in
a dual-alternative selection structure.

Italicized items in the syntax indicate where the programmer must supply information. In the
if statement, the programmer must supply the condition that the computer needs to evaluate
before further processing can occur. The condition must be a Boolean expression, which is an
expression that results in a Boolean value (true or false). Besides providing the condition, the
programmer must provide the statements to be processed in the true path and (optionally) in
the false path. If a path contains more than one statement, the statements must be entered as a
statement block, which means they must be enclosed in a set of braces ({}).

Although not a requirement, using a comment (such as //end if) to mark the end of the if
statement will make your program easier to read and understand. It will also help you keep track
of the required if and else clauses when you nest if statements—in other words, when you
include one if statement inside another if statement. You will learn how to nest if statements
in Chapter 6.

Ch05-if Statement

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

119

Coding Selection Structures in C++ 	﻿

How To �Use the if Statement

Syntax
if (condition)
 one or more statements to be processed when the condition is true
[else
 one or more statements to be processed when the condition is false]
//end if

Example 1—one statement in only the true path
if (condition)
 one statement
//end if

Example 2—multiple statements in only the true path
if (condition)
{
 multiple statements enclosed in braces
} //end if

Example 3—one statement in each path
if (condition)
 one statement
else
 one statement
//end if

Example 4—multiple statements in the true path and one statement in the false path
if (condition)
{
 multiple statements enclosed in braces
}
else
 one statement
//end if

Example 5—one statement in the true path and multiple statements in the false path
if (condition)
 one statement
else
{
 multiple statements enclosed in braces
} //end if

Example 6—multiple statements in both paths
if (condition)
{
 multiple statements enclosed in braces
}
else
{
 multiple statements enclosed in braces
} //end if

Figure 5-5  � How to use the if statement (continues)

The six examples in Figure 5-5 show various ways of using the if statement to code selection
structures. Examples 1 and 2 are single-alternative selection structures. The remaining four
examples are dual-alternative selection structures. Notice that when a path contains multiple
statements, the statements are entered as a statement block by enclosing them in braces.
Although not shown in Figure 5-5, you can also include the braces even when a path contains
only one statement. By doing this, you won’t need to remember to enter the braces when
statements are added subsequently to the path. Forgetting to enter the braces is a common
error made when typing the if statement in a C++ program.

In an if
statement,
you cannot
have an else
clause without a

matching if clause.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

120

Figure 5-5  � How to use the if statement

Syntax
if (condition)
 one or more statements to be processed when the condition is true
[else
 one or more statements to be processed when the condition is false]
//end if

Example 1—one statement in only the true path
if (condition)
 one statement
//end if

Example 2—multiple statements in only the true path
if (condition)
{
 multiple statements enclosed in braces
} //end if

Example 3—one statement in each path
if (condition)
 one statement
else
 one statement
//end if

Example 4—multiple statements in the true path and one statement in the false path
if (condition)
{
 multiple statements enclosed in braces
}
else
 one statement
//end if

Example 5—one statement in the true path and multiple statements in the false path
if (condition)
 one statement
else
{
 multiple statements enclosed in braces
} //end if

Example 6—multiple statements in both paths
if (condition)
{
 multiple statements enclosed in braces
}
else
{
 multiple statements enclosed in braces
} //end if

(continued)

As mentioned earlier, an if statement’s condition must be a Boolean expression, which is an
expression that evaluates to either true or false. The expression can contain variables, constants,
arithmetic operators, comparison operators, and logical operators. You already know about
variables, constants, and arithmetic operators. You will learn about comparison operators and
logical operators in this chapter.

Comparison Operators
Figure 5-6 lists the C++ comparison operators (also referred to as relational operators), along
with examples of using the operators in an if statement’s condition. Comparison operators are
used to compare two values having the same data type. Expressions containing a comparison
operator always evaluate to a Boolean value: either true or false. The precedence numbers in
Figure 5-6 indicate the order in which the computer performs comparisons in an expression.
Comparisons with a precedence number of 1 are performed before comparisons with a
precedence number of 2. However, you can use parentheses to override the order of precedence.

How To �Use Comparison Operators in an if Statement’s Condition

Operator Operation Precedence number
< less than 1
<= less than or equal to 1
> greater than 1
>= greater than or equal to 1
== equal to 2
!= not equal to 2

Examples (All of the variables have the data type.)

Note: When making comparisons, keep in mind that equal to (==) is the opposite
 of not equal to (!=), greater than (>) is the opposite of less than or equal to
 (<=), and less than (<) is the opposite of greater than or equal to (>=).

Figure 5-6  � How to use comparison operators in an if statement’s condition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

121

Swapping Numeric Values 	﻿

It is easy to confuse the equality operator (==) with the assignment operator (=). You use
the equality operator to compare two values to determine whether they are equal, as in the
condition in the following if clause: if (num == 1). You use the assignment operator, on
the other hand, to assign a value to a memory location. An example of this is the statement
num = 1;. In the next two sections, you will view programs that use comparison operators.

Swapping Numeric Values
Figure 5-8 shows the IPO chart information, C++ code, and a sample run for a program that
displays the lowest and highest of two scores entered by the user. The program contains
a single-alternative selection structure. The score1 > score2 condition in the if clause
compares the contents of the score1 variable with the contents of the score2 variable. If the
value in the score1 variable is greater than the value in the score2 variable, the condition
evaluates to true, and the four instructions in the if statement’s true path swap both values.
Swapping the values places the smaller number in the score1 variable and places the larger
number in the score2 variable. If the condition in the if clause evaluates to false, on the
other hand, the instructions in the true path are skipped over because the score1 variable
already contains a number that is smaller than (or possibly equal to) the number stored in the
score2 variable.

Original expression
The subtraction is performed first
The first addition is performed next
The second addition is performed next
The < comparison is performed last

Notice that four of the C++ comparison operators contain two symbols. When entering these
operators, be sure you do not enter a space between the symbols, and be sure to enter both
symbols in the exact order shown in Figure 5-6.

Because some real numbers (the float and double data types) cannot be stored precisely in
memory, they should never be compared for equality or inequality. In other words, you should
not use either the equality operator (==) or the inequality operator (!=) to compare two real
numbers. (The exclamation point in the inequality operator stands for not.) Instead, you should
test that the difference between the real numbers you are comparing is less than some acceptable
small value, such as 0.00001. You will learn how to determine whether two real numbers are
equal in Computer Exercise 16 at the end of this chapter.

When an expression contains more than one comparison operator with the same precedence
number, the computer evaluates those comparison operators from left to right in the
expression, similar to what is done with arithmetic operators. Comparison operators are
evaluated after any arithmetic operators in an expression. Therefore, when processing the
expression 7 – 3 + 8 < 9 + 5, the computer will evaluate the three arithmetic operators
before it evaluates the comparison operator. The result of the expression is the Boolean value
true, as shown in Figure 5-7.

Figure 5-7  � Evaluation steps for an expression containing arithmetic and comparison operators

Ch05-Swapping

Numbers are
compared using
their binary
equivalents.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

122

 IPO chart information C++ instructions
Input
 first score
 second score
Processing
 none
Output
 first score (lowest)
 second score (highest)
Algorithm:
1. enter the first score and the second score

2. if (the first score is greater than the second score)
 swap the scores so that the first score is

the lowest score
end if

 3. display the first score and the second score

Figure 5-8  � Swapping program

swapping
instructions in
the true path

Notice that the four instructions in the if statement’s true path are enclosed in braces. As you
learned earlier, when more than one instruction needs to be processed when the if statement’s
condition is true, the C++ syntax requires those instructions to be entered as a statement block.

Study closely the instructions in the true path. The first instruction declares and initializes
a variable named temp. The temp variable must be the same data type as the variables you
are swapping. Because the temp variable is declared in the if statement’s true path, it can be
used only by the instructions within that path. More specifically, it can be used only by the
instructions that follow its declaration statement within the true path. A variable that can be
used only within the statement block in which it is defined is referred to as a local variable. In
this case, the temp variable is local to the if statement’s true path.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

123

Swapping Numeric Values 	﻿

You may be wondering why the temp variable was not declared at the beginning of the main
function, along with the score1 and score2 variables. Although there is nothing wrong with
declaring the temp variable in that location, there is no reason to create the variable until it is
needed, which (in this case) is only when a swap is necessary. (You will learn more about local
variables in Chapter 9.)

The second instruction in the true path assigns the score1 variable’s value to the temp variable.
If you do not store that value in the temp variable, it will be lost when the computer processes
the next statement, score1 = score2;, which replaces the contents of the score1 variable
with the contents of the score2 variable. Finally, the score2 = temp; instruction assigns the
temp variable’s value to the score2 variable; this completes the swap. Figure 5-9 illustrates the
concept of swapping, assuming the user enters the numbers 99 and 84 as the first and second
scores, respectively. Figure 5-10 shows the corresponding flowchart for the program.

 score1 score2 temp
values stored in the variables after the and 99 84 0

 statements are processed
result of the statement 99 84 99
result of the statement 84 84 99
result of the statement 84 99 99

Figure 5-9  � Illustration of the swapping concept

the values were
swapped

Figure 5-10  � Flowchart for the swapping program

start

enter first score
and second score

first score >
second
score

swap the scores so
that the first score is

the lowest score

display first score
and second score

stop

F T

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

124

Displaying the Area or Circumference
Figure 5-11 shows the IPO chart information, C++ code, and a sample run for a program that
displays either a circle’s area or its circumference. The program prompts the user to enter the
circle’s radius, storing the user’s response in the radius variable. It then prompts the user
to enter a number that represents the desired calculation: either 1 (for the area) or 2 (for the
circumference). The program stores the user’s response in the choice variable. If the choice
variable contains the number 1, the choice == 1 condition in the dual-alternative selection
structure evaluates to true, and the instructions in the true path calculate and display the circle’s
area. If the choice variable contains any number other than the number 1, the choice == 1
condition evaluates to false, and the instructions in the false path calculate and display the
circle’s circumference. Notice that the instructions in each path are entered as a statement block.
Figure 5-12 shows the corresponding flowchart for the program.

Figure 5-11  � Area or circumference program (continues)

IPO chart information C++ instructions
Input
 pi (3.14) const double PI = 3.14;
 radius double radius = 0.0;
 choice int choice = 0;

Processing
 none

Output
 either the area or the circumference double answer = 0.0;

Algorithm:
1. enter the radius and choice cout << "Enter the radius: ";
 cin >> radius;
 cout << "Enter 1 (area) or 2
 (circumference): ";
 cin >> choice;

2. if (the choice is 1) if (choice == 1)
 {
 calculate the area by multiplying the answer = radius * radius * PI;
 radius by itself, and then multiplying
 the result by pi

 display “Area:” and the area cout << "Area: " <<
 answer << endl;
 }
 else else
 {
 calculate the circumference by answer = 2 * radius * PI;
 multiplying the radius by 2, and then
 multiplying the result by pi

 display “Circumference:” and the cout << "Circumference: " <<
 circumference answer << endl;

 end if } //end if

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

125

Displaying the Area or Circumference 	﻿

Figure 5-11  � Area or circumference program

(continued)

start

enter the radius
and choice

choice is 1

stop

circumference =
2 * radius * pi

area = radius*
radius * pi

display “Area:”
and area

display
“Circumference:” and

circumference

TF

Figure 5-12  � Flowchart for the area or circumference program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

126

Mini-Quiz 5-2

1.	 You create a statement block by enclosing one or more statements in
_________________________ .

a.	 braces
b.	 parentheses
c.	 square brackets
d.	  quotation marks

2.	 Which of the following determines whether an int variable named age contains the
number 21?

a.	 if age = 21

b.	 if age == 21

c.	 if (age = 21)

d.	 if (age == 21)

3.	 Which of the following determines whether the value contained in the price variable
is at least $12.75?

a.	 if (price => 12.75)

b.	 if (price >= 12.75)

c.	 if (price <= 12.75)

d.	 if (price > 12.75)

4.	 Which of the following is the inequality operator in C++?

a.	 &=

b.	 =⁄

c.	 !=

d.	 =!

5.	 Which of the following is the opposite of the < operator?

a.	 <=

b.	 >=

c.	 =>

d.	 >

Logical Operators
An if statement’s condition can also contain a logical operator. Logical operators allow
you to combine two or more conditions, referred to as subconditions, into one compound
condition. Logical operators are also referred to as Boolean operators because the compound
condition in which they are contained always evaluates to either true or false only. The two
most commonly used logical operators are And and Or. You are already familiar with logical
operators because you use them on a daily basis; examples of this are shown in Figure 5-13.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

127

Logical Operators 	﻿

C++ uses special symbols to represent the And and Or operators in a program. The And
operator in C++ is two ampersands (&&); the Or operator is two pipe symbols (||). On most
computer keyboards, the pipe symbol (|) is located on the same key as the backslash (\).

When the And (&&) operator is used to create a compound condition, all of the
subconditions must be true for the compound condition to be true. However, when the
Or (||) operator is used, only one of the subconditions must be true for the compound
condition to be true.

The C++ And and Or operators are listed in Figure 5-14 along with their order of
precedence. The figure also includes examples of using the operators in an if statement’s
condition. Notice that the compound condition in each example evaluates to either true or
false only. Logical operators are evaluated after any arithmetic or comparison operators in
an expression.

1. If you finished your homework and you studied for tomorrow’s exam, watch a movie.

2. If your cell phone rings and (it’s your spouse calling or it’s your child calling), answer the phone.

3. If you are driving your car and (it’s raining or it’s foggy or there is bug splatter on your
 windshield), turn on your car’s wipers.

Figure 5-13  � Examples of ways you use logical operators

How To �Use Logical Operators in an if Statement’s Condition

Operator Operation Precedence number
And (&&) all subconditions must be true for the 1
 compound condition to evaluate to true

Or (||) only one of the subconditions needs to be true 2
 for the compound condition to evaluate to true

Example 1
int population = 0;
cin >> population;
if (population > 2500 && population < 5000)
The compound condition evaluates to true when the number stored in the population
variable is greater than 2500 and, at the same time, less than 5000; otherwise, it
evaluates to false.

Example 2
int age = 0;
cin >> age;
if (age == 21 || age > 55)
The compound condition evaluates to true when the number stored in the age variable
is either equal to 21 or greater than 55; otherwise, it evaluates to false.

Example 3
int quantity = 0;
double price = 0.0;
cin >> quantity;
cin >> price;
if (quantity < 100 && price <= 10.35)
The compound condition evaluates to true when the number stored in the quantity
variable is less than 100 and, at the same time, the number stored in the price variable
is less than or equal to 10.35; otherwise, it evaluates to false.

Example 4
int quantity = 0;
double price = 0.0;
cin >> quantity;
cin >> price;
if (quantity > 0 && quantity < 100 || price > 34.55)
The compound condition evaluates to true when either (or both) of the following is true:
the number stored in the quantity variable is between 0 and 100 or the number
stored in the price variable is greater than 34.55; otherwise, it evaluates to false.
(The && operator is evaluated before the || operator because it has a higher
precedence.)

Figure 5-14  � How to use logical operators in an if statement’s condition (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

128

The tables shown in Figure 5-15, called truth tables, summarize how the computer evaluates the
logical operators in an expression.

Figure 5-15  � Truth tables for the logical operators

Truth table for the And (&&) operator

subcondition1 subcondition2 subcondition1 && subcondition2
true true true
true false false
false true (not evaluated) false
false false (not evaluated) false

Truth table for the Or (||) operator

subcondition1 subcondition2 subcondition1 || subcondition2
true true (not evaluated) true
true false (not evaluated) true
false true true
false false false

Operator Operation Precedence number
And (&&) all subconditions must be true for the 1
 compound condition to evaluate to true

Or (||) only one of the subconditions needs to be true 2
 for the compound condition to evaluate to true

Example 1
int population = 0;
cin >> population;
if (population > 2500 && population < 5000)
The compound condition evaluates to true when the number stored in the population
variable is greater than 2500 and, at the same time, less than 5000; otherwise, it
evaluates to false.

Example 2
int age = 0;
cin >> age;
if (age == 21 || age > 55)
The compound condition evaluates to true when the number stored in the age variable
is either equal to 21 or greater than 55; otherwise, it evaluates to false.

Example 3
int quantity = 0;
double price = 0.0;
cin >> quantity;
cin >> price;
if (quantity < 100 && price <= 10.35)
The compound condition evaluates to true when the number stored in the quantity
variable is less than 100 and, at the same time, the number stored in the price variable
is less than or equal to 10.35; otherwise, it evaluates to false.

Example 4
int quantity = 0;
double price = 0.0;
cin >> quantity;
cin >> price;
if (quantity > 0 && quantity < 100 || price > 34.55)
The compound condition evaluates to true when either (or both) of the following is true:
the number stored in the quantity variable is between 0 and 100 or the number
stored in the price variable is greater than 34.55; otherwise, it evaluates to false.
(The && operator is evaluated before the || operator because it has a higher
precedence.)

Figure 5-14  � How to use logical operators in an if statement’s condition

evaluates to true only
when both subconditions
are true

(continued)

Notice that when the computer evaluates the “subcondition1 && subcondition2”
expression, it does not evaluate subcondition2 when subcondition1 is false. Because both
subconditions combined with the And operator need to be true for the compound condition
to be true, there is no need to evaluate subcondition2 when subcondition1 is false. Likewise,
when the computer evaluates the “subcondition1 || subcondition2” expression, it does
not evaluate subcondition2 when subcondition1 is true. In this case, because only one of the

evaluates to false only
when both subconditions
are false

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

129

Using the Truth Tables 	﻿

subconditions combined with the Or operator needs to be true for the compound condition
to be true, there is no need to evaluate subcondition2 when subcondition1 is true. The
concept of evaluating subcondition2 based on the result of subcondition1 is referred to as
short-circuit evaluation.

Using the Truth Tables
A program needs to display an employee’s weekly gross pay, given the number of hours worked
and the hourly pay rate. The number of hours worked must be at least 0 but not more than 40.
Before making the gross pay calculation, the program should verify that the number of hours
is within the expected range. Programmers refer to the process of verifying the input data as
data validation. If the number of hours is valid, the program should calculate and display the
gross pay; otherwise, it should display the message “Incorrect number of hours”. Figure 5-16
shows the problem specification and two partially completed if clauses that could be used to
verify the number of hours; missing from each clause is the appropriate logical operator.

Figure 5-16  � Problem specification and partially completed if clauses

Problem speci�cation
A program needs to display an employee’s weekly gross pay, given the number of hours
worked and hourly pay rate. The number of hours worked must be at least 0 but not more
than 40. If the number of hours worked is not valid, the program should display the
message “Incorrect number of hours”.

if clause 1
if (hours >= 0 ______ hours <= 40)

if clause 2
if (hours < 0 ______ hours > 40)

The first if clause contains two subconditions that determine whether the number of hours
is within the expected range of 0 through 40. For the number of hours to be valid, both
subconditions must be true at the same time. In other words, the number of hours must be
greater than or equal to 0 and also less than or equal to 40. If both subconditions are not true,
it means that the number of hours is outside the expected range. Which logical operator should
you use to combine both subconditions into one compound condition? According to the truth
tables shown in Figure 5-15, only the And operator evaluates the compound condition as true
when both subconditions are true, while evaluating the compound condition as false when at
least one of the subconditions is false. Therefore, the correct compound condition to use here is
hours >= 0 && hours <= 40.

The second if clause in Figure 5-16 contains two subconditions that determine whether
the number of hours is outside the expected range of 0 through 40. For the number of hours
to be invalid, at least one of the subconditions must be true. In other words, the number of
hours must be either less than 0 or greater than 40. If neither subcondition is true, it means
that the number of hours is within the expected range. Which logical operator should you
use to combine both subconditions into one compound condition? According to the truth
tables, only the Or operator evaluates the compound condition as true when at least one of
the subconditions is true, while evaluating the compound condition as false when neither of the
subconditions is true. Therefore, the correct compound condition to use here is
hours < 0 || hours > 40.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

130

You can use either of the examples shown in Figure 5-17 to code the gross pay program. Both
examples produce the same result and simply represent two different ways of performing the
same task. Figure 5-17 also includes a sample run of the program.

Figure 5-17  � Gross pay program

Example 1
const int PAY_RATE = 10;
int hoursWorked = 0;
int grossPay = 0;

cout << "Hours worked (0 through 40): ";
cin >> hoursWorked;

if (hoursWorked >= 0 && hoursWorked <= 40)
{
 grossPay = hoursWorked * PAY_RATE;
 cout << "Gross pay: $" << grossPay << endl;
}
else
 cout << "Incorrect number of hours" << endl;
//end if

Example 2
const int PAY_RATE = 10;
int hoursWorked = 0;
int grossPay = 0;

cout << "Hours worked (0 through 40): ";
cin >> hoursWorked;

if (hoursWorked < 0 || hoursWorked > 40)
 cout << "Incorrect number of hours" << endl;
else
{
 grossPay = hoursWorked * PAY_RATE;
 cout << "Gross pay: $" << grossPay << endl;
} //end if

And operator

Or operator

A Different Version of the Area or Circumference Program
The Area or Circumference program shown earlier in Figure 5-11 prompts the user to enter two
items: a circle’s radius and either the number 1 or the number 2. If the user enters the number 1,
the program calculates the circle’s area; otherwise, it calculates the circle’s circumference. Rather
than using numbers to indicate the desired calculation, the examples in Figure 5-18 use letters:
A (for the area) or C (for the circumference). The figure also includes a sample run of this
version of the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

131

A Different Version of the Area or Circumference Program 	﻿

Figure 5-18  � A different version of the Area or Circumference program

Example 1
const double PI = 3.14;
double radius = 0.0;
char choice = ' ';
double answer = 0.0;

cout << "Circle Area or Circumference Calculator" << endl;
cout << "Enter the radius: ";
cin >> radius;
cout << "Enter A (area) or C (circumference): ";
cin >> choice;

//calculate and display
if (choice == 'A' || choice == 'a')
{
 answer = radius * radius * PI;
 cout << "Area: " << answer << endl;
}
else
{
 answer = 2 * radius * PI;
 cout << "Circumference: " << answer << endl;
} //end if

Example 2
const double PI = 3.14;
double radius = 0.0;
char choice = ' ';
double answer = 0.0;

cout << "Circle Area or Circumference Calculator" << endl;
cout << "Enter the radius: ";
cin >> radius;
cout << "Enter A (area) or C (circumference): ";
cin >> choice;

//calculate and display
if (choice != 'A' && choice != 'a')
{
 answer = 2 * radius * PI;
 cout << "Circumference: " << answer << endl;
}
else
{
 answer = radius * radius * PI;
 cout << "Area: " << answer << endl;
} //end if

character literal constants
are enclosed in single
quotation marks

string literal constants
are enclosed in double
quotation marks

Or operator

And operator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

132

The compound condition in Example 1 uses the Or operator to determine whether the
character stored in the choice variable is either the uppercase letter A or the lowercase letter a.
When the variable contains one of those two letters, the compound condition evaluates to true,
and the selection structure’s true path calculates and displays the area; otherwise, its false path
calculates and displays the circumference.

The compound condition in Example 2, on the other hand, uses the And operator to determine
whether the value in the choice variable is not equal to the uppercase letter A and also not
equal to the lowercase letter a. When the variable does not contain either of those two letters,
the compound condition evaluates to true, and the selection structure’s true path calculates
and displays the circumference; otherwise, its false path calculates and displays the area.

You may be wondering why you need to compare the contents of the choice variable with
both the uppercase and lowercase forms of the letter A. As is true in many programming
languages, character comparisons in C++ are case sensitive, which means that the uppercase
version of a letter is not the same as its lowercase counterpart. So, although a human being
recognizes A and a as being the same letter, a computer does not; to a computer, an A is
different from an a. You learned the reason for this differentiation in Chapter 3. Recall that
each character on a computer keyboard is assigned a unique ASCII code, which is stored in
the computer’s internal memory using a group of 0s and 1s. The ASCII code for the uppercase
letter A is 65 and is stored using the eight bits 01000001. The ASCII code for the lowercase
letter a, on the other hand, is 97 and is stored using the eight bits 01100001. (The full ASCII
chart is contained in Appendix B in this book.)

Summary of Operators
Figure 5-19 shows the order of precedence for the arithmetic, comparison, and logical
operators you have learned so far. Recall that operators with the same precedence number are
evaluated from left to right in an expression. The figure also shows the evaluation steps for an
expression that contains three arithmetic operators, two comparison operators, and one logical
operator. Notice that the arithmetic operators are evaluated first, followed by the comparison
operators, and then the logical operator. (Remember that you can use parentheses to override
the order of precedence.)

Operator Operation Precedence number

() override normal precedence rules 1
– negation (reverses the sign of a number) 2
*, /, % multiplication, division, and modulus 3
 arithmetic
+, – addition and subtraction 4
<, <=, >, >= less than, less than or equal to, greater 5
 than, greater than or equal to
==, != equal to, not equal to 6
And (&&) all subconditions must be true for the 7
 compound condition to evaluate to true
Or (||) only one of the subconditions needs to 8
 be true for the compound condition to
 evaluate to true

Example
Original expression 20 < 80 / 2 + 3 && 25 > 10 * 2
80 / 2 is performed first 20 < 40 + 3 && 25 > 10 * 2

10 * 2 is evaluated next 20 < 40 + 3 && 25 > 20

40 + 3 is evaluated next 20 < 43 && 25 > 20

20 < 43 is evaluated next true && 25 > 20

25 > 20 is evaluated next true && true

true && true is evaluated last true

Figure 5-19  � Listing and an example of arithmetic, comparison, and logical operators (continues)

Ch05-Operators

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

133

Converting a Character to Uppercase or Lowercase 	﻿

Operator Operation Precedence number

() override normal precedence rules 1
– negation (reverses the sign of a number) 2
*, /, % multiplication, division, and modulus 3
 arithmetic
+, – addition and subtraction 4
<, <=, >, >= less than, less than or equal to, greater 5
 than, greater than or equal to
==, != equal to, not equal to 6
And (&&) all subconditions must be true for the 7
 compound condition to evaluate to true
Or (||) only one of the subconditions needs to 8
 be true for the compound condition to
 evaluate to true

Example
Original expression 20 < 80 / 2 + 3 && 25 > 10 * 2
80 / 2 is performed first 20 < 40 + 3 && 25 > 10 * 2

10 * 2 is evaluated next 20 < 40 + 3 && 25 > 20

40 + 3 is evaluated next 20 < 43 && 25 > 20

20 < 43 is evaluated next true && 25 > 20

25 > 20 is evaluated next true && true

true && true is evaluated last true

Figure 5-19  � Listing and an example of arithmetic, comparison, and logical operators

For more
examples
of using
the opera-
tors listed

in Figure 5-19, see the
Operators section in the
Ch05WantMore.pdf file.

(continued)

Mini-Quiz 5-3

1.	 The compound condition true && false will evaluate to
_________________________.

2.	 The compound condition 75 >= 3 * 25 || 15 < 22 will evaluate to
_________________________.

3.	 The compound condition 24 * 2 < 20 || false will evaluate to
_________________________.

4.	 Which of the following determines whether the value in an int variable named age is
between 30 and 40, including 30 and 40?

a.	 if (age <= 30 || age >= 40)

b.	 if (age >= 30 && age <= 40)

c.	 if (age >= 30 || age <= 40)

d.	 if (age <= 30 && >= 40)

5.	 Which of the following determines whether a char variable named code contains the
letter R (in any case)?

a.	 if (code == 'R' || code == 'r')

b.	 if (code = 'R' || code = 'r')

c.	 if (code == "R" || code == "r")

d.	   none of the above

Converting a Character to Uppercase or Lowercase
In both examples shown earlier in Figure 5-18, the compound condition in the if clause
compares the character stored in the choice variable with both the uppercase and lowercase
forms of the letter A. Rather than using a compound condition, you can use either of the
following C++ built-in functions: toupper or tolower. The toupper function temporarily
converts a character to uppercase, while the tolower function temporarily converts it to
lowercase. Figure 5-20 shows the syntax of both functions and includes examples of using
the functions.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

134

An item that appears between parentheses in a function’s syntax is called an argument, and it
represents information that the function needs to perform its task. In this case, both functions
need the name of a variable whose data type is char. Both functions copy the character stored
in the charVariable to a temporary location in the computer’s internal memory. The functions
convert the temporary character to the appropriate case (if necessary) and then return the
temporary character. Keep in mind that the toupper and tolower functions do not change
the contents of the charVariable; they change the contents of the temporary location only. In
addition, the functions affect only characters that represent letters of the alphabet, which are
the only characters that have uppercase and lowercase forms.

When using the toupper function in a comparison, be sure that everything you are comparing
is uppercase, as shown in Example 1; otherwise, the comparison will not evaluate correctly. For
instance, the clause if (toupper(senior) == 'y') is not correct. The condition will always
evaluate to false because the uppercase version of a letter will never be equal to its lowercase
counterpart. Likewise, when using the tolower function in a comparison, be sure that
everything you are comparing is lowercase, as shown in Example 2. As Example 3 indicates,
you can use the toupper and tolower functions to permanently convert the contents of a char
variable to uppercase or lowercase, respectively.

Formatting Numeric Output
In a C++ program, numbers with a decimal place are displayed in either fixed-point or
e (exponential) notation, depending on the size of the number. Recall that a number with a
decimal place is called a real number. Smaller real numbers—those containing six or fewer
digits to the left of the decimal point—are usually displayed in fixed-point notation. For
example, the number 1234.56 would be displayed in fixed-point notation as 1234.560000. Larger
real numbers—those containing more than six digits to the left of the decimal point—typically

How To �Use the toupper and tolower Functions

Syntax
toupper(charVariable)
tolower(charVariable)

Example 1
if (toupper(senior) == 'Y')
temporarily converts the contents of the senior variable to uppercase and then
compares the result with the uppercase letter Y

Example 2
if (tolower(senior) == 'y')
temporarily converts the contents of the senior variable to lowercase and then
compares the result with the lowercase letter y

Example 3
initial = toupper(initial);
senior = tolower(senior);
changes the contents of the initial and senior variables to uppercase and
lowercase, respectively

Figure 5-20   How to use the toupper and tolower functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

135

Formatting Numeric Output 	﻿

are displayed in e notation. The number 1,225,000.00, for example, would be displayed in
e notation as 1.225e+006. The type of program you are creating determines the appropriate
format to use when displaying numbers with a decimal place. Business programs usually display
real numbers in fixed-point notation, while many scientific programs use e notation.

C++ provides stream manipulators that allow you to control the format used to display
real numbers. You use the fixed stream manipulator to display real numbers in fixed-point
notation. To display real numbers in e notation, you use the scientific stream manipulator.
The appropriate manipulator must appear in a cout statement, and it must be processed before
the real numbers you want formatted are displayed. After being processed, the manipulator
remains in effect either until the end of the program or until the computer encounters another
manipulator that changes the format, whichever occurs first. The fixed and scientific
stream manipulators are defined in the iostream file.

Figure 5-21 shows examples of using the fixed and scientific manipulators. As the
examples indicate, a stream manipulator can appear by itself in a cout statement; or, it can be
included with other information in a cout statement.

How To �Use the fixed and scientific Stream Manipulators

Example 1 Result
double sales = 10575.25;
cout << fixed;
cout << sales << endl; displays 10575.250000

Example 2
double rate = 5.9018432;
cout << fixed << rate << endl; displays 5.901843

Example 3
double rate = 5.9018436;
cout << fixed << rate << endl; displays 5.901844

Example 4
double sales = 10575.25;
cout << scientific << sales << endl; displays 1.057525e+04

Figure 5-21  � How to use the fixed and scientific stream manipulators

Study closely the examples in Figure 5-21. Notice that the code in Example 1 displays
10575.250000 rather than 10575.25. This is because all real numbers formatted by the fixed
stream manipulator will have six digits to the right of the decimal point. If the unformatted
number contains fewer than six decimal places, the fixed stream manipulator pads the
number with zeros until it has six decimal places. The number 10575.25, for instance, is padded
with four zeros to make 10575.250000.

If the unformatted number contains more than six decimal places, the additional decimal
places are truncated (dropped off). Before the truncation occurs, however, the number in the
sixth decimal place is either rounded up one number or left as is, depending on the value of the
number(s) being truncated. The cout statement in Example 2, for instance, displays the number
5.9018432 as 5.901843. No rounding occurs in Example 2 because the number in the seventh
decimal place (2) is less than 5. The cout statement in Example 3, on the other hand, displays
the 5.9018436 as 5.901844 because the number in the seventh decimal place (6) is greater than 5.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

136

The cout statement in Example 4 displays the contents of the sales variable in e notation; the
result is 1.057525e+04.

In most programs, especially business programs, numeric output is displayed with either zero
or two decimal places. Rarely does a program require numbers to be displayed with the six
decimal places you get from the fixed stream manipulator. You can use the C++ setprecision
stream manipulator to control the number of decimal places that appear when a real number
is displayed. The setprecision manipulator is defined in the iomanip file, which comes with
your C++ compiler. (The “io” stands for “input/output.”) However, for a program to use the
manipulator, it must contain the #include <iomanip> directive.

Figure 5-22 shows the setprecision manipulator’s syntax. The numberOfDecimalPlaces
argument in the syntax is an integer that specifies the number of decimal places to include
when displaying a real number. The setprecision manipulator remains in effect either until
the end of the program or until the computer encounters another setprecision manipulator.
Also included in Figure 5-22 are examples of using the manipulator in a C++ statement.
As Example 2 shows, you can include the setprecision and fixed manipulators in the
same statement.

How To �Use the setprecision Stream Manipulator

Syntax
setprecision(numberOfDecimalPlaces)

Example 1 Result
double sales = 3500.6;
cout << fixed;
cout << setprecision(2);
cout << sales << endl; displays 3500.60

Example 2
double rate = 10.0732;
cout << fixed << setprecision(3);
cout << rate << endl; displays 10.073

Example 3
double sales = 3467.55;
cout << fixed;
cout << setprecision(0) << sales; displays 3468

Figure 5-22  � How to use the setprecision stream manipulator

Mini-Quiz 5-4
1.	 Which of the following indicates that real numbers should be displayed in fixed-point

notation with two decimal places?

a.	 cout << fixed << decimal(2);

b.	 cout << fixedPoint << precision(2);

c.	 cout << fixedPoint << setdecimal(2);

d.	 cout << fixed << setprecision(2);

Stream manipu-
lators with
arguments are
defined in the
iomanip file.

Stream manipulators
that do not have argu-
ments are defined in the
iostream file.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

137

Formatting Numeric Output 	﻿

2.	 Which of the following changes the contents of a char variable named letter to lowercase?

a.	 tolower(letter) = letter;

b.	 letter == tolower(letter);

c.	 letter = tolower(letter);

d.	 tolower('letter');

3.	 If the num variable contains the number 34.65, the cout << fixed << num; statement
will display the number as _________________________.

a.	 34.65
b.	 34.650
c.	 34.6500
d.	 34.650000

LAB 5-1  Stop and Analyze
Study the program shown in Figure 5-23, and then answer the questions.

Figure 5-23  � Program for Lab 5-1

 1 //Lab5-1.cpp - displays projected sales
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
10 double sales = 0.0;
11 double rate = 0.0;
12 char code = ' ';
13
14 cout << "Sales: ";
15 cin >> sales;
16 cout << "Code (1, 2, 3, or 4): ";
17 cin >> code;
18
19 if (code == '1' || code == '3')
20 rate = 0.2;
21 else
22 rate = 0.15;
23 //end if
24
25 //calculate and display the projected sales amount
26 sales = sales + sales * rate;
27 cout << fixed << setprecision(2);
28 cout << "Projected sales: " << sales << endl;
29
30 return 0;
31 } //end of main function

The answers
to the labs are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

138

QUESTIONS

1.	 What rate will be assigned to the rate variable when the user enters the following codes:
1, 3, 2, 4, and 5?

2.	 Why is the directive on Line 5 necessary?

3.	 Why are the literal constants on Line 19 enclosed in single quotation marks?

4.	 How would you rewrite the if statement on Lines 19 through 23 to use the != operator
in the condition?

5.	 How else could you write the statement on Line 26?

6.	 What changes would you need to make to the program so that it doesn’t use the rate
variable?

Lab 5-2  Plan and Create
In this lab, you will plan and create an algorithm that can be used to solve the Heaton
Boutique problem shown in Figure 5-24.

Figure 5-24   Problem specification for Lab 5-2

Problem specification
Heaton Boutique allows customers to purchase items over the phone and have the items shipped to
their homes. The shipping fee is $0.99 if the purchase amount after subtracting any discount is at least
$100; otherwise, it is $4.99. The only discount Heaton Boutique offers is to customers who are
members of the store’s Premier Club; the discount rate is 10%. The program should display the total
amount the customer owes for his or her purchase.

First, analyze the problem, looking for the output first and then for the input. In this case,
the program should display the final amount the customer owes for his or her purchase. To
calculate the final amount owed, the computer will need to know the discount rate, the two
shipping charges, the original amount owed, and whether the customer is a member of the
store’s Premier Club; the latter two items will be entered by the user.

Next, plan the algorithm. As you know, most algorithms begin with an instruction to enter the
input items into the computer, followed by instructions that process the input items, typically
including the items in one or more calculations. Most algorithms end with one or more
instructions that display, print, or store the output items. Figure 5-25 shows the completed
IPO chart for the Heaton Boutique problem. Notice that the algorithm requires two selection
structures. The single-alternative selection structure determines whether the customer is
entitled to a 10% discount for being a member of the Premier Club. The dual-alternative
selection structure determines the appropriate shipping charge.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

139

Formatting Numeric Output 	﻿

After completing the IPO chart, you then move on to the third step in the problem-solving
process, which is to desk-check the algorithm. Figure 5-26 shows the results of deck-checking
the algorithm using five different sets of data.

Figure 5-25   Completed IPO chart for the Heaton Boutique problem

Input Processing Output
discount rate (10%) Processing items: none amount owed
shipping rate 1 (0.99)
shipping rate 2 (4.99)
amount owed
member status (Y or N)
 Algorithm:
 1. enter amount owed and member status
 2. if (member status is Y)
 calculate amount owed by multiplying
 amount owed by discount rate and then
 subtracting the result from amount owed
 end if
 3. if (amount owed >= 100)
 add shipping rate 1 to amount owed
 else
 add shipping rate 2 to amount owed
 end if
 4. display amount owed

Figure 5-26   Completed desk-check table for the Heaton Boutique algorithm

discount rate shipping rate 1 shipping rate 2 amount owed member status
 0.1 0.99 4.99 50.25 N
 55.24
 0.1 0.99 4.99 50.25 Y
 50.22
 0.1 0.99 4.99 125.0 N
 125.99
 0.1 0.99 4.99 125.0 Y
 113.49
 0.1 0.99 4.99 125.0 X
 125.99

be sure to test
with invalid data

no discount is
given when the
member status
is invalid

The fourth step in the problem-solving process is to code the algorithm into a program. You
begin by declaring memory locations that will store the values of the input, processing (if any),
and output items. The Heaton Boutique program will need five memory locations to store its
input and output items. The first three input items will be stored in named constants because

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

140

their values will not change as the program is running. The remaining two input items—amount
owed and member status—will be stored in variables because the user should be allowed to
change their values during runtime. The amount owed item in the Output column will use the
same variable as the amount owed item in the Input column.

The three named constants and the variable that stores the amount owed will contain real
numbers, so those memory locations will be declared using the double data type. The variable
that stores the member status will be declared using the char data type because it needs to store
only one character. Figure 5-27 shows the input, processing, and output items from the IPO
chart, along with the corresponding C++ instructions.

Figure 5-27   IPO chart information and C++ instructions for the Heaton Boutique problem

IPO chart information C++ instructions
Input
discount rate (10%) const double DISCOUNT_RATE = 0.1;
shipping rate 1 (0.99) const double SHIP_CHG1 = 0.99;
shipping rate 2 (4.99) const double SHIP_CHG2 = 4.99;
amount owed double amtOwed = 0.0;
member status (Y or N) char member = ' ';

Processing
 none

Output
 amount owed uses the amtOwed variable
 declared above

Algorithm:
1. enter amount owed and member status cout << "Amount owed before any
 discount and shipping: ";
 cin >> amtOwed;
 cout << "Premier Club member
 (Y/N)? ";
 cin >> member;

2. if (member status is Y) if (toupper(member) == 'Y')
 calculate amount owed by multiplying amtOwed -= amtOwed *
 amount owed by discount rate and DISCOUNT_RATE;
 then subtracting the result from
 amount owed
 end if //end if
3. if (amount owed >= 100) if (amtOwed >= 100.0)
 add shipping rate 1 to amount owed amtOwed += SHIP_CHG1;
 else else
 add shipping rate 2 to amount owed amtOwed += SHIP_CHG2;
 end if //end if

4. display amount owed cout << fixed << setprecision(2);
 cout << "Amount owed after any
 discount and shipping:" << amtOwed
 << endl;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

141

Formatting Numeric Output 	﻿

The fifth step in the problem-solving process is to desk-check the program. You begin by
placing the names of the declared variables and named constants (if any) in a new desk-check
table, along with their initial values. You then desk-check the remaining C++ instructions in
order, recording in the desk-check table any changes made to the variables. Figure 5-28 shows
the completed desk-check table for the program. The results agree with those shown in the
algorithm’s desk-check table in Figure 5-26.

The final step in the problem-solving process is to evaluate and modify (if necessary) the
program. Recall that you evaluate a program by entering its instructions into the computer and
then using the computer to run (execute) it. While the program is running, you enter the same
sample data used when desk-checking the program.

DIRECTIONS

1.	 Open the Cpp8\Chap05 folder. If the folder contains a Ch05-Lab5-2 developmentTool.pdf
file for your C++ development tool, open the PDF file, and then follow the directions listed
in the file.

2.	 If the Cpp8\Chap05 folder does not contain a PDF file for your C++ development tool,
contact your instructor or technical support person for the appropriate instructions.
Follow the instructions you are given for starting and using your C++ development
tool. Enter the instructions shown in Figure 5-29 into a source file named Lab5-2.cpp.
(Do not enter the line numbers.) Save the file in the Cpp8\Chap05 folder. Now follow
the appropriate instructions for running the Lab5-2.cpp file. Use the sample data from
Figure 5-28 to test the program. If necessary, correct any bugs (errors) in the program.
Note: If your C++ development tool does not automatically pause program execution
and display the Press any key to continue message when a program ends, enter the
system("pause"); statement above the return 0; statement in the program.

Figure 5-28   Completed desk-check table for the Heaton Boutique program

DISCOUNT_RATE SHIP_CHG1 SHIP_CHG2 amtOwed member
 0.1 0.99 4.99 0.0 -
 50.25 N
 55.24
 0.1 0.99 4.99 0.0 -
 50.25 Y
 50.22
 0.1 0.99 4.99 0.0 -
 125.0 N
 125.99

 0.1 0.99 4.99 0.0 -
 125.0 Y
 113.49
 0.1 0.99 4.99 0.0 -
 125.0 X
 125.99

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

142

Figure 5-29   Heaton Boutique program

 1 //Lab5-2.cpp - displays the total amount due
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
10 const double DISCOUNT_RATE = 0.1;
11 const double SHIP_CHG1 = 0.99;
12 const double SHIP_CHG2 = 4.99;
13 double amtOwed = 0.0;
14 char member = ' ';
15
16 //enter input items
17 cout << "Amount owed before any discount and shipping: ";
18 cin >> amtOwed;
19 cout << "Premier Club member (Y/N)? ";
20 cin >> member;
21
22 //subtract discount, if appropriate
23 if (toupper(member) == 'Y')
24 amtOwed -= amtOwed * DISCOUNT_RATE;
25 //end if
26
27 //add shipping
28 if (amtOwed >= 100.0)
29 amtOwed += SHIP_CHG1;
30 else
31 amtOwed += SHIP_CHG2;
32 //end if
33
34 //display final amount owed
35 cout << fixed << setprecision(2);
36 cout << "Amount owed after any discount and shipping: "
37 << amtOwed << endl;
38
39 return 0;
40 } //end of main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

143

Formatting Numeric Output 	﻿

Lab 5-3  Modify
In this lab, you will modify the Heaton Boutique program from Lab 5-2 to give a
10% discount to members of the store’s Premier Club, and a 5% discount to all other
customers.

Open the Cpp8\Chap05 folder. If the folder contains a Ch05-Lab5-3 developmentTool.pdf file for
your C++ development tool, open the PDF file, and then follow the directions listed in the file.

If the Cpp8\Chap05 folder does not contain a PDF file for your C++ development tool, copy the
program instructions from Lab 5-2 into a new source file named Lab5-3.cpp file. Save the file
in the Cpp8\Chap05 folder. Modify the program instructions appropriately. Be sure to change
Lab5-2.cpp in the first comment to Lab5-3.cpp. Use the sample data from Figure 5-28 to test
the program.

Lab 5-4  What’s Missing?
The program in this lab should display the total price of the tickets purchased by a
customer. A maximum of 10 tickets can be purchased. Start your C++ development
tool, and view the Lab5-4.cpp file, which is contained in either the Cpp8\Chap05\
Lab5-4 Project folder or the Cpp8\Chap05 folder. (Depending on your C++

development tool, you may need to open Lab5-4’s project/solution file first.) Put the C++
instructions in the proper order, and then determine the one or more missing instructions.
Test the program three times using the following data: 8, 12, and –3 (the negative number 3).

Lab 5-5  Desk-Check
Desk-check the code shown in Figure 5-30 using the numbers 5 and 0. Although the
code displays the appropriate message, it is considered inefficient. Why? How can you
fix the code to make it more efficient?

int quantity = 0;
cout << "Quantity: ";
cin >> quantity;

if (quantity <= 0)
 cout << "The quantity must be greater than 0." << endl;
//end if
if (quantity > 0)
 cout << "Valid quantity" << endl;
//end if

Figure 5-30   Code for Lab 5-5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

144

Lab 5-6  Debug
Open the Cpp8\Chap05 folder. If the folder contains a Ch05-Lab5-6
developmentTool.pdf file for your C++ development tool, open the PDF file, and then
follow the directions listed in the file.

If the Cpp8\Chap05 folder does not contain a PDF file for your C++ development
tool, start your C++ development tool and view the Lab5-6.cpp file. Read the comments entered
at the beginning of the program. Test the program using codes of 1, 2, and 3. Use 100 as the
purchase price. Debug the program.

Chapter Summary

You use the selection structure when you want a program to make a decision before selecting
the next instruction to process.

Studying the problem specification will help you determine whether a solution requires a
selection structure.

A selection structure’s condition must evaluate to either true or false. In single-alternative
and dual-alternative selection structures, the instructions to follow when the structure’s
condition is true are placed in the structure’s true path. In a dual-alternative selection
structure, the instructions to follow when the structure’s condition is false are placed in the
structure’s false path. You should indent the instructions in both paths.

A diamond, called the decision symbol, is used to represent a selection structure’s condition
in a flowchart. Each selection structure diamond has one flowline entering the symbol and
two flowlines leaving the symbol. One of the flowlines leading out of a diamond should be
marked with a “T” (for true), and the other should be marked with an “F” (for false).

You can use the if statement to code single-alternative and dual-alternative selection
structures. The statement’s condition must evaluate to either true or false.

If either an if statement’s true path or its false path contains more than one statement, the
statements in the path must be entered as a statement block, which means the statements must
be enclosed in a set of braces ({}).

You use comparison operators to compare values in expressions; the values should have the
same data type. Expressions containing comparison operators always evaluate to either true or
false. If more than one comparison operator with the same precedence number appears in a
C++ expression, the computer evaluates those operators from left to right in the expression.

You should not use either the equality operator (==) or the inequality operator (!=) to
compare two real numbers because not all real numbers can be stored precisely in memory.

A memory location declared in an if statement’s true path can be used only by the instructions
following its declaration statement within the true path. Likewise, a memory location declared
in an if statement’s false path can be used only by the instructions following its declaration
statement within the false path.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

145

Key Terms 	

The And and Or logical operators are represented in C++ by the symbols && and ||,
respectively. All expressions containing a logical operator evaluate to either true or false.

In an expression, arithmetic operators are evaluated first, followed by comparison operators and
then logical operators.

Character comparisons in C++ are case sensitive.

The toupper and tolower functions temporarily convert a character to uppercase and
lowercase, respectively.

C++ provides the fixed and scientific stream manipulators for formatting the display of
real numbers. It provides the setprecision stream manipulator for controlling the number of
decimal places that appear when a real number is displayed. The fixed and scientific stream
manipulators are defined in the iostream file. The setprecision stream manipulator is defined
in the iomanip file.

Key Terms
Argument—an item that appears between the parentheses that follow a function’s name;
represents information that the function needs to perform its task

Boolean operators—another term for logical operators

Comparison operators—operators used to compare values having the same data type in an
expression; also called relational operators; <, <=, >, >=, ==, !=

Data validation—the process of verifying that a program’s input data is within the
expected range

Decision symbol—the diamond in a flowchart; used to represent the condition in either a
selection or repetition structure

Dual-alternative selection structures—selection structures that require two sets of actions:
one to be taken only when the structure’s condition is true, and the other only when the
condition is false

False path—contains the instructions to be processed when a dual-alternative selection
structure’s condition evaluates to false

fixed stream manipulator—the manipulator used to display real numbers in fixed-point
notation

Local variable—a variable declared within a statement block; can be used only by the
instructions within the statement block in which it is declared, and the instructions must appear
after its declaration statement

Logical operators—operators used to combine two or more subconditions into one compound
condition; also called Boolean operators

scientific stream manipulator—the manipulator used to display real numbers in scientific
(e) notation

Selection structure—one of the three control structures; tells the computer to make a decision
before selecting the next instruction to process; also called the decision structure

setprecision stream manipulator—the manipulator used to control the number of decimal
places that appear when a real number is displayed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

146

Short-circuit evaluation—refers to the way the computer evaluates two subconditions
connected by a logical operator; when the logical operator is And, the computer does not
evaluate subcondition2 when subcondition1 is false; when the logical operator is Or, the
computer does not evaluate subcondition2 when subcondition1 is true

Single-alternative selection structure—a selection structure that requires a special set of
actions to be taken only when the structure’s condition is true

Statement block—one or more instructions enclosed in a set of braces ({})

tolower function—temporarily converts a character to lowercase

toupper function—temporarily converts a character to uppercase

True path—contains the instructions to be processed when a selection structure’s condition
evaluates to true

Truth tables—tables that summarize how the computer evaluates the logical operators in an
expression

Review Questions
1.	 If an if statement’s true path contains the statement double avg = 0.0;, where can

the avg variable be used?

a.	 in any instruction after the declaration statement in the entire program
b.	 in any instruction after the declaration statement in the if statement
c.	 in any instruction after the declaration statement in the if statement’s true path
d.	 none of the above because you can’t declare a variable in an if statement’s true path

2.	 Which of the following is a valid if clause? (The average variable has the double
data type.)

a.	 if (average > 70.5 && average < 80.5)
b.	 if (average < 70.5 && average > 80.5)

c.	 if (average < 70.5 || > 80.5)
d.	 if (average > 70.5 && < 80.5)

3.	 Which of the following conditions evaluates to true when the letter variable contains
the letter Z in either uppercase or lowercase?

a.	 if (letter = 'Z' || letter = 'z')
b.	 if (letter == 'Z' || letter == 'z')
c.	 if (letter = 'Z' && letter = 'z')
d.	 if (letter == 'Z' && letter = 'z')

4.	 The expression 4 > 3 && 7 >= 4 evaluates to _____________________ .

a.	 true
b.	 false

5.	 The computer will perform short-circuit evaluation when processing which of the
following if clauses?

a.	 if (3 * 2 < 4 && 5 > 3)
b.	 if (6 < 9 || 5 > 3)
c.	 if (12 > 4 * 4 && 6 > 2)
d.	 all of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

147

Exercises 	

6.	 If an expression does not contain any parentheses, which of the following operators is
performed first in the expression?

a.	 arithmetic
b.	 comparison
c.	 logical
d.	 you can’t tell without seeing the expression

7.	 The expression 4 * 3 < 6 + 7 && 7 < 6 + 9 evaluates to _____________________ .

a.	 true
b.	 false

8.	 Which of the following compares the contents of an int variable named quantity
with the number 5?

a.	 if (quantity = 5)
b.	 if (quantity == 5)
c.	 if (quantity is 5)
d.	 if (quantity =! 5)

9.	 Which of the following is required in a program that uses the setprecision stream
manipulator?

a.	 #include <iostream>
b.	 #include <setprecision>
c.	 #include <iomanip>
d.	 #include <manipulators>

10.	 Which of the following tells the computer to display real numbers in fixed-point
notation with no decimal places?

a.	 cout << fixed << decimal(0);
b.	 cout << fixed << precision(0);
c.	 cout << fixed << setprecision(0);
d.	 cout << fixed << setdecimal(0);

Exercises

Pencil and Paper

1.	 Write the C++ code to compare the contents of two int variables named code1 and
code2. If both variables contain the same value, display the “Equal” message; other-
wise, display the “Not equal” message. (The answers to TRY THIS Exercises are located
at the end of the chapter.)

2.	 Code the partial flowchart shown in Figure 5-31. Use an int variable named ordered,
a char variable named code, and double variables named price and discount.
(The answers to TRY THIS Exercises are located at the end of the chapter.)

TRY THIS

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

148

ordered >
10 and

code is B

price = ordered *
17.50

price = ordered *
 15.25

discount = 8.25 discount = 10

F T

Figure 5-31

3.	 Complete TRY THIS Exercise 1, and then modify the code so that the true path dis-
plays “Not equal” and the false path displays “Equal”.

4.	 Write the C++ code to display the message “Entry error” when the value in the units
variable is less than or equal to 0. Otherwise, calculate the total owed by multiplying
the units variable’s value by 5. Store the total owed in the total variable, and then
display the total owed.

5.	 A program stores sales amounts in two double variables named marySales and
jimSales. Write the C++ code to assign the highest and lowest sales amounts to the
highSales and lowSales variables, respectively, and then display the contents of
those variables. (You can assume that both sales amounts are different.)

6.	 A program uses a char variable named department and two double variables
named salary and raise. The department variable contains one of the following
letters (entered in either uppercase or lowercase): A, B, or C. Employees in departments
A and B are receiving a 2% raise. Employees in department C are receiving a 1.5% raise.
Write the C++ code to calculate and display the appropriate raise amount. Display the
raise amount in fixed-point notation with two decimal places.

7.	 Correct the errors in the lines of code shown in Figure 5-32. The code variable has the
char data type; the other variables have the int data type.

INTRODUCTORY

MODIFY THIS

INTERMEDIATE

ADVANCED

SWAT THE BUGS

if (toupper(code) = 'x')
 cout << "Discontinued" << endl;

else

 cout << "How many? ";
 cin >> quantity;
 total = quantity * 10;
//end if

Figure 5-32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

149

Exercises 	

Computer

8.	 Code the flowchart shown in Figure 5-33. Rate1 and rate2 are 2% and 1.5%, respectively. If
necessary, create a new project named TryThis8 Project, and save it in the Cpp8\Chap05
folder. Enter the C++ instructions into a source file named TryThis8.cpp. Also enter
appropriate comments and any additional instructions required by the compiler. Display
the bonus in fixed-point notation with two decimal places. Test the program using
20500.95 as the sales amount. The answer should be $410.02. Now test it using 9675.50.
(The answers to TRY THIS Exercises are located at the end of the chapter.)

TRY THIS

9.	 Complete Figure 5-34 by writing the algorithm and corresponding C++ instructions.
Employees with a pay code of 1, 4, or 9 receive a 4.5% raise; all other employees receive
a 3.5% raise. If necessary, create a new project named TryThis9 Project, and save
it in the Cpp8\Chap05 folder. Enter the C++ instructions into a source file named
TryThis9.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Display the new pay in fixed-point notation with two decimal
places. Test the program using 1 and 500 as the pay code and current pay, respectively.
The new pay should be $522.50. Now test the program using the following three sets of
input values: 4 and 450, 9 and 500, 2 and 625. (The answers to TRY THIS Exercises are
located at the end of the chapter.)

TRY THIS

start

enter
sales

sales at least
15000.0

bonus = sales *
rate1

bonus = sales *
rate2

display
bonus

stop

F T

Figure 5-33

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

150

10.	 In this exercise, you will modify the program from Lab 5-1. If necessary, create a new
project named ModifyThis10 Project, and save it in the Cpp8\Chap05 folder. Enter the
instructions shown earlier in Figure 5-23 into a new source file named ModifyThis10.cpp.
Currently, the 20% rate is assigned to the rate variable only when the code variable
contains either the character 1 or the character 3. Modify the selection structure so that
codes 1 and 3 still get the 20% rate, but only when the sales amount is at least $20,000;
otherwise, they should get the 15% rate. Test the program appropriately.

11.	 Mountain Coffee wants a program that allows a clerk to enter the number of pounds
of coffee ordered, the price per pound, and whether the customer should be charged a
3.5% sales tax. The program should calculate and display the total amount the customer
owes. Use an int variable for the number of pounds, a double variable for the price
per pound, and a char variable for the sales tax information.

a.	 Create an IPO chart for the problem, and then desk-check the algorithm twice.
For the first desk-check, use 5 as the number of pounds and 13.69 as the price per
pound; the customer should be charged the sales tax. For the second desk-check, use
3 as the number of pounds and 11.59 as the price per pound; the customer should
not be charged the sales tax.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart
similar to the one shown earlier in Figure 5-27. Then code the algorithm into a
program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Introductory11 Project, and save it in

the Cpp8\Chap05 folder. Enter your C++ instructions into a source file named
Introductory11.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Display the total amount owed in fixed-point
notation with two decimal places. Test the program using the same data used to
desk-check the program.

12.	 A local department store is having a BoGoHo (Buy One, Get One Half Off) sale. The
store manager wants a program that allows the salesclerk to enter the prices of two
items. The program should calculate and display the total amount the customer owes.
The half-off should always be taken on the item having the lowest price. For example,
if the items cost $24.99 and $10, the half-off would be taken on the $10 item. If both
prices are the same, take the half-off on the second item.

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

IPO chart information C++ instructions
Input
 pay code char code = ' ';
 current pay double currentPay = 0.0;
 raise rate 1 (4.5%) const double RATE1 = 0.045;
 raise rate 2 (3.5%) const double RATE2 = 0.035;

Processing
 raise double raise = 0.0;

Output
 new pay double newPay = 0.0;

Algorithm:

Figure 5-34

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

151

Exercises 	

a.	 Create an IPO chart for the problem, and then desk-check the algorithm twice. For
the first desk-check, use 24.99 and 10 as the prices. For the second desk-check, use
11.50 and 30.99.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart
similar to the one shown earlier in Figure 5-27. Then code the algorithm into a
program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Introductory12 Project, and save it in

the Cpp8\Chap05 folder. Enter your C++ instructions into a source file named
Introductory12.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Display the total amount owed in fixed-point
notation with two decimal places. Test the program using the same data used to
desk-check the program.

13.	 Allenton Water Department wants a program that calculates a customer’s monthly
water bill. The clerk will enter the current and previous meter readings. The program
should calculate and display the number of gallons of water used and the total charge
for the water. The charge for water is $7 per 1,000 gallons. However, there is a minimum
charge of $16.67. (In other words, every customer must pay at least $16.67.)

a.	 Create an IPO chart for the problem, and then desk-check the algorithm twice.
For the first desk-check, use 16000 and 13000 as the current and previous meter
readings, respectively. For the second desk-check, use 3675 and 1650.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart
similar to the one shown earlier in Figure 5-27. Then code the algorithm into a
program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Intermediate13 Project, and save it in

the Cpp8\Chap05 folder. Enter your C++ instructions into a source file named
Intermediate13.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Display the total charge in fixed-point
notation with two decimal places. Test the program using the same data used to
desk-check the program.

14.	 Figure 5-35 shows the Mifflin–St Jeor formulas for calculating a person’s basal
metabolic rate (BMR), which is the minimum number of calories needed to keep his or
her body functioning while resting for 24 hours. A personal trainer at a local health club
wants a program that displays a client’s BMR.

a.	 Create an IPO chart for the problem, and then desk-check the algorithm twice.
For the first desk-check, display the BMR for a 25-year-old male whose weight and
height are 175 pounds and 6 feet, respectively. For the second desk-check, display the
BMR for a 31-year-old female whose weight and height are 130 pounds and 5.5 feet,
respectively.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart
similar to the one shown earlier in Figure 5-27. Then code the algorithm into a
program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Intermediate14 Project, and save it in

the Cpp8\Chap05 folder. Enter your C++ instructions into a source file named
Intermediate14.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Display the BMR in fixed-point notation with no decimal
places. Test the program using the same data used to desk-check the program.

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

152

15.	 A third-grade teacher at Potter Elementary School wants a program that allows a stu-
dent to enter the amount of money a customer owes and the amount of money the
customer paid. The program should calculate and display the amount of change, as well
as how many dollars, quarters, dimes, nickels, and pennies to return to the customer.
Display an appropriate message when the amount paid is less than the amount owed.

a.	 Create an IPO chart for the problem, and then desk-check the algorithm three
times. For the first desk-check, use 75.34 and 80 as the amount owed and paid,
respectively. For the second desk-check, use 39.67 and 50. For the third desk-check,
use 10.55 and 9.75.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart
similar to the one shown earlier in Figure 5-27. Then code the algorithm into a
program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Advanced15 Project, and save it

in the Cpp8\Chap05 folder. Enter your C++ instructions into a source file
named Advanced15.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Display the change in fixed-point notation
with two decimal places. Display the remaining output in fixed-point notation
with no decimal places. Test the program using the same data used to desk-check
the program.

16.	 As you learned in the chapter, you must be careful when comparing two real numbers
for either equality or inequality because some real numbers cannot be stored precisely
in memory. To determine whether two real numbers are either equal or unequal, you
should test that the difference between both numbers is less than some acceptable
small value, such as 0.00001.

a.	 Start your C++ development tool, and view the Advanced16.cpp file. The file
is contained in either the Cpp8\Chap05\Advanced16 Project folder or the
Cpp8\Chap05 folder. (Depending on your C++ development tool, you may need
to open this exercise’s solution/project file first.) The code divides the contents
of the num1 variable (10.0) by the contents of the num2 variable (3.0), storing
the result (approximately 3.33333) in the quotient variable. An if statement
is used to compare the contents of the quotient variable with the number
3.33333. The if statement displays a message that indicates whether the
numbers are equal.

b.	 Run the program. Even though the message on the screen states that the quotient
is 3.33333, the message indicates that this value is not equal to 3.33333. Close the
Command Prompt window.

ADVANCED

ADVANCED

BMR formulas

Males
BMR = (10 x weight in kg) + (6.25 x height in cm) – (5 x age in years) + 5

Females
BMR = (10 x weight in kg) + (6.25 x height in cm) – (5 x age in years) – 161

Note: One kilogram (kg) equals 2.2 pounds. One inch equals 2.54 centimeters (cm).

Figure 5-35

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

153

Exercises 	

c.	 If you need to compare two real numbers for equality or inequality, first find the
difference between both numbers, and then compare the absolute value of that
difference to a small number, such as 0.00001. The absolute value of a number is a
positive number that represents the distance the number is from 0 on the number
line. For example, the absolute value of the number 5 is 5, and so is the absolute
value of the number –5; both numbers are an equal distance from 0 on the number
line. You can use the C++ fabs function to find the absolute value of a real number;
however, your program must contain the #include <cmath> directive. Modify
the program appropriately. Save and then run the program. This time, the message
“Yes, the quotient 3.33333 is equal to 3.33333.” appears.

17.	 Start your C++ development tool, and view the SwatTheBugs17.cpp file. The file is con-
tained in either the Cpp8\Chap05\SwatTheBugs17 Project folder or the Cpp8\Chap05
folder. (Depending on your C++ development tool, you may need to open this exer-
cise’s solution/project file first.) The program should display a 10% bonus for sales over
$10,000. Correct the syntax errors, and then save, run, and test the program.

SWAT THE BUGS

Answers to TRY THIS Exercises

Pencil and Paper

1.	 See Figure 5-36.

if (code1 == code2)
 cout << "Equal" << endl;
else
 cout << "Not equal" << endl;
//end if

Figure 5-36

2.	 See Figure 5-37.

Figure 5-37

if (ordered > 10 && toupper(code) == 'B')
{
 price = ordered * 15.25;
 discount = 10;
}
else
{
 price = ordered * 17.50;
 discount = 8.25;
} //end if

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

154

8.	 See Figure 5-38.

 1 //TryThis8.cpp - displays a bonus
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
 10 //declare named constants and variables
 11 const double RATE1 = 0.02;
12 const double RATE2 = 0.015;
13 double sales = 0.0;
14 double bonus = 0.0;
15
16 //enter input item
17 cout << "Sales amount: ";
 18 cin >> sales;
19
 20 //calculate bonus
21 if (sales >= 15000.0)
22 bonus = sales * RATE1;
23 else
24 bonus = sales * RATE2;
25 //end if
26
27 //display bonus
28 cout << fixed << setprecision(2);
29 cout << "Bonus: $" << bonus << endl;
30 return 0;
31 } //end of main function

Figure 5-38

Computer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

155

Exercises 	

9.	 See Figures 5-39 and 5-40.

IPO chart information C++ instructions
Input
 pay code char code = ' ';
 current pay double currentPay = 0.0;
 rate 1 (4.5%) const double RATE1 = 0.045;
 rate 2 (3.5%) const double RATE2 = 0.035;

Processing
 raise double raise = 0.0;

Output
 new pay double newPay = 0.0;

Algorithm:
1. enter the pay code and current pay cout << "Pay code: ";
 cin >> code;
 cout << "Current pay: ";
 cin >> currentPay;

2. if (the pay code is 1 or 4 or 9) if (code == '1' || code == '4'
 || code == '9')
 calculate the raise by multiplying raise = currentPay * RATE1;
 the current pay by rate 1
 else else
 calculate the raise by multiplying raise = currentPay * RATE2;
 the current pay by rate 2
 end if //end if

3. calculate the new pay by adding the newPay = currentPay + raise;
 raise to the current pay

4. display the new pay cout << "New pay: $" <<
 newPay << endl;

Figure 5-39

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 5 The Selection Structure

156

 1 //TryThis9.cpp - displays the new pay
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
 10 //declare named constants and variables
 11 const double RATE1 = 0.045;
 12 const double RATE2 = 0.035;
 13 char code = ' ';
 14 double currentPay = 0.0;
 15 double raise = 0.0;
 16 double newPay = 0.0;
 17
 18 //enter input items
 19 cout << "Pay code: ";
 20 cin >> code;
 21 cout << "Current pay: ";
 22 cin >> currentPay;
 23
 24 //calculate raise and new pay
 25 if (code == '1' || code == '4' || code == '9')
 26 raise = currentPay * RATE1;
 27 else
 28 raise = currentPay * RATE2;
 29 //end if
 30 newPay = currentPay + raise;
 31
 32 //display new pay
 33 cout << fixed << setprecision(2);
 34 cout << "New pay: $" << newPay << endl;
 35 return 0;
 36 } //end of main function

Figure 5-40

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6
More on the Selection
Structure

After studying Chapter 6, you should be able to:

�� Include a nested selection structure in pseudocode and in a flowchart

�� Code a nested selection structure

�� Recognize common logic errors in selection structures

�� Include a multiple-alternative selection structure in pseudocode and in a
flowchart

�� Code a multiple-alternative selection structure in C++

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

158

Nested Selection Structures
Both paths in a selection structure can include instructions that declare variables, perform
calculations, and so on. Both paths can also include other selection structures. When either a
selection structure’s true path or its false path contains another selection structure, the inner
structure is referred to as a nested selection structure because it is contained (nested) entirely
within the outer structure.

A programmer determines whether a problem’s solution requires a nested selection structure
by studying the problem specification. The first problem specification you will examine in
this chapter involves a basketball player named Maleek. The problem specification and an
illustration of the problem are shown in Figure 6-1, along with an appropriate algorithm.
The algorithm requires only one selection structure because only one decision—whether the
basketball went through the hoop—is necessary.

Ch06-Maleek

Figure 6-1   A problem that requires the selection structure
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Problem specification and algorithm
Maleek is practicing for an upcoming basketball game. Write the instructions that direct him to
shoot the basketball and then say one of two phrases, depending on whether or not the basketball
went through the hoop.
 Result of shot Phrase
 Basketball went through the hoop I did it!
 Basketball did not go through the hoop Missed it!

1. shoot the basketball

2. if (the basketball went through the hoop)
 say “I did it!”
 else
 say “Missed it!”
 end if

condition

true path

false path

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

159

Nested Selection Structures 	﻿

Now we’ll make a slight change to the problem specification. This time, Maleek should say
either one or two phrases, depending not only on whether or not the ball went through the
hoop but also on where he was standing when he made the basket. Figure 6-2 shows the
modified problem specification and algorithm. The modified algorithm contains an outer
dual-alternative selection structure and a nested dual-alternative selection structure. The
outer structure begins with if (the basketball went through the hoop), and it ends with the last
end if. The last else belongs to the outer structure and separates the structure’s true path from
its false path. Notice that the instructions in both paths are indented within the outer selection
structure. Indenting in this manner clearly indicates the instructions to be followed when the
basketball went through the hoop, as well as the ones to be followed when the basketball did
not go through the hoop.

The nested selection structure in Figure 6-2 appears in the outer structure’s true path. The
nested structure begins with if (Maleek was either inside or on the 3-point line), and it ends
with the first end if. The indented else belongs to the nested structure and separates the nested
structure’s true path from its false path. For clarity, the instructions in the nested structure’s
true and false paths are indented within the structure. For a nested structure to work correctly,
it must be contained entirely within either the outer structure’s true path or its false path. In
Figure 6-2, the nested selection structure appears entirely within the outer selection structure’s
true path.

Figure 6-3 shows a modified version of the previous problem specification, along with the
modified algorithm. In this version of the problem, Maleek should still say “Missed it!”
when the basketball misses its target. However, if the basketball hits the rim, he should
also say “So close”. In addition to the nested dual-alternative selection structure from the
previous algorithm, the modified algorithm also contains a nested single-alternative selection

Figure 6-2   A problem that requires a nested selection structure

Problem specification and algorithm
Maleek is practicing for an upcoming basketball game. Write the instructions that direct him to
shoot the basketball and then say either one or two of four phrases, depending on whether or
not the basketball went through the hoop and also where he was standing when he made the
basket.
 Result of shot Phrase
 Basketball went through the hoop I did it!
 Maleek made the basket from either inside or on the 3-point line 2 points for me
 Maleek made the basket from behind the 3-point line 3 points for me
 Basketball did not go through the hoop Missed it!

1. shoot the basketball
2. if (the basketball went through the hoop)
 say “I did it!”
 if (Maleek was either inside or on the 3-point line)
 say “2 points for me”
 else
 say “3 points for me”
 end if
 else
 say “Missed it!”
 end if

outer dual-alternative
selection structure

nested dual-
alternative
selection
structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

160

Mini-Quiz 6-1
1.	 A nested selection structure can appear _________________________.

a.	 only in an outer selection structure’s false path
b.	 only in an outer selection structure’s true path
c.	 in either an outer selection structure’s false path or its true path

2.	 Modify the algorithm shown earlier in Figure 6-3 so that the outer structure’s
condition determines whether the basketball did not go through the hoop, and the
inner dual-alternative structure’s condition determines whether Maleek was behind
the 3-point line.

Figure 6-3   A problem that requires two nested selection structures

Problem specification and algorithm
Maleek is practicing for an upcoming basketball game. Write the instructions that direct him to
shoot the basketball and then say either one or two of five phrases, depending on whether or
not the basketball went through the hoop and also where he was standing when he made the
basket.
 Result of shot Phrase
 Basketball went through the hoop I did it!
 Maleek made the basket from either inside or on the 3-point line 2 points for me
 Maleek made the basket from behind the 3-point line 3 points for me
 Basketball did not go through the hoop Missed it!
 Maleek’s missed shot hit the rim So close

1. shoot the basketball
2. if (the basketball went through the hoop)
 say “I did it!”
 if (Maleek was either inside or on the 3-point line)
 say “2 points for me”
 else
 say “3 points for me”
 end if
 else
 say “Missed it!”
 if (the basketball hit the rim)
 say “So close”
 end if
 end if

outer dual-alternative
selection structure

nested dual-alternative
selection structure

nested single-alternative
selection structure

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

structure, which appears in the outer structure’s false path. The nested structure begins with
if (the basketball hit the rim), and it ends with the second end if. In this case, the nested
structure is contained entirely within the outer structure’s false path.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

161

Flowcharting a Nested Selection Structure 	﻿

3.	 Ken would like to use either his credit card or his debit card—but preferably his credit
card—to pay for the items he is purchasing from a local department store. However, he
is not sure whether the store accepts either card. If the store doesn’t accept either card,
he will need to pay cash for the items. Write an appropriate algorithm, using only the
instructions listed in Figure 6-4. (An instruction can be used more than once.)

Flowcharting a Nested Selection Structure
Figure 6-5 shows a problem specification for a voter eligibility program. The program
determines whether a person can vote and then displays one of three different messages.
The appropriate message depends on the person’s age and voter registration status. If the
person is younger than 18 years old, the program should display the message “You are too
young to vote.” However, if the person is at least 18 years old, the program should display
one of two messages. The correct message to display is determined by the person’s voter
registration status. If the person is registered, then the appropriate message is “You can
vote.”; otherwise, it is “You must register before you can vote.” Notice that determining the
person’s registration status is important only after his or her age is determined. Because of
this, the decision regarding the age is considered the primary decision, while the decision
regarding the registration status is considered the secondary decision because whether
it needs to be made depends on the result of the primary decision. A primary decision is
always made by an outer selection structure, while a secondary decision is always made by
a nested selection structure.

Also included in Figure 6-5 is a correct algorithm in flowchart form. The first diamond in
the flowchart represents the outer selection structure’s condition, which checks whether
the age entered by the user is greater than or equal to 18. If the condition evaluates to
false, the outer structure’s false path displays the “You are too young to vote.” message
before the outer structure ends. If the outer structure’s condition evaluates to true, on the
other hand, its true path uses a nested selection structure to determine whether the person
is registered. The nested structure’s condition is represented by the second diamond in
Figure 6-5. If the person is registered, the nested structure’s true path displays the “You
can vote.” message; otherwise, its false path displays the “You must register before you can
vote.” message. After the appropriate message is displayed, the nested and outer selection
structures end. Notice that the nested structure is processed only when the outer
structure’s condition evaluates to true.

else
end if
pay for your items using your credit card
pay for your items using your debit card
pay for your items using cash
if (the store accepts your credit card)
if (the store accepts your debit card)
ask the store clerk whether the store accepts your credit card
ask the store clerk whether the store accepts your debit card

Figure 6-4   Instructions for Question 3 in Mini-Quiz 6-1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

162

Problem specification and algorithm
The Danville city manager wants a program that determines voter eligibility and displays one of
three messages. The messages and the criteria for displaying each message are as follows:

Message Criteria
You are too young to vote. person is younger than 18 years old
You can vote. person is at least 18 years old and is registered
 to vote
You must register before you can vote. person is at least 18 years old but is not
 registered to vote

display “You
are too young

to vote.”

TF

display “You
can vote.”

stop

enter
registration

status

registered TF

display “You
must register

before you can
vote.”

age greater
than or

equal to 18

start

enter age

Figure 6-5   Problem specification and a correct algorithm for the voter eligibility problem

Even small problems can have more than one solution. Figure 6-6 shows another correct
algorithm for the voter eligibility problem. As in the previous algorithm, the outer selection
structure in this algorithm determines the age (the primary decision), and the nested selection
structure determines the voter registration status (the secondary decision). In this algorithm,
however, the outer structure’s condition is the opposite of the one in Figure 6-5: It checks
whether the age is less than 18, rather than checking if it is greater than or equal to 18. (Recall
that less than is the opposite of greater than or equal to.) In addition, the nested structure appears
in the outer structure’s false path in this algorithm, which means it will be processed only when
the outer structure’s condition evaluates to false. The algorithms in Figures 6-5 and 6-6 produce
the same results. Neither algorithm is better than the other; each simply represents a different
way of solving the same problem.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

163

Coding a Nested Selection Structure 	﻿

Coding a Nested Selection Structure
Figure 6-7 shows examples of code that could be used for the voter eligibility program. The first
example corresponds to the flowchart in Figure 6-5, and the second example corresponds to the
flowchart in Figure 6-6. In the first example, the nested structure is in the outer structure’s true
path. In the second example, the nested structure is in the outer structure’s false path. The figure
also includes a sample run of the voter eligibility program.

Problem specification and algorithm
The Danville city manager wants a program that determines voter eligibility and displays one of
three messages. The messages and the criteria for displaying each message are as follows:

Message Criteria
You are too young to vote. person is younger than 18 years old
You can vote. person is at least 18 years old and is registered
 to vote
You must register before you can vote. person is at least 18 years old but is not
 registered to vote

TF

stop

display
“You are
too young
 to vote.”

registered T

enter
registration

status

F

display “You
must register

before you can
vote.”

display “You
can vote.”

age less
than 18

start

enter age

Figure 6-6   Another correct solution for the voter eligibility problem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

164

Example 1: Code for the flowchart in Figure 6-5

Example 2: Code for the flowchart in Figure 6-6

Figure 6-7   Code and a sample run of the voter eligibility program

nested selection
structure

nested selection
structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

165

Logic Errors in Selection Structures 	﻿

Mini-Quiz 6-2
1.	 A selection structure should display one of the following messages, depending on a

student’s test score. Write the pseudocode for the selection structure.

Message Test score

Great score! at least 90

Good score 70 through 89

Retake the test below 70

2.	 Draw a flowchart of the selection structure from Question 1.

3.	 Write the C++ code for the selection structure from either Question 1 or Question 2.
The test score is stored in an int variable named score.

4.	 The manager of a golf course wants a program that displays the appropriate fee to
charge a golfer. Club members pay a $5 fee. Nonmembers golfing on Monday through
Thursday pay $15. Nonmembers golfing on Friday through Sunday pay $25.
The condition in the program’s outer selection structure should determine the
_________________________, while the condition in its nested selection structure
should determine the _________________________.

a.	 membership status, day of the week
b.	 day of the week, membership status
c.	 membership status, fee
d.	 fee, day of the week

Logic Errors in Selection Structures
In the next few sections, you will observe some of the common logic errors made when
writing selection structures. Being aware of these errors will help prevent you from making
them. In most cases, logic errors in selection structures are a result of one of the following
four mistakes:

1.	 using a compound condition rather than a nested selection structure
2.	 reversing the decisions in the outer and nested selection structures
3.	 using an unnecessary nested selection structure
4.	 including an unnecessary comparison in a condition

It is easier to understand these four logic errors when viewed in an algorithm. The first three
errors will be shown using an algorithm that displays the daily fee for renting a car and the
last error using an algorithm that displays an item’s price. We will begin with the daily rental
fee algorithm. The problem specification and algorithm (written in pseudocode) are shown
in Figure 6-8.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

166

Notice that the car’s classification determines whether the renter is charged an additional
amount. If the car is classified as a luxury vehicle, then whether the customer is a club member
determines the appropriate additional amount. The decision regarding the car’s classification
is the primary decision, while the decision regarding the customer’s membership status is the
secondary decision. Figure 6-9 shows the input values you will use to desk-check the algorithm
four times; it also includes the expected output values.

The first set of test data is for a club member renting a standard vehicle. Step 1 in the algorithm
assigns $55 as the daily fee. Next, the condition in the outer selection structure determines
whether the car is a luxury vehicle; the condition evaluates to false. As a result, the outer struc-
ture ends without processing the nested selection structure. This is because the membership
information is not important when the car is not a luxury vehicle. The last step in the algorithm
displays the expected daily fee of $55.

The second set of test data is for a nonmember renting a standard vehicle. The algorithm begins
by assigning $55 as the daily fee. The condition in the outer selection structure determines
whether the car is a luxury vehicle. The condition evaluates to false, so the outer selection
structure ends. The last step in the algorithm displays the expected daily fee, $55.

The third set of test data is for a club member renting a luxury vehicle. First, the algorithm
assigns $55 as the daily fee. Next, the condition in the outer selection structure determines
whether the car is a luxury vehicle. In this case, the condition evaluates to true, so the nested
selection structure’s condition checks whether the customer is a club member. This condition
also evaluates to true, so the nested structure’s true path adds $20 to the daily fee, giving $75;

Problem specification and algorithm
The daily fee for renting a car from Miller’s Car Rental is $55. However, there is an additional
charge for renting a luxury car. The additional charge depends on whether the customer belongs
to Miller’s Rental Club: It is $20 for club members and $30 for nonmembers. Create a program
that displays the daily fee for renting a car.

Correct algorithm
1. daily fee = 55
2. if (luxury car)
 if (club member)
 add 20 to the daily fee
 else
 add 30 to the daily fee
 end if
 end if
3. display the daily fee

 Car Membership Expected
Desk-check classification status daily fee
1 standard member $55
2 standard nonmember $55
3 luxury member $75
4 luxury nonmember $85

Figure 6-8   Problem specification and a correct algorithm for Miller’s Car Rental

Figure 6-9   Sample data and expected results for the algorithm shown in Figure 6-8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

167

Logic Errors in Selection Structures 	﻿

after doing this, both selection structures end. The last step in the algorithm displays $75 as the
daily fee, which is correct.

The last set of test data is for a nonmember renting a luxury vehicle. Step 1 in the algorithm
assigns $55 as the daily fee. The condition in the outer selection structure determines whether
the car is a luxury vehicle. The condition evaluates to true, so the nested selection structure’s
condition checks whether the customer is a club member. This condition evaluates to false,
so the nested structure’s false path adds $30 to the daily fee, giving $85; after doing this, both
selection structures end. The last step in the algorithm displays the expected daily fee of $85.
The results of desk-checking the algorithm using the data from Figure 6-9 agree with the
expected values, as indicated in Figure 6-10.

First Logic Error: Using a Compound Condition Rather Than a Nested
Selection Structure
A common error made when writing selection structures is to use a compound condition in the
outer structure when a nested structure is needed. Figure 6-11 shows an example of this error in
the car rental algorithm. The correct algorithm is included in the figure for comparison.

classification membership daily fee
standard member 55 (correct result for the first desk-check)
standard nonmember 55 (correct result for the second desk-check)
luxury member 55
 75 (correct result for the third desk-check)
luxury nonmember 55
 85 (correct result for the fourth desk-check)

Correct algorithm
1. daily fee = 55
2. if (luxury car)
 if (club member)
 add 20 to the daily fee
 else
 add 30 to the daily fee
 end if
 end if
3. display the daily fee

Incorrect algorithm
1. daily fee = 55
2. if (luxury car and club member)
 add 20 to the daily fee
 else
 add 30 to the daily fee
 end if
3. display the daily fee

Figure 6-10   Result of desk-checking the correct algorithm

Figure 6-11   Correct algorithm and an incorrect algorithm containing the first logic error

uses a compound
condition instead of
a nested selection
structure

Notice that the incorrect algorithm uses one selection structure rather than two selection
structures and that the selection structure contains a compound condition. Consider why the
selection structure in the incorrect algorithm cannot be used in place of the selection struc-
tures in the correct one. In the correct algorithm, the outer and nested structures indicate that a
hierarchy exists between the car classification and membership status decisions: The car classi-
fication decision is always made first, followed by the membership status decision (if necessary).
In the incorrect algorithm, the compound condition indicates that no hierarchy exists between
the classification and membership decisions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

168

To understand why the incorrect algorithm in Figure 6-11 will not work correctly, you will
desk-check it using the same test data used to desk-check the correct algorithm. Step 1 in the
incorrect algorithm assigns $55 as the daily fee. Next, the compound condition in Step 2 deter-
mines whether the car is classified as a luxury vehicle and, at the same time, the renter is a club
member. Using the first set of test data (standard and member), the compound condition eval-
uates to false because the car is not a luxury vehicle. As a result, the selection structure’s false
path adds $30 to the daily fee, giving $85, and then the selection structure ends. The last step in
the incorrect algorithm displays $85 as the daily fee, which is not correct; the correct fee is $55,
as shown earlier in Figure 6-10.

Now we’ll desk-check the incorrect algorithm using the second set of test data: standard and
nonmember. The algorithm begins by assigning $55 as the daily fee. The compound condition
then determines whether the car is a luxury vehicle and, at the same time, the renter is a club
member. The compound condition evaluates to false, so the selection structure’s false path
adds $30 to the daily fee, giving $85, and then the selection structure ends. The last step in the
incorrect algorithm displays $85 as the daily fee, which is not correct; the correct fee is $55.

Next, we’ll desk-check the incorrect algorithm using the third set of test data: luxury and
member. First, the algorithm assigns $55 as the daily fee. The compound condition then
determines whether the car is a luxury vehicle and, at the same time, the renter is a club
member. In this case, the compound condition evaluates to true, so the selection structure’s
true path adds $20 to the daily fee, giving $75, and then the selection structure ends. The last
step in the incorrect algorithm displays the expected daily fee, $75. Even though its selection
structure is phrased incorrectly, the incorrect algorithm produces the same result as the correct
algorithm using the third set of test data.

Finally, we’ll desk-check the incorrect algorithm using the fourth set of test data: luxury and
nonmember. Step 1 assigns $55 as the daily fee. Next, the compound condition determines
whether the car is a luxury vehicle and, at the same time, the renter is a club member. The
compound condition evaluates to false because the renter is not a club member. Therefore,
the selection structure’s false path adds $30 to the daily fee, giving $85, and then the selection
structure ends. The last step in the incorrect algorithm displays $85 as the daily fee, which
is correct. Here, too, even though its selection structure is phrased incorrectly, the incorrect
algorithm produces the same result as the correct algorithm using the fourth set of test data.

Figure 6-12 shows the desk-check table for the incorrect algorithm from Figure 6-11. As
indicated in the figure, only the results of the third and fourth desk-checks are correct.

classification membership daily fee
standard member 55
 85 (incorrect result for the first desk-check)
standard nonmember 55
 85 (incorrect result for the second desk-check)
luxury member 55
 75 (correct result for the third desk-check)
luxury nonmember 55
 85 (correct result for the fourth desk-check)

Figure 6-12   Results of desk-checking the incorrect algorithm from Figure 6-11

The importance of desk-checking an algorithm several times using different data cannot be
emphasized enough. In this case, if you had used only the last two sets of data to desk-check the
incorrect algorithm, you would not have discovered that the algorithm did not work as intended.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

169

Logic Errors in Selection Structures 	﻿

Second Logic Error: Reversing the Outer and Nested Decisions
Another common error made when writing selection structures is to reverse the decisions made
by the outer and nested structures. Figure 6-13 shows an example of this error in the car rental
algorithm. The correct algorithm is included in the figure for comparison.

Unlike the selection structures in the correct algorithm, which determine the car classification
before determining the membership status, the selection structures in the incorrect algorithm
determine the membership status before determining the car classification. Consider how this
difference changes the algorithm. In the correct algorithm, the selection structures indicate that
only renters of luxury cars pay an additional amount. The selection structures in the incorrect
algorithm, on the other hand, indicate that the additional amount is paid by club members only.
Figure 6-14 shows the result of desk-checking the incorrect algorithm from Figure 6-13. As
indicated in the figure, only two of the four results are correct.

Correct algorithm
1. daily fee = 55
2. if(luxury car)
 if (club member)
 add 20 to the daily fee
 else
 add 30 to the daily fee
 end if
 end if
3. display the daily fee

Incorrect algorithm
1. daily fee = 55
2. if (club member)
 If (luxury car)
 add 20 to the daily fee
 else
 add 30 to the daily fee
 end if
 end if
3. display the daily fee

classification membership daily fee
standard member 55
 85 (incorrect result for the first desk-check)
standard nonmember 55 (correct result for the second desk-check)
luxury member 55
 75 (correct result for the third desk-check)
luxury nonmember 55 (incorrect result for the fourth desk-check)

Figure 6-13   Correct algorithm and an incorrect algorithm containing the second logic error

Figure 6-14   Results of desk-checking the incorrect algorithm from Figure 6-13

the outer and
nested decisions
are reversed

Third Logic Error: Using an Unnecessary Nested Selection Structure
Another common error made when writing selection structures is to include an unnecessary
nested selection structure. In most cases, a selection structure containing this error will still
produce the correct results. However, it will do so less efficiently than selection structures that
are properly structured. Figure 6-15 shows an example of this error in the car rental algorithm.
The correct algorithm is included in the figure for comparison.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

170

Correct algorithm
1. daily fee = 55
2. if(luxury car)
 if (club member)
 add 20 to the daily fee
 else
 add 30 to the daily fee
 end if
 end if
3. display the daily fee

Incorrect algorithm
1. daily fee = 55
2. if(luxury car)
 if (club member)
 add 20 to the daily fee
 else
 if (nonmember)
 add 30 to the daily fee
 end if
 end if
 end if
3. display the daily fee

Figure 6-15   Correct algorithm and an inefficient algorithm containing the third logic error

Unlike the correct algorithm, which contains two selection structures, the inefficient algorithm
contains three selection structures. The condition in the third structure determines whether
the renter is not a member of the rental club and is processed only when the second structure’s
condition evaluates to false. In other words, it is processed only when the algorithm has already
determined that the renter is not a club member. Therefore, the third selection structure is
unnecessary. Figure 6-16 shows the results of desk-checking the inefficient algorithm. Although
the results of the four desk-checks are correct, the result of the last desk-check is obtained in a
less efficient manner.

classification membership daily fee
standard member 55 (correct result for the first desk-check)
standard nonmember 55 (correct result for the second desk-check)
luxury member 55
 75 (correct result for the third desk-check)
luxury nonmember 55
 85 (correct result for the fourth desk-check)

Figure 6-16   Results of desk-checking the inefficient algorithm from Figure 6-15

Fourth Logic Error: Including an Unnecessary Comparison in a
Condition
Another common error made when writing selection structures is to include an unnecessary
comparison in a condition. Like selection structures containing the third logic error, selection
structures containing this error also produce the correct results but sometimes in an inefficient
way. We’ll demonstrate this error using a procedure that displays an item’s price, which is based
on the quantity purchased. Figure 6-17 shows the problem specification, a correct algorithm,
and an inefficient algorithm that contains the fourth logic error.

result obtained
in a less efficient
manner

unnecessary
nested selection
structure

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

171

Logic Errors in Selection Structures 	﻿

Correct algorithm
1. if (quantity <= 0)
 price = 0
 else
 if (quantity < 100)
 price = 9.50
 else
 price = 7.75
 end if
 end if
2. display the price

Inefficient algorithm
1. if (quantity <= 0)
 price = 0
 else
 if (quantity > 0 and quantity < 100)
 price = 9.50
 else
 price = 7.75
 end if
 end if
2. display the price

Problem specification
A program needs to display an item’s price. The price depends on the quantity purchased, as
shown here:

 Quantity purchased Price per item ($)
 Less than or equal to 0 0.0
 1–99 9.50
 Over 99 7.75

Figure 6-17   Problem specification, a correct algorithm, and an inefficient algorithm

Unlike the nested structure in the correct algorithm, the nested structure in the inefficient algo-
rithm contains a compound condition that compares the quantity to both 0 and 100. Consider
why the comparison to 0 in the compound condition is unnecessary. If the quantity is less than
or equal to 0, the outer structure’s condition will evaluate to true. As a result, the outer struc-
ture’s true path will assign the number 0 as the price before the outer structure ends. In other
words, a quantity that is either less than or equal to 0 will be handled by the outer structure’s
true path. The nested structure’s condition will be evaluated only when the quantity is greater
than 0. Therefore, the comparison to 0 is unnecessary in the compound condition. Figure 6-18
shows the results of desk-checking the correct and inefficient algorithms. Although the results
of the three desk-checks for the inefficient algorithm are correct, the results of the second and
third desk-checks are obtained in a less efficient manner.

Correct algorithm’s desk-check
quantity price
 0 0 (correct result for the first desk-check)
 83 9.50 (correct result for the second desk-check)
 105 7.75 (correct result for the third desk-check)

Inefficient algorithm’s desk-check
quantity price
 0 0 (correct result for the first desk-check)
 83 9.50 (correct result for the second desk-check)
 105 7.75 (correct result for the third desk-check)

Figure 6-18   Results of desk-checking the algorithms from Figure 6-17

In the correct
algorithm,
the nested
selection
structure’s

if clause can also be
written as if (quantity

>= 100), as long as
you then reverse the
instructions in the two
paths.

For more
experience
with
problems
containing

nested selection
structures, see the
Nested Selection
Structures section in the
Ch06WantMore.pdf file.

unnecessary
comparison

results obtained
in a less efficient
manner

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

172

Mini-Quiz 6-3
1.	 List the four errors commonly made when writing selection structures.

2.	 What is wrong with Algorithm A shown in Figure 6-19?

3.	 Does Algorithm B in Figure 6-19 give you the same results as the algorithm shown
earlier in Figure 6-2? If not, why not?

4.	 Does Algorithm C in Figure 6-19 give you the same results as the algorithm shown
earlier in Figure 6-2? If not, why not?

Algorithm A
1. shoot the basketball
2. if (the basketball went through the hoop)
 say “I did it!”
 else
 if (the basketball did not go through the hoop)
 say “Missed it!”
 end if
 end if
Algorithm B
1. shoot the basketball
2. if (the basketball went through the hoop and Maleek was inside the 3-point line)
 say “I did it!”
 say “2 points for me”
 else
 if (Maleek was behind the 3-point line)
 say “I did it!”
 say “3 points for me”
 else
 say “Missed it!”
 end if
 end if

Algorithm C
1. shoot the basketball
2. if (the basketball did not go through the hoop)
 say “Missed it!”
 else
 say “I did it!”
 if (Maleek was either inside or on the 3-point line)
 say “2 points for me”
 else
 say “3 points for me”
 end if
 end if

Figure 6-19   Algorithm for Questions 2 through 4 in Mini-Quiz 6-3

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

173

Multiple-Alternative Selection Structures 	﻿

Multiple-Alternative Selection Structures
Figure 6-20 shows the problem specification and IPO chart for the Snowboard Shop problem.
The problem’s solution requires a selection structure that can choose from several different item
codes. Each code corresponds to the location of a Snowboard Shop warehouse, as shown in the
figure. Selection structures containing several alternatives are referred to as multiple-alternative
selection structures or extended selection structures.

Problem specification
Each item the Snowboard Shop sells has a code that identifies the location of the warehouse in
which it is stored. The valid codes and the location of their corresponding warehouses are shown
here. The shop’s owner wants a program that displays the location, given the item code. If the item
code is not listed here, the program should display the “Invalid code” message.

Item code Warehouse location
12 Tennessee
36 Kentucky
40, 43 Louisiana

Input Processing Output
code Processing items: none location or message

 Algorithm:
 1. enter the code
 2. if (the code is one of the following:)
 12 display “Tennessee” as the location
 36 display “Kentucky” as the location
 40 or 43 display “Louisiana” as the location
 else
 display “Invalid code” message
 end if

Other 40, 4336 12

stop

display
“Invalid
code”

display
“Tennessee”

display
“Kentucky”

display
“Louisiana”

start

enter
code

code

Figure 6-20   Problem specification and IPO chart for the Snowboard Shop problem

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

174

The diamond in the flowchart represents the condition in the multiple-alternative selection
structure. Recall that the diamond is also used to represent the condition in both the single-
alternative and dual-alternative selection structures. However, unlike the diamond in both of
those selection structures, the diamond in a multiple-alternative selection structure has several
flowlines (rather than only two flowlines) leading out of the symbol. Each flowline represents
a possible path and must be marked appropriately, indicating the value or values necessary for
the path to be chosen.

Figure 6-21 shows two ways of coding the multiple-alternative selection structure from
Figure 6-20; both versions use If...Then...Else statements. Although both versions produce
the same result, Version 2 provides a more convenient way of coding a multiple-alternative
selection structure. (In both versions, code is an int variable that gets its value from the user
at the keyboard.) The figure also includes a sample run of the program.

Version 1

Version 2

Figure 6-21   Two ways of coding the multiple-alternative selection structure from Figure 6-20

The switch Statement
Instead of using the if statement to code a multiple-alternative selection structure, you
sometimes (but not always) can use the switch statement. Figure 6-22 shows the switch
statement’s syntax and includes an example of using the statement in place of the if statements
from Figure 6-21.

you get here
when the code is
not 12

you get here when
the code is not 12
and not 36

you get here when
the code is not
12, 36, 40, or 43

you can use one
comment to mark
the end of the
entire structure

three End If
clauses are
required

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

175

Multiple-Alternative Selection Structures 	﻿

The switch statement begins with the switch clause, which contains a selectorExpression
enclosed in parentheses. The selectorExpression can contain any combination of variables, con-
stants, functions, and operators; however, the combination must result in a value whose data
type is bool, char, short, int, or long. In the example in Figure 6-22, the selectorExpression is
an int variable named code.

Following the switch clause is a statement block. Recall from Chapter 5 that a statement block is
one or more statements enclosed in a set of braces. Between the switch statement’s opening and
closing braces are one or more case clauses. Each case clause represents a different alternative.

Notice that each case clause contains a value followed by a colon. The value can be a literal
constant, a named constant, or an expression composed of literal and named constants. The

How To �Use the switch Statement

Figure 6-22   How to use the switch statement

Syntax
switch (selectorExpression)
{
case value1:
 one or more statements
 [break;]
[case value2:
 one or more statements
 [break;]]
[case valueN:
 one or more statements
 [break;]]
[default:
 one or more statements to be processed when the selectorExpression
 does not match any of the values in the clauses
 [break;]]
}

Example

0

selectorExpression

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

176

data type of the value should be compatible with the data type of the selectorExpression. When
the selectorExpression is numeric, the values in the case clauses should be numeric. Likewise,
when the selectorExpression is a character, the values should be characters. In the example
in Figure 6-22, the selectorExpression has the int data type, and so do the values in the case
clauses. Following the colon in each case clause are one or more statements that are processed
when the selectorExpression matches that case’s value.

Notice that the last statement in each case clause is break;. The break statement tells the
computer to exit (“break out of ”) the switch statement at that point. After processing the
break statement, the computer processes the instruction that follows the switch statement’s
closing brace. If a case clause does not contain a break statement, the computer will process
that case clause’s instructions and then continue processing the remaining instructions in the
switch statement; this may or may not be what you intended.

In addition to the case clauses, you can also include one default clause in a switch state-
ment. Although the default clause can appear anywhere within the switch statement, it
usually is entered as the last clause in the statement, as shown in Figure 6-22. When it is in that
position, it does not need a break statement; however, some programmers include the break
statement for clarity. If the default clause is not the last clause, a break statement is required
in order to stop the computer from processing the instructions in the next case clause. In
Computer Exercise 20, you will observe the result of not using the break statement to break
out of the switch statement.

The switch statement sounds more difficult than it really is. When processing the statement,
the computer simply compares the value of the selectorExpression with the value listed in each
of the case clauses, one case clause at a time beginning with the first. If a match is found,
the computer processes the instructions contained in that case clause, stopping only when it
encounters either a break statement or the switch statement’s closing brace; the computer
then skips to the instruction following the closing brace. If a match is not found, the next
instruction processed depends on whether the switch statement contains a default clause.
If there is a default clause, the computer processes the instructions in that clause, stopping
only when it encounters either a break statement or the switch statement’s closing brace;
the computer then skips to the instruction following the closing brace. If there isn’t a default
clause, the computer just skips to the instruction following the closing brace.

Desk-checking the code in Figure 6-22 will help you understand how the switch statement is
processed by the computer. You will desk-check the code using the following three item codes:
12, 40, and 7. The switch (code) clause tells the computer to compare the number in the
code variable (12) with the number listed in the first case clause (12). Both numbers match, so
the cout statement displays “Tennessee” on the screen. The next statement, break;, tells the
computer to skip the remaining instructions in the switch statement and continue processing
with the instruction that follows the switch statement’s closing brace.

Now use the number 40 to desk-check the code. When processing the switch (code) clause,
the computer compares the number in the code variable (40) with the number listed in the first
case clause (12). The numbers do not match, so the computer compares the number in the
code variable (40) with the number listed in the second case clause (36). Here again, the num-
bers do not match, so the computer compares the number in the code variable (40) with the
number listed in the third case clause (40). This time, the computer finds a match. However,
notice that there is no statement immediately below the case 40: clause. So, what (if any-
thing) will appear when the code is 40?

Recall that when the value of the selectorExpression matches the value in a case clause, the
computer processes the instructions contained in that clause until it encounters either a break
statement or the switch statement’s closing brace. In this instance, not finding any instructions

The switch
statement is
often used in
programs that
display a menu

of choices for the user.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

177

Multiple-Alternative Selection Structures 	﻿

in the case 40: clause, the computer continues processing with the instructions in the next
clause, which is the case 43: clause. The instructions in that case clause display the correct
warehouse location (Louisiana) and then exit the switch statement. As this example shows,
you can process the same instructions for more than one value by listing each value in a
separate case clause, as long as the clauses appear together in the switch statement. The
last case clause in the group of related clauses should contain the instructions you want the
computer to process when one of the values in the group matches the selectorExpression. Only
the last case clause in the group of related clauses should contain the break statement.

Finally, you will desk-check the code in Figure 6-22 using the number 7. When processing the
switch statement, the computer compares the value stored in the code variable (7) with the
value listed in each of the case clauses, one case clause at a time beginning with the first.
The number 7 does not appear as a value in any of the case clauses, so the computer pro-
cesses the instruction in the default clause. That instruction displays the message “Invalid
code” on the screen. The computer then skips to the instruction following the switch
statement’s closing brace.

Mini-Quiz 6-4
1.	 A selection structure should display one of the following messages, depending on a

student’s test score. Write the C++ code using the shorter form of the if statement.

Message Test score

Great score! at least 90

Good score 70 through 89

Retake the test 0 through 69

Invalid test score less than 0

2.	 If a switch statement’s selectorExpression is a char variable named grade, which of
the following case clauses will be processed when the grade variable contains the
letter B?

a.	 case "B":

b.	 case 'B':

c.	 case = 'B':

d.	 case == 'B':

3.	 The _________________________ statement tells the computer to exit the switch
statement at that point.

LAB 6-1  Stop and Analyze
Study the flowchart shown in Figure 6-23, and then answer the questions.

For more
experience
with
problems
containing

multiple-alternative
selection structures,
see the Multiple
Alternative Selection
Structures section in the
Ch06WantMore.pdf file.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

The answers
to the labs are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

178

Other 5, 7, 112, 91

price = –1price = 50.55 price = 12.35 price = 11.46

start

ID

price is
–1

TF

stop

display
“Invalid

 ID”

display
price

enter ID

Figure 6-23   Flowchart for Lab 6-1

QUESTIONS

1.	 What will the program display when the ID is the number 11?

2.	 How can you write the multiple-alternative selection structure using the longer form of
the if statement?

3.	 How can you write the multiple-alternative selection structure using the shorter form of
the if statement?

4.	 How can you write the multiple-alternative selection structure using the switch statement?

5.	 What changes would you need to make to the code from Question 4 so that each case
clause displays the appropriate price and the default clause displays the “Invalid ID”
message?

LAB 6-2  Plan and Create
In this lab, you will plan and create an algorithm for Sophia’s Pizzeria. The problem
specification is shown in Figure 6-24.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

179

Multiple-Alternative Selection Structures 	﻿

Problem specification
Sophia’s Pizzeria sells two sizes of pizzas: medium and large. A medium pizza is $9.99, and a
large pizza is $12.99. Periodically, Sophia e-mails customers a $2 coupon on the purchase of a
large pizza only. She wants a program that displays the price of a pizza, given the size of the pizza
ordered and whether or not the customer has a $2 coupon.

Figure 6-24   Problem specification for Lab 6-2

First, analyze the problem, looking first for the output and then for the input. In this case, the
user wants the program to display the price of a pizza. To calculate the price, the computer will
need to know the size of the pizza and whether or not the customer has a $2 coupon.

Next, plan the algorithm. Recall that most algorithms begin with an instruction to enter the
input items into the computer, followed by instructions that process the input items, typically
including the items in one or more calculations. Most algorithms end with one or more
instructions that display, print, or store the output items. Figure 6-25 shows the completed
IPO chart for Sophia’s Pizzeria.

Input Processing Output
size (M or L) Processing items: none price
coupon status (Y or N)
 Algorithm:
 1. enter the size
 2. if (the size is not M or L)
 display “Please enter either M or L.”
 else
 if (the size is M)
 price = 9.99
 else
 price = 12.99
 enter coupon status
 if (coupon status is Y)
 price = price – 2
 end if
 end if
 display price
 end if

Figure 6-25   Completed IPO chart for Lab 6-2

After completing the IPO chart, you then move on to the third step in the problem-solving
process, which is to desk-check the algorithm. Figure 6-26 shows the test data and completed
desk-check table.

Desk-check Pizza size Coupon status Price or message
1 M Not applicable 9.99
2 L N 12.99
3 L Y 10.99
4 X Not applicable Please enter either M or L.

size coupon status price
 M 9.99
 L N 12.99
 L Y 10.99
 X

Figure 6-26   Test data and completed desk-check table for Lab 6-2’s algorithm (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

180 Desk-check Pizza size Coupon status Price or message
1 M Not applicable 9.99
2 L N 12.99
3 L Y 10.99
4 X Not applicable Please enter either M or L.

size coupon status price
 M 9.99
 L N 12.99
 L Y 10.99
 X

Figure 6-26   Test data and completed desk-check table for Lab 6-2’s algorithm

The fourth step in the problem-solving process is to code the algorithm into a program. You begin
by declaring memory locations that will store the values of the input, processing (if any), and output
items. The Sophia’s Pizzeria program will need three memory locations to store the input and output
items. The input items (size and coupon status) will be stored in variables because the user should be
allowed to change their values during runtime. The output item (price) will also be stored in a variable;
this is because its value will change based on the current values of the input items. You will use char
variables for the letters corresponding to the size and coupon information and use a double variable
for the price. Figure 6-27 shows the IPO chart information and corresponding C++ instructions.

IPO chart information
Input
 size (M or L)
 coupon status (Y or N)
Processing
 none
Output
 price

Algorithm:
1. enter the size

2. if (the size is not M or L)
 display “Please enter either
 M or L.”
 else

 if (the size is M)
 price = 9.99
 else
 price = 12.99
 enter coupon status

 if (coupon status is Y)
 price = price - 2
 end if
 end if
 display price
 end if

C++ instructions

Figure 6-27   IPO chart information and C++ instructions for Lab 6-2

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

181

Multiple-Alternative Selection Structures 	﻿

The fifth step in the problem-solving process is to desk-check the program. You begin by
placing the names of the declared variables and named constants (if any) in a new desk-check
table, along with their initial values. You then desk-check the remaining C++ instructions in
order, recording in the desk-check table any changes made to the variables. Figure 6-28 shows
the completed desk-check table. (The two char variables are initialized to a space.) The results
agree with those shown in the algorithm’s desk-check table in Figure 6-26.

size coupon status price
 0.00
M 9.99
 0.00
 L N 12.99
 0.00
 L Y 10.99
 0.00
 X

Figure 6-28   Completed desk-check table for Lab 6-2’s program

The final step in the problem-solving process is to evaluate and modify (if necessary) the
program. Recall that you evaluate a program by entering its instructions into the computer, and
then using the computer to run (execute) it. While the program is running, you enter the same
sample data used when desk-checking the program.

DIRECTIONS

1.	 Follow the instructions for starting your C++ development tool. Depending on the devel-
opment tool you are using, you may need to create a new project; if so, name the project
Lab6-2 Project, and save it in the Cpp8\Chap06 folder. Enter the instructions shown in
Figure 6-29 in a source file named Lab6-2.cpp. (Do not enter the line numbers.) Save the
file in either the project folder or the Cpp8\Chap06 folder. Now follow the appropriate
instructions for running the Lab6-2.cpp file. Use the sample data provided in this lab to
test the program. If necessary, correct any bugs (errors) in the program.

Figure 6-29   Sophia’s Pizzeria program (continues)

first desk-check

third desk-check

fourth desk-check

second desk-check

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

182

Figure 6-29   Sophia’s Pizzeria program

LAB 6-3  Modify
�If necessary, create a new project named Lab6-3 Project and save it in the
Cpp8\Chap06 folder. Enter (or copy) the Lab6-2.cpp instructions into a new source
file named Lab6-3.cpp. Change Lab6-2.cpp in the first comment to Lab6-3.cpp.
Customers can now use the $2 coupon toward the purchase of any size pizza.
Modify the program appropriately. Test the program five times using the following
test data: M and N, M and Y, L and N, L and Y, and X.

LAB 6-4  What’s Missing?
�The program in this lab should display the price of a movie ticket. The price is
based on the customer’s age, as shown in Figure 6-30. If the user enters a negative
number, the program should display the “Invalid age” message. Start your C++
development tool, and view the Lab6-4.cpp file, which is contained in either the
Cpp8\Chap06\Lab6-4 Project folder or the Cpp8\Chap06 folder. (Depending on
your C++ development tool, you may need to open Lab6-4’s project/solution file
first.) Put the C++ instructions in the proper order, and then determine the one or
more missing instructions. Test the program seven times using the following data:
1, 3, 4, 64, 65, 70, and –3.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

183

Multiple-Alternative Selection Structures 	﻿

Age (years) Price ($)
3 and younger 0
4 to 64 9
65 and older 6

Figure 6-30   Ticket information for Lab 6-4

LAB 6-5  Desk-Check
Desk-check the code shown in Figure 6-31 three times, using the numbers 2, 5, and 100.

Figure 6-31   Code for Lab 6-5

LAB 6-6  Debug
�Follow the instructions for starting C++ and viewing the Lab6-6.cpp file, which is
contained in either the Cpp8\Chap06\Lab6-6 Project folder or the Cpp8\Chap06
folder. (Depending on your C++ development tool, you may need to open Lab6-6’s
solution/project file first.) Run the program. Test the program using the following
codes: 1, 2, 3, 4, 5, 9, and –3. Debug the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

184

Chapter Summary

You can nest a selection structure within either the true or false path of another selection
structure.

Logic errors commonly made when writing selection structures usually are a result of one
of the following four mistakes: using a compound condition rather than a nested selec-
tion structure, reversing the decisions in the outer and nested selection structures, using
an unnecessary nested selection structure, or including an unnecessary comparison in a
condition.

Some solutions require selection structures that can choose from several alternatives. The
selection structures are commonly referred to as multiple-alternative selection structures or
extended selection structures. You can code these selection structures using the multiple-
alternative form of the if statement. You can also use the switch statement, as long as the
statement’s selectorExpression evaluates to a value whose data type is bool, char, short,
int, or long.

In a flowchart, a diamond is used to represent the condition in a multiple-alternative selec-
tion structure. The diamond has one flowline leading into the symbol and several flowlines
leading out of the symbol. Each flowline leading out of the diamond represents a pos-
sible path and must be marked to indicate the value or values necessary for the path to be
chosen.

In a switch statement, the data type of the value in each case clause should be compatible
with the data type of the statement’s selectorExpression. The selectorExpression must evaluate
to a value whose data type is bool, char, short, int, or long.

Most case clauses in a switch statement contain a break statement, which tells the
computer to exit the switch statement at that point.

Key Terms
break statement—a C++ statement used to tell the computer to exit a switch statement

Extended selection structures—another name for multiple-alternative selection structures

Multiple-alternative selection structures—selection structures that contain several alternatives;
also called extended selection structures; can be coded using either the multiple-alternative
form of the if statement or the switch statement

Nested selection structure—a selection structure that is wholly contained (nested) within
either the true or false path of another selection structure

switch statement—a C++ statement that can be used to code some (but not all) multiple-
alternative selection structures

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

185

Review Questions 	

Review Questions
Use the code shown in Figure 6-32 to answer Review Questions 1 through 3.

Figure 6-32

1.	 If the user enters the number 90, what value will be in the number variable after the
selection structure in Figure 6-32 is processed?

a.	 0

b.	 100

c.	 180

d.	 270

2.	 If the user enters the number 1000, what value will be in the number variable after the
selection structure in Figure 6-32 is processed?

a.	 0

b.	 100

c.	 2000

d.	 3000

3.	 If the user enters the number 200, what value will be in the number variable after the
selection structure in Figure 6-32 is processed?

a.	 0

b.	 100

c.	 400

d.	 600

Use the code shown in Figure 6-33 to answer Review Questions 4 through 7.

Figure 6-33

4.	 What will the code in Figure 6-33 display when the id variable contains the character 9?

a.	 Janet

b.	 Jerry

c.	 Mark

d.	 Sue

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

186

5.	 What will the code in Figure 6-33 display when the id variable contains the character 4?

a.	 Janet

b.	 Jerry

c.	 Mark

d.	 Sue

6.	 What will the code in Figure 6-33 display when the id variable contains the character 7?

a.	 Janet

b.	 Jerry

c.	 Mark

d.	 Sue

7.	 What will the code in Figure 6-33 display when the id variable contains the character 2?

a.	 Janet

b.	 Jerry

c.	 Mark

d.	 Sue

Use the code shown in Figure 6-34 to answer Review Questions 8 through 10.

Figure 6-34

8.	 What will the code in Figure 6-34 display when the id variable contains the number 2?

a.	 Janet

b.	 Jerry

c.	 Mark

d.	 Sue

9.	 What will the code in Figure 6-34 display when the id variable contains the number 4?

a.	 Janet

b.	 Jerry

c.	 Mark

d.	 Sue

10.	 What will the code in Figure 6-34 display when the id variable contains the number 9?

a.	 Janet

b.	 Jerry

c.	 Mark

d.	 Sue

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

187

Exercises 	

Exercises

Pencil and Paper

1.	 Write the C++ code for the multiple-alternative selection structure shown in Figure 6-35.
First, use the longer form of the if statement. Then rewrite the code using the shorter
form of the if statement. (The answers to TRY THIS Exercises are located at the end of
the chapter.)

if (sales <= 0)
 bonus = 0
 display “The sales must be greater than 0.”
else
 if (sales <= 1000)
 bonus = sales * 0.15
 else
 if (sales <= 5000)
 bonus = sales * 0.20
 else
 bonus = sales * 0.25
 end if
 end if
end if

Figure 6-35

2.	 Using the switch statement, write the C++ code that corresponds to the partial
flowchart shown in Figure 6-36. Use a char variable named code and a double variable
named rate. (The answers to TRY THIS Exercises are located at the end of the chapter.)

Other 6, 7 5 2, 3, 4 1

code

rate = .02 rate = .05 rate = .1 rate = .15 rate = –1

Figure 6-36

3.	 Complete TRY THIS Exercise 2, and then change the switch statement to the
multiple-alternative form of the if statement.

4.	 Travis is standing in front of two containers: one marked Trash and the other marked
Recycle. In his right hand, he is holding a bag that contains either trash or recyclables. Travis
needs to lift the lid from the appropriate container (if necessary), then drop the bag in the
container, and then put the lid back on the container. Write an appropriate algorithm, using
only the instructions listed in Figure 6-37. (An instruction can be used more than once.)

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

188

else
end if
drop the bag of recyclables in the Recycle container
drop the bag of trash in the Trash container
if (the bag contains trash)
if (the lid is on the Recycle container)
if (the lid is on the Trash container)
lift the Recycle container’s lid using your left hand
lift the Trash container’s lid using your left hand
put the lid back on the Recycle container using your left hand
put the lid back on the Trash container using your left hand

Figure 6-37

5.	 Write the C++ code for a multiple-alternative selection structure that displays one of
four different messages, depending on the number of seminar participants stored in
an int variable named participants. Display the message “Use the Kanton room”
when the number of seminar participants is at least 75. When the number is 40 through
74, display the message “Use the Harris room”. When the number is 10 through 39,
display the message “Use the small conference room”. When the number is less than 10,
display the message “Cancel the seminar”.

6.	 A program stores test scores in two int variables named myScore and
expectedScore. Write the C++ code to compare the two scores and then display one
of the following messages: “I met my expectations”, “I scored higher than expected”, or
“I scored lower than expected”.

7.	 A program uses a char variable named department and two double variables
named salary and raise. The department variable contains one of the following
letters (entered in either uppercase or lowercase): A, B, C, or D. Employees in depart-
ments A and B are receiving a 2% raise. Employees in department C are receiving a
1.5% raise, and employees in department D are receiving a 3% raise. Using the switch
statement, write the C++ code to calculate the appropriate raise amount.

8.	 A program uses a char variable named membership and an int variable named
age. The membership variable contains one of the following letters (entered in either
uppercase or lowercase): M or N. The letter M stands for member, and the letter N
stands for nonmember. The program should display the appropriate seminar fee,
which is based on a person’s membership status and age. The fee schedule is shown in
Figure 6-38. Write the C++ code to display the fee.

Seminar fee Criteria
$10 Club member less than 65 years old
$5 Club member at least 65 years old
$20 Nonmember less than 65 years old
$15 Nonmember at least 65 years old

Figure 6-38

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

189

Exercises 	

9.	 The C++ code in Figure 6-39 should display one of the four messages listed in the
figure. The appropriate message is based on the level entered by the user. Correct the
errors in the code.

Level Message
1 or 2 Bronze
3 Silver
4 or 5 Gold
Other Invalid ID

Figure 6-39

Computer

10.	 Figure 6-40 shows a partially completed chart for a program that displays the amount
of a salesperson’s commission. The commission is based on the salesperson’s sales
amount, as indicated in the figure. Complete the selection structure in the Algorithm
section of the chart. Also complete the C++ instructions section. After completing
the chart, create a new project (if necessary) named TryThis10 Project, and save
it in the Cpp8\Chap06 folder. Enter the C++ instructions into a source file named
TryThis10.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Display the commission in fixed-point notation with two
decimal places. Save and run the program. Test the program using the following sales
amounts: 15250, 251990, 500670, and –5. (The answers to TRY THIS Exercises are
located at the end of the chapter.)

SWAT THE BUGS

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

190

Sales range ($) Commission
0–100,000 2% of the sales amount
100,001–400,000 5% of the sales amount
400,001 and over 9% of the sales amount

IPO chart information
Input
 sales
Processing
 none
Output
 commission
Algorithm:
1. enter sales
2. if (sales < 0)
 commission = -1
 else

3. if (commission is not -1)
 display commission with 2 decimals
 else
 display “Sales cannot be less than 0.”
 end if

C++ instructions

Figure 6-40

�11.	 Code the algorithm shown in Figure 6-41. Use the switch statement to code the
multiple-alternative selection structure. If necessary, create a new project named
TryThis11 Project, and save it in the Cpp8\Chap06 folder. Enter the C++ instructions
into a source file named TryThis11.cpp. Also enter appropriate comments and any
additional instructions required by the compiler. Save and run the program. Test the
program using the following codes: 1, 2, 3, and 7. (The answers to TRY THIS Exercises
are located at the end of the chapter.)

IPO chart information
Input
 department code (1, 2, or 3)

Processing
 none

Output
 salary

Algorithm:
1. enter the department code
2. if (the department code is one of the following:)
 1 salary = 25000
 2 salary = 30000
 3 salary = 32000
 4 display “Invalid code”
 salary = 0
 end if
3. display salary

C++ instructions

Figure 6-41   (continues)

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

191

Exercises 	

IPO chart information
Input
 department code (1, 2, or 3)

Processing
 none

Output
 salary

Algorithm:
1. enter the department code
2. if (the department code is one of the following:)
 1 salary = 25000
 2 salary = 30000
 3 salary = 32000
 4 display “Invalid code”
 salary = 0
 end if
3. display salary

C++ instructions

Figure 6-41

12.	 Complete TRY THIS Exercise 11. If necessary, create a new project named
ModifyThis12 Project, and save it in the Cpp8\Chap06 folder. Enter (or copy) the
instructions from the TryThis11.cpp file into a new source file named ModifyThis12.cpp.
Be sure to change the filename in the first comment. Remove the default clause from
the switch statement. Modify the code to verify that the department code is 1, 2, or 3
only. If the department code is valid, use the switch statement to determine the salary,
and then display the salary. If the department code is not valid, display the “Invalid code”
message. Save and run the program. Test the program using the following codes: 1, 2,
3, and 7.

13.	 Karlton Learning wants a program that displays the amount of money a company owes
for a seminar. The fee per person is based on the number of people the company regis-
ters, as shown in Figure 6-42. For example, if the company registers seven people, then
the total amount owed is $700. If the user enters a number that is less than or equal
to 0, the program should display an appropriate error message.

Number of registrants Fee per person
1 through 5 $125
6 through 20 $ 100
21 or more $ 75

Figure 6-42

a.	 Create an IPO chart for the problem, and then desk-check the algorithm five times,
using the numbers 4, 8, 22, 0, and –2 as the number of people registered.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart
similar to the one shown earlier in Figure 6-27. Then code the algorithm into a
program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Introductory13 Project, and save it in

the Cpp8\Chap06 folder. Enter your C++ instructions into a source file named
Introductory13.cpp. Also enter appropriate comments and any additional
instructions required by the compiler.

e.	 Save and run the program. Test the program using the same data used to
desk-check the program.

MODIFY THIS

INTRODUCTORY

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

192

14.	 The owner of Harry’s Car Sales pays each salesperson a commission based on his or
her quarterly sales. The sales ranges and corresponding commission rates are shown
in Figure 6-43. The program should display an error message if the sales amount is
less than 0.

Quarterly sales ($) Commission
0–20,000 multiply the sales by 5%
20,001–50,000 multiply the sales over 20,000 by 7% and then
 add 1,000 to the result
50,001 or more multiply the sales over 50,000 by 10% and then
 add 3,100 to the result

Figure 6-43

a.	 Create an IPO chart for the problem, and then desk-check the algorithm seven
times, using sales of 20000, 20001, 30000, 50000, 50001, 75000, and –3.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart simi-
lar to the one shown earlier in Figure 6-27. Then code the algorithm into a program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Introductory14 Project, and save it in

the Cpp8\Chap06 folder. Enter your C++ instructions into a source file named
Introductory14.cpp. Also enter appropriate comments and any additional instruc-
tions required by the compiler. Display the commission in fixed-point notation with
two decimal places.

e.	 Save and run the program. Test the program using the same data used to desk-
check the program.

15.	 In this exercise, you will create a program that displays the number of daily calories
needed to maintain your current weight. The number of calories is based on your
gender, activity level, and weight. The formulas for calculating the daily calories are
shown in Figure 6-44.

Moderately active female: total daily calories = weight multiplied by 12 calories per pound
Relatively inactive female: total daily calories = weight multiplied by 10 calories per pound
Moderately active male: total daily calories = weight multiplied by 15 calories per pound
Relatively inactive male: total daily calories = weight multiplied by 13 calories per pound

Gender Activity Weight
F I 150
F A 120
M I 180
M A 200

Figure 6-44

a.	 Create an IPO chart for the problem, and then desk-check the algorithm using the
test data included in Figure 6-44. Also desk-check it using invalid data, such as X as
the gender code, K as the activity code, or a negative number for the weight.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart
similar to the one shown earlier in Figure 6-27. Then code the algorithm into a
program.

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

193

Exercises 	

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Intermediate15 Project and save it in

the Cpp8\Chap06 folder. Enter your C++ instructions into a source file named
Intermediate15.cpp. Also enter appropriate comments and any additional instruc-
tions required by the compiler.

e.	 Save and run the program. Test the program using the same data used to desk-
check the program.

16.	 In this exercise, you will create a program that displays both the smallest and largest of
three integers entered by the user. For example, if the user enters the numbers 3, 5, and 9,
the program should display the messages “Smallest number is 3.” and “Largest number is 9.”
on the computer screen.

a.	 Create an IPO chart for the problem, and then desk-check the algorithm four times.
For the first desk-check, use the numbers 3, 5, and 9. For the second desk-check,
use 7, 10, and 2. For the third desk-check, use 8, 4, and 6. For the fourth desk-check,
use 1, 9, and 1.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart simi-
lar to the one shown earlier in Figure 6-27. Then code the algorithm into a program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Intermediate16 Project, and save it in

the Cpp8\Chap06 folder. Enter your C++ instructions into a source file named
Intermediate16.cpp. Also enter appropriate comments and any additional instruc-
tions required by the compiler.

e.	 Save and run the program. Test the program using the same data used to
desk-check the program.

17.	 In this exercise, you will create a program that converts U.S. dollars to a different
currency. The number of American dollars should always be an integer that is greater
than or equal to zero. The user should be able to choose the currency from the fol-
lowing list: Canadian Dollar, Euro, Indian Rupee, Japanese Yen, Mexican Peso, South
African Rand, and British Pound. (Hint: Designate a code for each currency, and use
cout statements to display a menu that lists each code and the name of its correspond-
ing currency.) Use the Internet to research the exchange rates. If necessary, create a
new project named Advanced17 Project, and save it in the Cpp8\Chap06 folder. Enter
your C++ instructions into a source file named Advanced17.cpp. Also enter appropriate
comments and any additional instructions required by the compiler. Display the results
in fixed-point notation with two decimal places. Save and run the program. Test the
program nine times. For the first seven tests, convert 10 American dollars to each of
the seven different currencies. For the eighth test, use –3 as the number of American
dollars. For the last test, use an invalid currency code.

18.	 A local department store wants a program that displays the number of reward points a
customer earns each month. The reward points are based on the customer’s member-
ship type and total monthly purchase amount, as shown in Figure 6-45. If necessary,
create a new project named Advanced18 Project, and save it in the Cpp8\Chap06 folder.
Enter your C++ instructions into a source file named Advanced18.cpp. Also enter
appropriate comments and any additional instructions required by the compiler. Dis-
play the reward points in fixed-point notation with no decimal places. Save, run, and
test the program.

INTERMEDIATE

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

194

 Total monthly
Membership type purchase ($) Reward points
Standard Less than 75 5% of the total monthly purchase
 75–149.99 7.5% of the total monthly purchase
 150 and over 10% of the total monthly purchase

Plus Less than 150 6% of the total monthly purchase
 150 and over 13% of the total monthly purchase

Premium Less than 200 4% of the total monthly purchase
 200 and over 15% of the total monthly purchase

Figure 6-45

19.	 If necessary, create a new project named Advanced19 Project, and save it in the
Cpp8\Chap06 folder. Enter (or copy) the instructions from the Lab6-2.cpp file into a
new source file named Advanced19.cpp. Be sure to change the filename in the first
comment. The program should now begin by determining the number of medium
pizzas and the number of large pizzas the customer is ordering. Be sure to verify that
both numbers are greater than or equal to 0. Rather than displaying the price of one
pizza, the program should display the number of pizzas ordered and the total cost of
the order. The $2 coupon toward the purchase of a large pizza can be used only once.
If a customer orders more than four pizzas, the program should deduct 10% from the
cost of the order. Modify the program appropriately, and then save, run, and test it.

20.	 In this exercise, you will experiment with the switch statement.

a.	 Follow the instructions for starting C++ and viewing the Advanced20.cpp file,
which is contained in either the Cpp8\Chap06\Advanced20 Project folder or the
Cpp8\Chap06 folder. (Depending on your C++ development tool, you may need to
open this exercise’s project/solution file first.) The program uses the switch state-
ment to display the names of the gifts mentioned in the song “The Twelve Days of
Christmas.”

b.	 Run the program. When you are prompted to enter the day, type the number 1 and
press Enter. The names of the gifts for the first through the twelfth days appear on
the screen. Close the Command Prompt window.

c.	 Run the program again. When you are prompted to enter the day, type the number 9
and press Enter. The names of the gifts for the ninth through the twelfth days appear
on the screen. Close the Command Prompt window.

d.	 Modify the program so that it displays only the name of the gift corresponding to
the day entered by the user. For example, when the user enters the number 4, the
program should display the “4 calling birds” message only.

e.	 Save and then run the program. When you are prompted to enter the day, type
the number 4 and press Enter. The “4 calling birds” message should appear on the
screen. Close the Command Prompt window, and then test the program using the
numbers 1 and 9.

21.	 In this exercise, you will include a Boolean value in a switch statement. Follow the
instructions for starting C++ and viewing the Advanced21.cpp file, which is contained
in either the Cpp8\Chap06\Advanced21 Project folder or the Cpp8\Chap06 folder.
(Depending on your C++ development tool, you may need to open this exercise’s
project/solution file first.) Replace the dual-alternative if statement with a switch
statement. Save and then run the program. Test the program appropriately.

ADVANCED

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

195

Exercises 	

22.	 Follow the instructions for starting C++ and viewing the SwatTheBugs22.cpp file,
which is contained in either the Cpp8\Chap06\SwatTheBugs22 Project folder or the
Cpp8\Chap06 folder. (Depending on your C++ development tool, you may need to
open this exercise’s project/solution file first.) The program should calculate and display
an item’s new price, but it is not working correctly. Test the program using 1 as the code
and 10 as the old price. Then test it using the following data: 2 and 10, 3 and 20, and 4
and 50. Debug the program.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 See Figure 6-46.

Longer form of the statement

Shorter form of the statement

Figure 6-46

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

196

2.	 See Figure 6-47.

Figure 6-47

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

197

Exercises 	

Computer

10.	 See Figures 6-48 and 6-49.

C++ instructions

IPO chart information
Input
 sales

Processing
 none

Output
 commission

Algorithm:
1. enter sales

2. if (sales < 0)
 commission = -1
 else
 if (sales <= 100000)
 commission = sales * .02
 else
 if (sales <= 400000)
 commission = sales * .05
 else
 commission = sales * .09
 end if
 end if
 end if
3. if (commission is not -1)
 display commission with 2 decimals
 else
 display “Sales cannot be less than
 0.”
 end if

Figure 6-48

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

198

Figure 6-49

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

199

Exercises 	

11.	 See Figures 6-50 and 6-51.

IPO chart information
Input
 department code (1, 2, or 3)
Processing
 none
Output
 salary

Algorithm:
1. enter the department code

2. if (the department code is one of the
 following:)
 1 salary = 25000
 2 salary = 30000
 3 salary = 32000
 4 display “Invalid code”
 salary = 0
 end if

3. display salary

C++ instructions

Figure 6-50

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 6 More on the Selection Structure

200

Figure 6-51

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7
The Repetition Structure

After studying Chapter 7, you should be able to:

�� Differentiate between a pretest loop and a posttest loop

�� Include a pretest loop in pseudocode

�� Include a pretest loop in a flowchart

�� Code a pretest loop using the C++ while statement

�� Utilize counter and accumulator variables

�� Code a pretest loop using the C++ for statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

202

Repeating Program Instructions
Programmers use the repetition structure, referred to more simply as a loop, when they need the
computer to repeatedly process one or more program instructions. The loop contains a condition
that controls whether the instructions are repeated. In many programming languages, the
condition can be phrased in one of two ways. It can either specify the requirement for repeating the
instructions or specify the requirement for not repeating them. The requirement for repeating the
instructions is referred to as the looping condition because it indicates when the computer should
continue “looping” through the instructions. The requirement for not repeating the instructions is
referred to as the loop exit condition because it tells the computer when to exit (or stop) the loop.
Every looping condition has an opposing loop exit condition; one is the opposite of the other.

Two examples may help illustrate the difference between the looping condition and the loop
exit condition. You have probably heard the old adage “Make hay while the sun shines.” The
“while the sun shines” is the looping condition because it tells you when to continue making
hay. The adage could also be phrased as “Make hay until the sun is no longer shining.” In this
case, the “until the sun is no longer shining” is the loop exit condition because it specifies when
you should stop making hay. Similarly, the sentence “Listen while the speaker is talking.” uses a
looping condition to indicate when you should continue listening. The sentence “Listen until the
speaker stops talking.”, on the other hand, uses a loop exit condition to specify when you should
stop listening. In the C++ programming language, the repetition structure’s condition is always
phrased as a looping condition, which means it always contains the requirement for repeating
the instructions within the loop.

The programmer determines whether a problem’s solution requires a loop by studying the
problem specification. The first problem specification you will examine in this chapter involves
a superheroine named Sahirah. The problem specification and an illustration of the problem are
shown in Figure 7-1, along with a correct algorithm written in pseudocode. The algorithm uses
only the sequence and selection structures because no instructions need to be repeated.

Problem specification
A superheroine named Sahirah must prevent a poisonous yellow spider from attacking King Khafra
and Queen Rashida. Sahirah has one weapon at her disposal: a laser beam that shoots out from her
right hand. Unfortunately, Sahirah gets only one shot at the spider, which is flying around the palace
looking for the king and queen. Before taking the shot, she needs to position both her right arm and
her right hand toward the spider. After taking the shot, she should return her right arm and right
hand to their original positions. In addition, she should say “You are safe now. The spider is dead.”,
if the laser beam hit the spider; otherwise, she should say “Run for your lives, my king and queen!”

Algorithm
1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider
3. return your right arm and right hand to their original positions
4. if (the laser beam hit the spider)
 say “You are safe now. The spider is dead.”
 else
 say “Run for your lives, my king and queen!”
 end if

Figure 7-1   A problem that requires the sequence and selection structures (continues)
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Recall that
the three
programming
control struc-
tures are

sequence, selection,
and repetition.

Ch07-Sahirah

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

203

Repeating Program Instructions 	﻿

Problem specification
A superheroine named Sahirah must prevent a poisonous yellow spider from attacking King Khafra
and Queen Rashida. Sahirah has one weapon at her disposal: a laser beam that shoots out from her
right hand. Unfortunately, Sahirah gets only one shot at the spider, which is flying around the palace
looking for the king and queen. Before taking the shot, she needs to position both her right arm and
her right hand toward the spider. After taking the shot, she should return her right arm and right
hand to their original positions. In addition, she should say “You are safe now. The spider is dead.”,
if the laser beam hit the spider; otherwise, she should say “Run for your lives, my king and queen!”

Algorithm
1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider
3. return your right arm and right hand to their original positions
4. if (the laser beam hit the spider)
 say “You are safe now. The spider is dead.”
 else
 say “Run for your lives, my king and queen!”
 end if

Figure 7-1   A problem that requires the sequence and selection structures
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Now we will change the problem specification slightly. Rather than taking only one shot, Sahirah
can now take as many shots as needed to destroy the spider. Because of this, she will never need
to tell the king and queen to run for their lives again. Figure 7-2 shows the modified problem
specification along with the modified algorithm, which contains the sequence and repetition
structures. The repetition structure begins with the repeat while (the laser beam did not hit the
spider) clause and ends with the end repeat clause. The instructions between both clauses, called
the loop body, are indented to indicate that they are part of the repetition structure.

The portion within parentheses in the repeat while (the laser beam did not hit the spider) clause
specifies the repetition structure’s condition. The condition is phrased as a looping condition
because it tells Sahirah when to repeat the instructions. In this case, she should repeat the
instructions as long as (or while) the laser beam did not hit the spider. Similar to the condition
in a selection structure, the condition in a repetition structure must evaluate to a Boolean
value: either true or false. The condition in Figure 7-2 evaluates to true when the laser beam did
not hit the spider and evaluates to false when the laser beam did hit the spider. If the condition
evaluates to true, Sahirah should follow the loop body instructions. She should skip over those
instructions when the condition evaluates to false.

Problem specification
A superheroine named Sahirah must prevent a poisonous yellow spider from attacking King Khafra and
Queen Rashida. Sahirah has one weapon at her disposal: a laser beam that shoots out from her right
hand. Sahirah can take as many shots as needed to destroy the spider, which is flying around the
palace looking for the king and queen. Before taking each shot, she needs to position both her right
arm and her right hand toward the spider. When the laser beam hits the spider, she should return her
right arm and right hand to their original positions and then say “You are safe now. The spider is dead.”

Algorithm
1. position both your right arm and your right hand toward the spider
2. shoot a laser beam at the spider

3. repeat while (the laser beam did not hit the spider)
 position both your right arm and your right hand toward the spider
 shoot a laser beam at the spider
 end repeat
4. return your right arm and right hand to their original positions
5. say “You are safe now. The spider is dead.”

Figure 7-2   A problem that requires the sequence and repetition structures

condition

(continued)

loop body

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

204

A repetition structure can be either a pretest loop or a posttest loop. In both types of loops,
the condition is evaluated with each repetition (or iteration) of the loop. In a pretest loop, the
condition is evaluated before the instructions within the loop are processed. In a posttest loop,
the evaluation occurs after the instructions within the loop are processed. The loop shown in
Figure 7-2 is a pretest loop.

Depending on the result of the evaluation, the instructions in a pretest loop may never be
processed. The algorithm in Figure 7-2 can be used to illustrate this point. If Step 2’s shot
hits the spider, the instructions in the loop body will not be processed because the loop’s
condition in Step 3 will evaluate to false. The instructions in a posttest loop, on the other hand,
will always be processed at least once. Of the two types of loops, the pretest loop is the most
commonly used. You will learn about pretest loops in this chapter; posttest loops are covered
in Chapter 8 along with nested loops.

Mini-Quiz 7-1
1.	 Using only the following five instructions, write an algorithm for printing the pages in

a document: end repeat, print the next page, print the first page, repeat while (there is
another page to print), say “Done printing”.

2.	 Modify the algorithm from Question 1 so that it prints all of the pages except page 3.
(You will need to add your own instructions to the algorithm.)

3.	 Derek is practicing for an upcoming basketball game. Write an appropriate algorithm
using only the following instructions: end repeat, repeat while (the basketball did not go
through the hoop), say “I did it!”, say “Missed it!”, shoot the basketball. (An instruction
can be used more than once.)

Using a Pretest Loop to Solve a Real-World Problem
Figure 7-3 shows the problem specification for the commission program. It also shows two
algorithms that could be used to calculate and display the amount of each salesperson’s
commission. However, a program based on Algorithm 1 would need to be executed once for
each of the company’s salespeople. A more efficient way to calculate and display the commission
amounts is provided in Algorithm 2, which contains a loop. After running a program based
on Algorithm 2, the company’s accountant can calculate and display the commission for any
number of salespeople without having to run the program again. The program will end when
the accountant enters –1 (a negative number one) as the sales amount.

Problem specification
Create a program that calculates the commission for each of a company’s salespeople. The
commission is calculated by multiplying the salesperson’s sales amount by 20%.

Input Processing Output
commission rate (20%) Processing items: none commission
sales

 Algorithm 1 (without a loop):
 1. enter the sales
 2. calculate the commission by multiplying
 the sales by the commission rate
 3. display the commission

 Algorithm 2 (with a loop):
 1. enter the sales
 2. repeat while (the sales are not equal to –1)
 calculate the commission by multiplying
 the sales by the commission rate
 display the commission
 enter the sales
 end repeat

Figure 7-3   Problem specification and IPO chart for the commission program (continues)

Pretest and
posttest loops
are also called
top-driven and
bottom-driven

loops, respectively.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

205

Using a Pretest Loop to Solve a Real-World Problem 	﻿

calculates and displays
the commission for
one salesperson only

Problem specification
Create a program that calculates the commission for each of a company’s salespeople. The
commission is calculated by multiplying the salesperson’s sales amount by 20%.

Input Processing Output
commission rate (20%) Processing items: none commission
sales

 Algorithm 1 (without a loop):
 1. enter the sales
 2. calculate the commission by multiplying
 the sales by the commission rate
 3. display the commission

 Algorithm 2 (with a loop):
 1. enter the sales
 2. repeat while (the sales are not equal to –1)
 calculate the commission by multiplying
 the sales by the commission rate
 display the commission
 enter the sales
 end repeat

Figure 7-3   Problem specification and IPO chart for the commission program

Figure 7-4 identifies the important components of Algorithm 2. With very rare exceptions, every
loop has a condition and a loop body. In a pretest loop, the condition appears at the beginning
of the loop. As mentioned earlier, the condition must result in a Boolean value: either true or
false. The condition in Figure 7-4 evaluates to true when the sales entry is not equal to –1 and
evaluates to false when it is equal to –1.

Algorithm 2 (with a loop):
1. enter the sales

2. repeat while (the sales are not equal to –1)

calculate the commission by multiplying
 the sales by the commission rate
display the commission
enter the sales

end repeat

Figure 7-4   Components of Algorithm 2 from Figure 7-3

Some loops, such as the one in Figure 7-4, require the user to enter a special value to end the
loop. Values that are used to end loops are referred to as sentinel values. The sentinel value
should be one that is easily distinguishable from the valid data recognized by the program. In
the loop in Figure 7-4, the sentinel value is –1. The number 15 would not be a good sentinel
value for the loop because it is possible for a salesperson to sell $15 in product. The number –1,
on the other hand, is a good sentinel value for the loop because a salesperson cannot sell a
negative amount.

When a loop’s condition evaluates to true, the one or more instructions listed in the loop
body are processed; otherwise, the loop body instructions are skipped over. After each
processing of the loop body instructions, the loop’s condition is reevaluated to determine

(continued)

calculates and displays
the commission for as
many salespeople as
needed

Sentinel values
are often
referred to
as trip values
because they

release the loop from
its task. And, because
they are the last values
entered before the loop
ends, they are also
called trailer values.

condition

loop
body

sentinel value

update read

priming read

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

206

whether the instructions should be processed again. The loop body instructions are
processed and the loop’s condition is evaluated until the condition evaluates to false, at
which time the loop ends and processing continues with the instruction immediately
following the end of the loop.

Keep in mind that because the condition in a pretest loop is evaluated before any of the
instructions within the loop body are processed, it is possible that the loop body instructions
may not be processed at all. For example, if the accountant enters the number –1 as the first
sales amount, the condition in Figure 7-4’s loop will evaluate to false, and the instructions in the
loop body will not be processed during that run of the program.

The algorithm in Figure 7-4 contains two enter the sales instructions. One of the instruc-
tions appears above the loop, and the other appears as the last instruction in the loop body.
The enter the sales instruction above the loop is referred to as the priming read because
it is used to prime (prepare or set up) the loop. The priming read initializes the loop
condition by providing its first value—in this case, the first sales amount. This first entry
is compared to the sentinel value (–1) and determines whether the loop body instructions
are processed at all.

If the loop body instructions are processed, the enter the sales instruction in the loop
body gets the remaining sales entries (if any). This instruction is referred to as the update
read because it allows the user to update the value of the input item (in this case, the sales
amount) that controls the looping condition. The update read is often an exact copy of the
priming read.

The importance of the update read cannot be stressed enough. If you do not include the update
read in the loop body, there will be no way for the user to enter the sentinel value after the loop
body instructions are processed the first time. This is because the priming read is processed
only once and gets only the first input entry from the user. Without the update read, the loop
will have no way of stopping on its own. You will learn more about this in the section titled
“The while Statement” later in the chapter.

Flowcharting a Pretest Loop
Figure 7-5 shows the commission program’s algorithm from Figure 7-4 in flowchart form.
The diamond in the figure indicates the beginning of a repetition structure (loop). Like the
diamond in a selection structure, the diamond in a repetition structure contains a condition
that evaluates to either true or false only. The condition determines whether the instruc-
tions within the loop body are processed. Also like the diamond in a selection structure, the
diamond in a repetition structure has one flowline entering the symbol and two flowlines
leaving the symbol. The two flowlines leading out of the diamond are marked with a “T” (for
true) and an “F” (for false). The flowline marked with a “T” leads to the loop body, which
contains the instructions to be processed when the loop’s condition evaluates to true. The
flowline marked with an “F”, on the other hand, leads to the instructions to be processed
when the loop’s condition evaluates to false. Notice that a circle or loop is formed by the
flowline entering the diamond combined with the diamond and the symbols and flowlines
within the true path. It is this loop (circle) that distinguishes the repetition structure from
the selection structure in a flowchart.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

207

Using a Pretest Loop to Solve a Real-World Problem 	﻿

Input Processing Output
commission rate (20%) Processing items: none commission
sales

 Algorithm:

start

enter the
sales

T

F
stop

display the
commission

commission =
sales*

commission rate

enter the
sales

sales not
equal to –1

Figure 7-5   Flowchart for the algorithm shown in Figure 7-4

To illustrate how a loop operates in a program, you will desk-check the algorithm in Figure 7-5
using the following sales amounts: 1200, 800, and –1 (the sentinel value). The commission
amounts should be $240 and $160, respectively. First, you record the input and output items in
a desk-check table. You then follow each of the symbols in the flowchart, from top to bottom,
recording in the desk-check table any changes made to those items. The first symbol is the start
oval, which merely marks the beginning of the flowchart. The next symbol is a parallelogram
that gets the first sales entry from the user; this symbol represents the priming read. Figure 7-6
shows this first entry recorded in the desk-check table.

commission rate sales commission
 0.2 1200

Figure 7-6   First sales entry recorded in the desk-check table

The next symbol in the flowchart is a diamond that represents the condition in a pretest loop.
You can tell that the loop is a pretest loop (rather than a posttest loop) because the diamond
appears before the symbols in both the true and false paths. The loop’s condition tells the com-
puter to compare the sales amount entered by the user with the sentinel value (–1). In this case,
the condition evaluates to true because 1200 is not equal to –1. When the condition evaluates to
true, the computer processes the instructions in the loop body. The first two instructions calcu-
late and display the commission. Figure 7-7 shows the first salesperson’s information recorded in
the desk-check table. The commission amount agrees with the manually calculated results.

commission rate sales commission
 0.2 1200 240

Figure 7-7   First salesperson’s information recorded in the desk-check table

The first
and last
parallelograms
in Figure 7-5
represent the

priming and update
reads, respectively.

Ch07-Commission

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

208

The last instruction in the loop body in Figure 7-5 is contained in a parallelogram. The
instruction allows the user to enter the sales amount for the next salesperson (800). Recall that
this instruction is the update read. After the user enters the sales amount, the loop’s condition,
which is contained in the diamond located at the beginning of the loop, is reevaluated to
determine whether the loop should be processed again (a true condition) or end (a false condi-
tion). In this case, the condition evaluates to true because 800 is not equal to –1. As a result,
the commission is calculated and then displayed on the screen. Figure 7-8 shows the second
salesperson’s information recorded in the desk-check table. Here too, the commission amount
agrees with the manually calculated results.

commission rate sales commission
 0.2 1200 240
 800 160

Figure 7-8   Second salesperson’s information recorded in the desk-check table

The update read gets the amount sold by the next salesperson: –1 (the sentinel value). The
loop’s condition is then reevaluated to determine whether the loop should be processed again
(a true condition) or end (a false condition). The condition evaluates to false because the
user’s entry is equal to –1. Therefore, the computer skips over the loop body instructions and
processes the instruction immediately following the end of the loop. In Figure 7-5’s flowchart,
the stop oval follows the loop and marks the end of the flowchart. The completed desk-check
table is shown in Figure 7-9.

commission rate sales commission
 0.2 1200 240
 800 160
 –1

Figure 7-9   Completed desk-check table

You can code a pretest loop using either the while statement or the for statement. You will
learn about the while statement first.

The while Statement
Figure 7-10 shows the syntax of the while statement, which can be used to code a pretest
loop in a C++ program. As the boldfaced text in the syntax indicates, the keyword while and
the parentheses that surround the condition are essential components of the statement. The
italicized items in the syntax indicate where the programmer must supply information. In
this case, the programmer needs to supply the condition, which must be phrased as a looping
condition. The condition must be a Boolean expression, which is an expression that evaluates
to either true or false. The expression can contain variables, constants, functions, arithmetic
operators, comparison operators, and logical operators.

Besides providing the condition, the programmer must also provide the loop body statements,
which are the statements to be processed when the condition evaluates to true. If more than
one statement needs to be processed, the statements must be entered as a statement block
by enclosing them in a set of braces ({}). You can also include the braces when a loop body
contains only one statement. By doing this, you won’t need to remember to enter the braces

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

209

The while Statement 	﻿

when statements are added subsequently to the loop body. Forgetting to enter the braces is a
common error made when typing the while statement in a program. Although not a require-
ment, using a comment (such as //end while) to mark the end of the while statement will
make your program easier to read and understand.

Also included in Figure 7-10 are examples of using the while statement. In Example 1,
the while (age > 0) clause tells the computer to repeat the loop body instructions
as long as (or while) the value in the age variable is greater than 0. The loop will stop
when the user enters either the number 0 or a negative number. In Example 2, the while
(toupper(anotherSale) == 'Y') clause indicates that the loop body instructions should
be repeated as long as the uppercase equivalent of the value in the anotherSale variable
is the letter Y. In this case, the loop will stop when the user enters anything other than the
letters Y or y.

How To �Use the while Statement

Syntax
while (condition)

either one statement or a statement block to be processed as long
 as the condition is true

Example 1

Example 2

Note: You could also write the clause in Example 2 as either
or

Figure 7-10   How to use the while statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

210

Figure 7-11 shows the IPO chart information and corresponding C++ instructions for the
commission program. The first cout statement prompts the user to enter the amount of the
first salesperson’s sales, and the cin >> sales; statement (the priming read) stores the user’s
response in the sales variable. The looping condition in the while clause compares the value
stored in the sales variable with the sentinel value (–1). If the variable does not contain the sen-
tinel value, the looping condition evaluates to true and the loop body instructions are processed.
Those instructions calculate and display the commission. They then use a cout statement to
prompt the user to enter the sales amount for the next salesperson and use a cin statement
(the update read) to store the user’s response in the sales variable. Each time the user enters
a sales amount, the looping condition in the while clause compares the entry to the sentinel
value. When the loop condition evaluates to false, which is when the sales variable contains the
sentinel value, the loop body instructions are skipped over and processing continues with the
instruction located immediately below the end of the loop.

IPO chart information
Input
 commission rate (20%)
 sales

Processing
 none

Output
 commission

Algorithm
1. enter the sales

2. repeat while (the sales are not equal to –1)
 calculate the commission by multiplying
 the sales by the commission rate
 display the commission

 enter the sales

 end repeat

C++ instructions

Figure 7-11   IPO chart information and C++ instructions for the commission program

The importance of the update read was mentioned earlier. If the loop body in Figure 7-11 does
not contain the cin >> sales; statement, the computer will process the loop body instruc-
tions indefinitely. This is because without that cin statement, there will be no way to change the
value stored in the sales variable once the loop body instructions are processed. A loop whose
instructions are processed indefinitely is referred to as either an endless loop or an infinite
loop. Usually, you can stop a program that contains an endless loop by pressing Ctrl+c (press
and hold down the Ctrl key as you tap the letter c, and then release both keys); you can also use
the Command Prompt window’s Close button.

The loop in
Figure 7-11 will
stop when the
sales amount is
equal to –1.0

because equal to is the
opposite of not equal to.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

211

Using Counters and Accumulators 	﻿

Figure 7-12 shows a sample run of the commission program. The program uses the fixed and
setprecision stream manipulators to display the commission amounts in fixed-point notation
with two decimal places.

Figure 7-12   A sample run of the commission program

Mini-Quiz 7-2
1.	 Write a C++ while clause that processes the loop body instructions as long as the value

in the ordered variable is greater than the number 100.

2.	 Write a C++ while clause that stops the loop when the value in the quantity variable
is less than the number 0. (Hint: Change the loop exit condition to a looping condition.)

3.	 Write a C++ while clause that processes the loop body instructions as long as the value
in the inStock variable is greater than the value in the reorder variable.

4.	 Write a C++ while clause that processes the loop body instructions as long as the value
in a char variable named letter is either Y or y.

5.	 Which of the following is a good sentinel value for a program that inputs a test score?

a.	 –9
b.	 32
c.	 45.5
d.	 7

Using Counters and Accumulators
Some algorithms require you to calculate a subtotal, a total, or an average. You make these
calculations using a repetition structure that includes a counter, an accumulator, or both. A
counter is a numeric variable used for counting something, such as the number of employees
paid in a week. An accumulator is a numeric variable used for accumulating (adding together)
something, such as the total dollar amount of a week’s payroll.

Two tasks are associated with counters and accumulators: initializing and updating. Initializing
means to assign a beginning value to the counter or accumulator. Typically, counters and
accumulators are initialized to the number 0. However, they can be initialized to any number,
depending on the value required by the algorithm. The initialization task is performed before the
loop is processed because it needs to be performed only once.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

212

Updating refers to the process of either adding a number to (called incrementing) or subtract-
ing a number from (called decrementing) the value stored in the counter or accumulator. The
number can be either positive or negative, integer or noninteger. A counter is always updated
by a constant value—typically the number 1. An accumulator, on the other hand, is usually
updated by a value that varies. Accumulators are normally updated by incrementing rather
than by decrementing. The assignment statement that updates a counter or an accumulator
is placed in the body of a loop because the update task must be performed each time the loop
body instructions are processed.

Game programs make extensive use of counters and accumulators. The partial game program
shown in Figure 7-13 uses a counter to keep track of the number of smiley faces that Eddie (the
character in the figure) destroys. After he destroys three smiley faces and then jumps through
the manhole, he advances to the next level in the game, as shown in the figure.

Problem specification
To advance to the next level in the game, Eddie must destroy the three smiley faces by jumping on
each one. He then must jump through the manhole.

1. initialize destroyed counter to 0
2. repeat while (destroyed counter is less than 3)
 jump on smiley face to destroy it
 add 1 to destroyed counter
 end repeat
3. jump into manhole to advance to the next level

Figure 7-13   Example of a partial game program that uses a counter
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Figure 7-14 shows two versions of the syntax for updating counters and two versions of the
syntax for updating accumulators. Both versions of the syntax for updating counters tell the
computer to add (or subtract) the constantValue to (from) the counterVariable first, and then
place the result back in the counterVariable. Likewise, both versions of the syntax for updating
accumulators tell the computer to add (or subtract) the value to (from) the accumulatorVariable
first and then place the result back in the accumulatorVariable.

Ch07-Eddie

counter counter

next levelinitialization task

update task

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

213

Using Counters and Accumulators 	﻿

In the next section, you will view a program that uses a counter, an accumulator, and a repetition
structure.

The Stock Price Program
Figure 7-15 shows the problem specification, IPO chart information, and C++ instructions for
a program that gets stock prices from the user. The program calculates the average stock price
and displays the result on the computer screen. Figure 7-16 shows the corresponding flowchart.
The program uses a counter (an int variable named numPrices) to keep track of the number
of stock prices the user enters; the counter variable is initialized to 0. The program also uses an
accumulator (a double variable named totalPrices) to add together (accumulate) the stock
prices; the accumulator variable is initialized to 0.0.

IPO chart information
Input
 price

Processing
 number of prices (counter)
 total prices (accumulator)

Output
 average price

Algorithm
1. enter the price

2. repeat while (the price is at least 0)

 add 1 to the number of prices

 add the price to the total prices

 enter the price

 end repeat
3. if (the number of prices is greater
 than 0)
 calculate the average price by
 dividing the total prices by the
 number of prices

 display the average price

 else
 display “No stock prices entered” message
end if

C++ instructions

Problem specification
Create a program that allows the user to enter the closing price of a specific stock for any number
of days. Use a negative number as the sentinel value. If the sentinel value is the first price the user
enters, display the “No stock prices entered” message on the screen. Otherwise, use a counter to
keep track of the number of prices entered and an accumulator to total the prices. When the user
has finished entering the prices, calculate the average price by dividing the accumulator’s value by
the counter’s value, and then display the average price on the screen.

Figure 7-15   Problem specification, IPO chart information, and C++ instructions for the stock price
program (continues)

How To �Update Counters and Accumulators

Syntax
counterVariable = counterVariable {+ | –} constantValue;
counterVariable {+= | –=} constantValue;
accumulatorVariable = accumulatorVariable {+ | –} value;
accumulatorVariable {+= | –=} value;

Counter examples

Accumulator examples

Figure 7-14   Syntax and examples of update statements for counters and accumulators

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

214

IPO chart information
Input
 price

Processing
 number of prices (counter)
 total prices (accumulator)

Output
 average price

Algorithm
1. enter the price

2. repeat while (the price is at least 0)

 add 1 to the number of prices

 add the price to the total prices

 enter the price

 end repeat
3. if (the number of prices is greater
 than 0)
 calculate the average price by
 dividing the total prices by the
 number of prices

 display the average price

 else
 display “No stock prices entered” message
end if

C++ instructions

Problem specification
Create a program that allows the user to enter the closing price of a specific stock for any number
of days. Use a negative number as the sentinel value. If the sentinel value is the first price the user
enters, display the “No stock prices entered” message on the screen. Otherwise, use a counter to
keep track of the number of prices entered and an accumulator to total the prices. When the user
has finished entering the prices, calculate the average price by dividing the accumulator’s value by
the counter’s value, and then display the average price on the screen.

Figure 7-15   Problem specification, IPO chart information, and C++ instructions for the stock price
program

(continued)

The loop in
Figure 7-15 will
stop when the
stock price is
less than 0.0

because less than is
the opposite of greater
than or equal to.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

215

Using Counters and Accumulators 	﻿

F T

T

start

price >=
0

F

stop

display average
price

number of
prices > 0

add 1 to the
number of prices

add price to total
pricesdisplay “No

stock prices
entered”

number of
prices = 0

enter price

average price =
total prices /

number of prices

total prices = 0

enter price

Figure 7-16   Flowchart for the stock price program

You can observe the way counters and accumulators are used in a program by desk-checking
the code shown earlier in Figure 7-15. You will do this using 78.75 and 80.05 as the stock prices
and –3 as the sentinel value. The average price should be $79.40.

After declaring and initializing the appropriate variables, the code prompts the user to enter
the first price and then stores the user’s response in the price variable. The while (price
>= 0.0) clause begins a pretest loop that repeats the loop body instructions as long as (or
while) the price variable contains a value that is greater than or equal to 0.0. The loop stops
when the price variable contains a sentinel value, which is any value that is less than 0.0.
(Unlike the loop in the commission program shown earlier in Figure 7-11, the loop in the stock
price program has more than one sentinel value.)

The current value in the price variable (78.75) is not less than 0.0, so the computer pro-
cesses the instructions in the loop body. The first two instructions update the counter by 1
and the accumulator by the value in the price variable, respectively. The desk-check table in
Figure 7-17 shows the updated values assigned to the counter and accumulator variables.

price numPrices totalPrices avgPrice
0.0 0 0.0 0.0
78.75 1 78.75

Figure 7-17   Desk-check table after the first update to the counter and accumulator variables

The “enter
price” parallelo-
gram above the
loop represents
the priming

read, and the one within
the loop represents the
update read.

Ch07-Stock Price

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

216

The last two instructions in the loop body prompt the user to enter the next price and then
store the user’s response (80.05) in the price variable. Next, the condition in the while
clause is reevaluated to determine whether the loop body instructions should be processed
again (a true condition) or skipped over (a false condition). Here again, the loop’s condition
evaluates to true. As a result, the first two instructions in the loop body update the counter and
accumulator. See Figure 7-18.

price numPrices totalPrices avgPrice
0.0 0 0.0 0.0
78.75 1 78.75
80.05 2 158.80

Figure 7-18   Desk-check table after the second update to the counter and accumulator variables

The last two instructions in the loop body prompt the user to enter the next price and then store
the user’s response (–3) in the price variable. The condition in the while (price >= 0.0)
clause is then reevaluated. This time, the condition evaluates to false because the value in
the price variable is not greater than or equal to 0.0. As a result, the loop body instructions
are skipped over and the loop ends; processing continues with the if statement immediately
following the loop.

The if statement’s condition verifies that the value stored in the counter variable (numPrices)
is greater than the number 0, which is the variable’s initial value. This verification is neces-
sary because the first instruction in the statement’s true path uses the numPrices variable
as the divisor when calculating the average price. Before using a variable as the divisor in an
expression, you should always verify that the variable contains a value other than 0. Division by 0
is not mathematically possible and will cause the program to end abruptly with an error.

Currently, the numPrices variable contains the number 2. Therefore, the instructions in the
if statement’s true path calculate the average price (79.40) and then display that amount on
the screen before the program ends. Figure 7-19 shows the completed desk-check table along
with two sample runs of the program. (The program uses the fixed and setprecision stream
manipulators to display the average price in fixed-point notation with two decimal places.)

price numPrices totalPrices avgPrice
 0.0 0 0.0 0.0
78.75 1 78.75 79.4
 80.05 2 158.80
 –3.0

Figure 7-19   Completed desk-check table and sample runs of the stock price program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

217

Counter-Controlled Pretest Loops 	﻿

Mini-Quiz 7-3
1.	 Which of the following is updated by a constant value?

a.	 accumulator
b.	 counter

2.	 Write a C++ assignment statement that updates the quantity counter variable by 10.

3.	 Write a C++ assignment statement that updates the total counter variable by –5.

4.	 Write a C++ assignment statement that updates the totalPurchases accumulator
variable by the value stored in the purchases variable.

Counter-Controlled Pretest Loops
In both the commission and stock price programs, the termination of the loop is determined
by a sentinel value that is entered by the user at the keyboard. Other loops, like the one in the
partial game program shown earlier in Figure 7-13, are controlled using a counter rather than a
sentinel value; such loops are referred to as counter-controlled loops.

Figure 7-20 shows the problem specification, IPO chart information, and C++ instructions for
a modified version of the stock price program. Unlike the loop in the previous version of the
program, which allows the user to enter as many prices as needed, the loop in this version uses
a counter (the numDays variable) to get only five prices from the user—one price for each of
the five days.

IPO chart information
Input
 price

Processing
 number of days (counter: 1 to 5)
 total prices (accumulator)

Output
 average price

Algorithm
1. repeat while (the number of days is
 less than 6)
 enter the price

 add 1 to the number of days

 add the price to the total prices
 end repeat

2. calculate the average price by
 dividing the total prices by (the
 number of days – 1)
3. display the average price

C++ instructions

Modified problem specification (original shown in Figure 7-15)
Create a program that allows the user to enter the closing price of a specific stock for each of five
days. Use a counter to keep track of the number of days and an accumulator to total the five
prices. Calculate the average price by dividing the accumulator’s value by a number that is one less
than the counter’s value, and then display the average price on the screen.

Figure 7-20   Problem specification, IPO chart information, and C++ instructions for the modified stock
price program (continues)

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

218

IPO chart information
Input
 price

Processing
 number of days (counter: 1 to 5)
 total prices (accumulator)

Output
 average price

Algorithm
1. repeat while (the number of days is
 less than 6)
 enter the price

 add 1 to the number of days

 add the price to the total prices
 end repeat

2. calculate the average price by
 dividing the total prices by (the
 number of days – 1)
3. display the average price

C++ instructions

Modified problem specification (original shown in Figure 7-15)
Create a program that allows the user to enter the closing price of a specific stock for each of five
days. Use a counter to keep track of the number of days and an accumulator to total the five
prices. Calculate the average price by dividing the accumulator’s value by a number that is one less
than the counter’s value, and then display the average price on the screen.

Figure 7-20   Problem specification, IPO chart information, and C++ instructions for the modified stock
price program

The program initializes the numDays counter variable to the number 1, which corresponds
to the first day. It also updates the variable by 1 (day) each time the loop instructions are
processed. The initializing and updating of the counter variable in counter-controlled loops
are comparable to the priming and update reads, respectively, in loops controlled by a
sentinel value.

The while (numDays < 6) clause indicates that the loop instructions should be repeated as
long as (or while) the number in the numDays counter variable is less than 6. The clause could
also be written as while (numDays <= 5). In either case, the loop will stop when the numDays
variable contains the number 6, which occurs after the loop instructions are processed five
times. Figure 7-21 shows the corresponding flowchart, and Figure 7-22 shows a completed
desk-check table using the following five stock prices: 78.75, 80.05, 81.35, 79.95, and 80.10.
Figure 7-22 also contains a sample run of the program.

number of
days < 6

T

start

F

stop

add 1 to the
number of daysdisplay

average
price

number of
days = 1

enter price

total prices = 0

add price to total
prices

average price = total
prices / (number of

days – 1)

Figure 7-21   Flowchart for the modified stock price program

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

219

The for Statement 	﻿

 price numDays totalPrices avgPrice
 0.0 1 0.0 0.0
78.75 2 78.75 80.04
 80.05 3 158.80
 81.35 4 240.15
79.95 5 320.10
 80.10 6 400.20

Figure 7-22   Completed desk-check table and sample run for the modified stock price program

The for Statement
Besides using the while statement to code pretest loops, you can also use the for statement.
However, the most common use of the for statement is to code counter-controlled pretest loops
because it provides a more compact and clearer way of writing that type of loop. As Figure 7-23
shows, the statement’s for clause contains three arguments separated by two semicolons; the
first and third arguments are optional.

For more
examples
of using
the while
statement,

see the Using the while
Statement section in the
Ch07WantMore.pdf file.

Using commas
rather than
semicolons is a
common error
made when

typing the for clause.

How To �Use the for Statement

Syntax
for ([initialization] condition; [update])

either one statement or a statement block to be processed as long as
 the condition is true

Example 1: displays the numbers 1, 2, and 3 on separate lines on the screen

Example 2: displays the numbers 3, 2, and 1 on separate lines on the screen

Note: The condition and update arguments in Example 1 can also be phrased as
 and , respectively. In Example 2, the condition and update arguments

can also be phrased as and , respectively.

Figure 7-23   How to use the for statement

semicolons

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

220

In most for clauses, the initialization argument creates and initializes a counter variable
that the computer uses to keep track of the number of times the loop body instructions are
processed. The variable is local to the for statement, which means it can be used only within
the statement’s loop body. The variable will be removed from the computer’s internal memory
when the loop ends.

The condition argument in the for clause specifies the condition that must be true for the loop
body instructions to be processed. The condition must be a Boolean expression, which is an
expression that evaluates to either true or false. The expression can contain variables, constants,
functions, arithmetic operators, comparison operators, and logical operators. The loop stops
when its condition evaluates to false. The for clause’s update argument usually contains an
expression that updates the counter variable specified in the initialization argument.

Following the for clause is the loop body, which contains the one or more statements that you
want the computer to repeat. If the loop body contains more than one statement, the statements
must be entered as a statement block by enclosing them in a set of braces ({}). However, you
can also include the braces even when the loop body contains only one statement, as shown in
Example 2 in Figure 7-23.

Figure 7-24 describes the way the computer processes the code shown in Example 1 in
Figure 7-23. The for statement in the example ends when the x variable contains the number 4
because that is the first integer that is not less than 4.

Example 1: displays the numbers 1, 2, and 3 on separate lines on the screen

Processing steps
1. The initialization argument () creates a variable named and initializes it to 1.
2. The condition argument () checks whether the variable’s value is less than 4. It is,
 so the statement in the loop body displays the variable’s value (1) on the screen.
3. The update argument () adds 1 to the contents of the variable, giving 2.
4. The condition argument checks whether the variable’s value is less than 4. It is, so the
 statement in the loop body displays the variable’s value (2) on the screen.
5. The update argument adds to the contents of the variable, giving 3.
6. The condition argument checks whether the variable’s value is less than 4. It is, so the
 statement in the loop body displays the variable’s value (3) on the screen.
7. The update argument adds 1 to the contents of the variable, giving 4.
8. The condition argument checks whether the variable’s value is less than 4. It’s not, so the
 loop ends. Processing continues with the statement following the end of the loop.

Figure 7-24   Processing steps for Example 1’s code

In the remaining sections in this chapter, you will view four programs that use the for
statement.

The Total Payroll Program
Figure 7-25 shows the problem specification, IPO chart information, and C++ instructions for a
program that displays a company’s total payroll. The for clause’s condition argument could also
be written as numStores < 4.

The condition
argument in
the for clause
is a looping
condition

because it specifies
the requirement for
repeating the loop
instructions.

Ch07-for Statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

221

The for Statement 	﻿

IPO chart information
Input
 store's payroll

Processing
 number of stores (counter: 1 to 3)

Output
 total payroll (accumulator)

Algorithm
1. repeat for (number of stores from 1 to 3)

 enter the store’s payroll

 add the store’s payroll to the total payroll
 end repeat
2. display the total payroll

C++ instructions

this variable is created and initialized in
the for clause

Problem specification
Create a program that allows the user to enter the payroll amount for each of a company’s three
stores. The program should calculate the total payroll and then display the result on the screen.
Use a counter to ensure that the user enters exactly three payroll amounts. Use an accumulator
to total the amounts.

Figure 7-25   Problem specification, IPO chart information, and C++ instructions for the total payroll program

Desk-checking the code shown in Figure 7-25 will help you understand how the for statement works.
You will desk-check the code using the following three payroll amounts: 15000, 25000, and 50000.

First, the code declares and initializes two int variables named storePayroll and
totalPayroll. Next, the for clause’s initialization argument creates an int variable named
numStores and initializes the variable to the number 1. The initialization argument is
processed only once, at the beginning of the loop. Figure 7-26 shows the desk-check table after
the declaration statements and initialization argument have been processed.

storePayroll totalPayroll numStores
 0 0 1

Figure 7-26   Results of processing the declaration statements and initialization argument

Next, the for clause’s condition argument is evaluated to determine whether the instructions in
the loop body should be processed (a true condition) or skipped over (a false condition). Notice
that, like the condition in a while statement, the condition in a for statement is evaluated
before the loop body instructions are processed. At this point, the numStores <= 3 condition
evaluates to true because the value in the numStores variable (1) is less than 3. As a result, the
computer processes the three statements contained in the body of the loop. Those statements
prompt the user to enter the amount of Store 1’s payroll, then store the user’s response (15000)
in the storePayroll variable, and finally add the value in the storePayroll variable (15000)
to the value in the totalPayroll accumulator variable (0); the sum of both numbers is 15000.

The loop in
Figure 7-25
will stop when
the value in the
numStores

variable is greater than
3 because greater than
is the opposite of less
than or equal to.

Ch07-Payroll

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

222

The for clause’s update argument is processed next. The update argument adds the number 1
to the value in the numStores variable, giving 2. Figure 7-27 shows the desk-check table after the
update argument is processed the first time.

storePayroll totalPayroll numStores
 0 0 1
 15000 15000 2

Figure 7-27   Desk-check table after the update argument is processed the first time

The for clause’s condition argument is reevaluated to determine whether the loop body instruc-
tions should be processed again or skipped over. Unlike the initialization argument, which is pro-
cessed only once, the condition argument is processed with each repetition (or iteration) of the loop.
Currently, the numStores variable contains the number 2. Therefore, the numStores <= 3 condi-
tion evaluates to true, and the statements in the loop body are processed again. Those statements
prompt the user to enter the amount of Store 2’s payroll, then store the user’s response (25000) in
the storePayroll variable, and finally add the value in the storePayroll variable (25000) to the
value in the totalPayroll accumulator variable (15000); the sum of both numbers is 40000.

The for clause’s update argument is processed next. Like the condition argument, the update
argument is processed with each repetition of the loop. The update argument adds the number
1 to the value in the numStores variable, giving 3. Figure 7-28 shows the desk-check table after
the update argument is processed the second time.

storePayroll totalPayroll numStores
 0 0 1
 15000 15000 2
 25000 40000 3

Figure 7-28   Desk-check table after the update argument is processed the second time

The for clause’s condition argument is reevaluated again. The condition evaluates to true
because the numStores variable contains the number 3. Therefore, the statements in the loop
body are processed again. Those statements prompt the user to enter the amount of Store 3’s
payroll, then store the user’s response (50000) in the storePayroll variable, and finally add
the value in the storePayroll variable (50000) to the value in the totalPayroll accumula-
tor variable (40000); the sum of both numbers is 90000. The for clause’s update argument
then adds the number 1 to the value in the numStores variable, giving 4. Figure 7-29 shows the
desk-check table after the update argument is processed the third (and last) time.

storePayroll totalPayroll numStores
 0 0 1
 15000 15000 2
 25000 40000 3
 50000 90000 4

Figure 7-29   Desk-check table after the update argument is processed the third time

The for clause’s condition argument is reevaluated again. At this point, the condition evaluates
to false because the numStores variable contains the number 4. Therefore, the instructions in
the loop body are skipped over, and the loop ends. As a result, the computer removes the for
statement’s local variable, numStores, from internal memory. Processing continues with the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

223

The for Statement 	﻿

instruction located immediately below the end of the loop. Notice that the loop stops when
the numStores variable contains the number 4, which is the first integer that is not less than or
equal to 3. Figure 7-30 shows a sample run of the total payroll program.

Figure 7-30   A sample run of the total payroll program

The Tip Program
Figure 7-31 shows the problem specification, IPO chart information, and C++ instructions for
a program that displays three suggested amounts to tip a waiter on a restaurant bill. Notice that
for statement’s rate variable counts from 0.1 to 0.2 in increments of 0.05.

IPO chart information
Input
 bill
 rate (counter: 10% to 20% in increments of 5%)

Processing
 none

Output
 tip

Algorithm
1. enter the bill

2. repeat for (rate from 10% to 20% in
 increments of 5%)
 calculate tip by multiplying
 the bill by the rate

 display the rate and tip

 end repeat

C++ instructions

this variable is created and initialized
in the for clause

Problem specification
Create a program that allows the user to enter the amount of a restaurant bill. The program should
calculate and display the suggested amounts to tip a waiter using rates of 10%, 15%, and 20%.
Use a counter to keep track of the three rates.

Figure 7-31   Problem specification, IPO chart information, and C++ instructions for the tip program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

224

Figure 7-32 shows the completed desk-check table using a restaurant bill of $90.50. Notice that
the for loop ends when the value stored in the rate variable is 0.25. The figure also includes a
sample run of the program.

 bill tip rate
 0.0 0.0 0.1
 90.50 9.05 0.15
 13.58 0.20
 18.10 0.25

Figure 7-32   Desk-check table and a sample run of the tip program

Many programmers use a hexagon, which is a six-sided figure, to represent the for clause in a
flowchart; the hexagon contains four items. Going counterclockwise from the top of the hexagon
shown in Figure 7-33, the four items are the name of the counter variable (rate), the variable’s
initial value (0.1), the value used to update the variable (0.05), and the last value for which the
condition will evaluate to true (0.2). The <= sign that precedes the 0.2 indicates that the loop
body instructions will be processed as long as the rate variable’s value is less than or equal to 0.2.

display the
rate and tip0.1

rate

F

start

T

stop

tip = bill * rate<= 0.2
.05

enter the
bill

Figure 7-33   Tip program’s algorithm shown in flowchart form

Another Version of the Commission Program
Although the for statement is more commonly used to code counter-controlled loops, it can
be used to code any pretest loop in C++, even the pretest loop in the commission program
that you viewed earlier in the chapter. That program’s loop calculates and displays the commis-
sion amount for as many salespeople as needed without having to run the program again. The
loop stops when the user enters –1 (the sentinel value). Figure 7-34 shows how you would code
the loop using the for statement rather than the while statement used in Figure 7-11. The
modifications made to the original code are shaded in the figure.

Some pro-
grammers use
the hexagon
to represent
any counter-

controlled loop, even
those coded with the
while statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

225

The for Statement 	﻿

IPO chart information
Input
 commission rate (20%)
 sales

Processing
 none

Output
 commission

Algorithm
1. enter the sales

2. repeat while (the sales are not equal to –1)

 calculate the commission by multiplying
 the sales by the commission rate

 display the commission

 enter the sales

 end repeat

C++ instructions

Problem specification
Create a program that calculates the commission for each of a company’s salespeople. The
commission is calculated by multiplying the salesperson’s sales amount by 20%.

Figure 7-34   IPO chart information and modified C++ instructions for the commission program

Unlike the for statements in the total payroll and tip programs, the for statement in the
commission program contains only the condition argument and is controlled by the user at the
keyboard instead of by a counter. Although the initialization and update arguments are omitted
from the for clause, the semicolons after the initialization and condition arguments must
be included. Figure 7-35 lists the steps the computer follows when processing the program’s
code using the following sales amounts: 1200, 800, and –1 (the sentinel value). The figure also
includes a sample run of the program.

Processing steps
1. The statement creates the named constant and initializes it to 0.2.
2. The declaration statements create the and variables and initialize them to
 0 and 0.0, respectively.
3. The first statement prompts the user to enter the first sales amount, and the
 statement stores the user’s response (1200) in the variable.
4. The clause’s condition argument () checks whether the variable’s
 value is not equal to –1. The condition evaluates to true, so the statements in the loop body
 calculate and display the commission (240). They also prompt the user for the next sales amount
 and store the user’s response (800) in the variable.
5. The clause’s condition argument checks whether the variable’s value is not equal
 to –1. The condition evaluates to true, so the statements in the loop body calculate and display
 the commission (160). They also prompt the user for the next sales amount and store the user’s
 response (–1) in the variable.
6. The clause’s condition argument checks whether the variable’s value is not equal
 to –1. In this case, the condition evaluates to false, so the loop ends. Processing
 continues with the statement following the end of the loop.

Figure 7-35   Processing steps and a sample run of the commission program shown in Figure 7-34 (continues)

semicolon after the
initialization argument

semicolon after the
condition argument

condition argument

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

226

Processing steps
1. The statement creates the named constant and initializes it to 0.2.
2. The declaration statements create the and variables and initialize them to
 0 and 0.0, respectively.
3. The first statement prompts the user to enter the first sales amount, and the
 statement stores the user’s response (1200) in the variable.
4. The clause’s condition argument () checks whether the variable’s
 value is not equal to –1. The condition evaluates to true, so the statements in the loop body
 calculate and display the commission (240). They also prompt the user for the next sales amount
 and store the user’s response (800) in the variable.
5. The clause’s condition argument checks whether the variable’s value is not equal
 to –1. The condition evaluates to true, so the statements in the loop body calculate and display
 the commission (160). They also prompt the user for the next sales amount and store the user’s
 response (–1) in the variable.
6. The clause’s condition argument checks whether the variable’s value is not equal
 to –1. In this case, the condition evaluates to false, so the loop ends. Processing
 continues with the statement following the end of the loop.

Figure 7-35   Processing steps and a sample run of the commission program shown in Figure 7-34

Whether you use the for statement or the while statement to code the pretest loop in the
commission program is a matter of personal preference. However, most programmers use the
for statement only when they know the exact number of times they want the loop instructions
repeated. For all other pretest loops, they typically use the while statement.

The Even Integers Program
Figure 7-36 shows the problem specification for the even integers program, which should calcu-
late and display the sum of three even integers entered by the user. Because the program needs
to calculate the sum of three numbers, it may seem logical to use the for statement to code the
program’s loop, as shown in the figure. However, as the sample runs of the program show, the
for loop will not give you the correct results if at least one of the numbers entered by the user is
not even. This is because the for loop’s update argument will increase the counter variable (x)
by 1 whether the user’s entry is even or odd.

Problem specification
Create a program that calculates and displays the sum of three even integers entered by the user.

Incorrect code using the statement

Figure 7-36   Problem specification, code, and sample runs of the incorrect even integers program (continues)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

227

The for Statement 	﻿

Problem specification
Create a program that calculates and displays the sum of three even integers entered by the user.

Incorrect code using the statement

Figure 7-36   Problem specification, code, and sample runs of the incorrect even integers program

You may be tempted to fix the code by modifying the else portion of the if statement, as
shown in Figure 7-37. However, manipulating the value of a for statement’s counter variable
should be avoided because it can lead to errors that are difficult to locate. A better way to fix the
program is to change the for statement to a while statement, as shown in the figure.

Incorrect way to fix the program

Correct way to fix the program

Figure 7-37   Incorrect and correct ways to fix the even integers program (continues)

(continued)

correct output

incorrect output because
it’s the sum of only two
even integers

don’t modify the value in a for
statement’s counter variable

replace the for statement
with the while statement

For more
examples
of using
the for
statement,

see the Using the for
Statement section in the
Ch07WantMore.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

228

Incorrect way to fix the program

Correct way to fix the program

Figure 7-37   Incorrect and correct ways to fix the even integers program

Mini-Quiz 7-4
1.	 A program declares an int variable named evenNum and initializes it to 2. Write a C++

while loop that uses the evenNum variable to display the even integers between 1 and 9.

2.	 Which of the following for clauses processes the loop instructions as long as the x
variable’s value is less than or equal to the number 100?

a.	 for (int x = 10; x <= 100; x = x + 10)

b.	 for (int x = 10, x <= 100, x = x + 10)

c.	 for (int x == 10; x <= 100; x = x + 10)

d.	 for (int x = x + 10; x <= 100; x = 10)

3.	 The computer will stop processing the loop associated with the for clause from
Question 2 when the x variable contains the number _________________________.

a.	 100
b.	 111
c.	 101
d.	 110

4.	 Write a for clause that processes the loop instructions as long as the value stored in
the x variable is greater than the number 0. The x variable should be an int variable.
Initialize the variable to the number 25, and update it by –5 with each repetition of
the loop.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

(continued)

correct output

correct output because it’s the
sum of the three even integers

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

229

The for Statement 	﻿

5.	 The computer will stop processing the loop associated with the for clause from
Question 4 when the x variable contains the number _________________________.

6.	 Write a for statement that displays the even integers between 2 and 9 (inclusive) on the
screen. Use num as the name of the counter variable.

LAB 7-1  Stop and Analyze
Study the program shown in Figure 7-38, and then answer the questions. The
program calculates and displays the average number of text messages sent each day
for seven days.

Figure 7-38   Code for Lab 7-1

QUESTIONS

1.	 What is the name of the program’s counter variable? What is the name of its
accumulator variable?

2.	 What is another way of phrasing the for clause’s condition argument?

3.	 Why is the for statement’s counter variable declared at the beginning of the program (in
Line 11) rather than in the for clause? Would the program work correctly if the variable
was declared in the for clause?

The answers
to the labs are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

230

4.	 Desk-check the program using the following data: 76, 80, 100, 43, 68, 70, and 79. What is
the average number of text messages, rounded to the nearest whole number?

5.	 Follow the instructions for starting C++ and viewing the Lab7-1.cpp file, which is
contained in either the Cpp8\Chap07\Lab7-1 Project folder or the Cpp8\Chap07 folder.
(Depending on your C++ development tool, you may need to open Lab 7-1’s project/
solution file first.) Run the program, and then enter the data used to desk-check the
program in Question 4. What does the program display as the average number of text
messages? (The program’s output should agree with the results of your desk-check from
Question 4.)

6.	 Change Line 11 to a comment. Also change the initialization argument in the for clause
to int day = 1. Save the program. Then, depending on the C++ development tool
you are using, either build or compile the program. Explain why the build or compile
operation was unsuccessful.

7.	 Delete the two forward slashes from Line 11. Also delete the int day = 1 initialization
argument from the for clause.

8.	 Save and then run the program. Enter your own data. Does the program work correctly?
If not, modify the code appropriately, and then save and run the program again. Use the
data from Question 4 to test the program.

LAB 7-2  Plan and Create
In this lab, you will plan and create an algorithm for the problem specification shown
in Figure 7-39.

Problem specification
Create a program that displays the number of years required for a company’s
sales amount to reach at least $150,000, using the current year’s sales amount
and a 5.5% growth rate per year. The program should also display the sales
amount at that time.

Figure 7-39   Problem specification for Lab 7-2

First, analyze the problem, looking for the output first and then for the input. In this case, the
user wants the program to display two items: the number of years it will take for a company’s
sales to reach at least $150,000, and the sales amount at that time. The input is the growth
rate and the sales amount for the current year. The program will use one processing item: the
annual increase.

Next, plan the algorithm. Recall that most algorithms begin with an instruction to enter the
input items into the computer, followed by instructions that process the input items, typically
including the items in one or more calculations. Most algorithms end with one or more instruc-
tions that display, print, or store the output items. Figure 7-40 shows the completed IPO chart
for the sales problem.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

231

The for Statement 	﻿

Input Processing Output
growth rate (5.5%) Processing items: number of years (counter)
sales annual increase sales

 Algorithm:
 1. enter the sales
 2. repeat while (sales < 150000)
 calculate the annual increase by multiplying
 the sales by the growth rate

 add the annual increase to the sales

 add 1 to the number of years
 end repeat
 3. display the number of years and the sales

Figure 7-40   Completed IPO chart for the sales problem

Recall that the third step in the problem-solving process is to desk-check the algorithm.
Figure 7-41 shows the completed desk-check table using 125000 as the current sales amount.
According to the table, it will take four years for the company to reach its sales goal of at
least $150,000.

annual increase
 6875.0
 7253.12
 7652.05
 8072.91

growth rate
0.055

 sales
 125000.0
 131875.0
 139128.12
146780.17
 154853.08

number of years
1
2
3
4

Figure 7-41   Completed desk-check table for the sales problem’s algorithm

The fourth step in the problem-solving process is to code the algorithm into a program. You
begin by declaring memory locations that will store the values of the input, processing (if any),
and output items. The growth rate will be stored in a double named constant because its
value (0.055) will not change while the program is running. The remaining input, processing,
and output items will be stored in variables to allow their values to change during runtime.
The sales and annual increase amounts may contain a decimal point, so their variables will
be declared using the double data type. The number of years will always be an integer, so its
variable will be declared using the int data type. Figure 7-42 shows the IPO chart information
and corresponding C++ instructions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

232

IPO chart information
Input
 growth rate (5.5%)
 sales

Processing
 annual increase

Output
 number of years (counter)
 sales

Algorithm
1. enter the sales
2. repeat while (sales < 150000)

 calculate the annual increase by
 multiplying the sales by the growth rate

 add the annual increase to the sales

 add 1 to the number of years
 end repeat
3. display the number of years and the sales

C++ instructions

declared in the Input section

Figure 7-42   IPO chart information and C++ instructions for the sales program

The fifth step in the problem-solving process is to desk-check the program. You begin by plac-
ing the names of the declared variables and named constants (if any) in a new desk-check table,
along with their initial values. You then desk-check the remaining C++ instructions in order,
recording in the desk-check table any changes made to the variables. Figure 7-43 shows the
completed desk-check table for the sales program. The results agree with those shown in the
algorithm’s desk-check table in Figure 7-41.

annualIncrease
0.0

6875.0
7253.12

 7652.05
8072.91

GROWTH_RATE
0.055

sales
0.0

125000.0
 131875.0

 139128.12
146780.17
154853.08

years
0
1
2
3
4

Figure 7-43   Completed desk-check table for the sales program

The final step in the problem-solving process is to evaluate and modify (if necessary) the
program. Recall that you evaluate a program by entering its instructions into the computer and

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

233

The for Statement 	﻿

then using the computer to run (execute) it. While the program is running, you enter the same
sample data used when desk-checking the program.

DIRECTIONS

1.	 Follow the instructions for starting your C++ development tool. Depending on the
development tool you are using, you may need to create a new project; if so, name
the project Lab7-2 Project, and save it in the Cpp8\Chap07 folder. Enter the instruc-
tions shown in Figure 7-44 in a source file named Lab7-2.cpp. (Do not enter the line
numbers.) Save the file in either the project folder or the Cpp8\Chap07 folder. Now
follow the appropriate instructions for running the Lab7-2.cpp file. Test the program
using 125000 as the current sales amount. If necessary, correct any bugs (errors) in
the program.

Figure 7-44   Sales program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

234

LAB 7-3  Modify
If necessary, create a new project named Lab7-3 Project, and save it in the
Cpp8\Chap07 folder. Enter (or copy) the Lab7-1.cpp instructions into a new
source file named Lab7-3.cpp. Change Lab7-1.cpp in the first comment to
Lab7-3.cpp. Change the for statement to a while statement. Test the program
using the following data: 76, 80, 100, 43, 68, 70, and 79.

LAB 7-4  What’s Missing?
The program in this lab should display the average electric bill. Start your C++
development tool, and view the Lab7-4.cpp file, which is contained in either the
Cpp8\Chap07\Lab7-4 Project folder or the Cpp8\Chap07 folder. (Depending on your
C++ development tool, you may need to open Lab7-4’s project/solution file first.)

Put the C++ instructions in the proper order, and then determine the one or more missing
instructions. Test the program using the following monthly electric bills: 124.89, 110.65, 99.43,
100.35, and –1 (the sentinel value).

LAB 7-5  Desk-Check
The code shown in Figure 7-45 should display the numbers 2, 4, 6, 8, 10, and 12.
Desk-check the code. Did your desk-check reveal any errors in the code? If so,
correct the code, and then desk-check it again.

for (int number = 2; number < 12; number += 2)
	 cout << number << endl;
//end for

Figure 7-45   Code for Lab 7-5

LAB 7-6  Debug
Follow the instructions for starting C++ and viewing the Lab7-6.cpp file, which is con-
tained in either the Cpp8\Chap07\Lab7-6 Project folder or the Cpp8\Chap07 folder.
(Depending on your C++ development tool, you may need to open Lab 7-6’s project/
solution file first.) Run the program. When you are prompted to enter a price, type

15.45, and press Enter. The “Next price:” prompt appears over and over again in the Command
Prompt window, as shown in Figure 7-46. This is a result of the computer repeatedly processing the
cout << “Next price: ”; statement contained in the body of the while loop, and it indicates
that the program contains an endless (or infinite) loop. You can stop an endless loop by pressing
Ctrl+c (press and hold down the Ctrl key as you tap the letter c, and then release both keys). Or,
you can use the Close button on the Command Prompt window’s title bar. Use either method to
stop the endless loop. Debug the program and then test it appropriately.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

235

Chapter Summary ﻿ 	

Figure 7-46   Command Prompt window showing that the program is in an endless loop

Chapter Summary

You use the repetition structure, also called a loop, when you need the computer to repeatedly
process one or more program instructions.

A repetition structure can be either a pretest loop or a posttest loop. In a pretest loop,
the loop condition is evaluated before the instructions within the loop are processed. In a
posttest loop, which is covered in Chapter 8, the evaluation occurs after the instructions
within the loop are processed. Of the two types of loops, the pretest loop is the most
commonly used.

The condition appears at the beginning of a pretest loop and determines whether the
instructions within the loop, referred to as the loop body, are processed. The loop’s condi-
tion must result in a true or false answer only. When the condition evaluates to true, the
instructions listed in the loop body are processed; otherwise, the loop body instructions are
skipped over.

Some loops require the user to enter a special value, called a sentinel value, to end the loop. The
sentinel value should be easily distinguishable from the valid data recognized by the program.
Other loops are terminated through the use of a counter.

The input instruction that appears above the pretest loop’s condition is referred to as the
priming read and gets only the first value from the user. The input instruction that appears
within the loop gets the remaining values (if any) and is referred to as the update read.

In most flowcharts, a diamond is used to represent a repetition structure’s condition. The
diamond is called the decision symbol.

Counters and accumulators are used within a repetition structure to calculate subtotals,
totals, and averages. All counters and accumulators must be initialized and updated.
Counters are updated by a constant value, whereas accumulators are updated by an
amount that varies.

the text in your title
bar will be different

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

236

Many programmers use a hexagon to represent the for clause in a for statement.

You can use either the while statement or the for statement to code a pretest loop in C++.

Key Terms
Accumulator—a numeric variable used for accumulating (adding together) something

Counter—a numeric variable used for counting something

Counter-controlled loops—loops whose processing and termination are controlled by a counter
variable

Decrementing—decreasing a value

Endless loop—a loop whose instructions are processed indefinitely; also called an infinite loop

for statement—a C++ statement that can be used to code a pretest loop

Incrementing—increasing a value

Infinite loop—another name for an endless loop

Initializing—the process of assigning a beginning value to a memory location

Loop—another name for the repetition structure

Loop body—the instructions within a loop

Loop exit condition—the requirement that must be met for the computer to stop processing the
loop body instructions

Looping condition—the requirement that must be met for the computer to continue processing
the loop body instructions

Posttest loop—a loop whose condition is evaluated after the instructions in its loop body are
processed

Pretest loop—a loop whose condition is evaluated before the instructions in its loop body are
processed

Priming read—the input instruction that appears above the loop that it controls; used to get the
first input item from the user

Repetition structure—the control structure used to repeatedly process one or more program
instructions; also called a loop

Sentinel values—values that are used to end loops; also called trip values or trailer values

Update read—the input instruction that appears within a loop and is associated with the
priming read

Updating—the process of adding a number to the value stored in a counter or accumulator
variable

while statement—a C++ statement that can be used to code a pretest loop

Review Questions
Refer to Figure 7-47 to answer Review Questions 1 through 4.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

237

Review Questions 	

F T

A

F

T

B

F T

C

F

F

T

T

D

Figure 7-47

1.	 In addition to the sequence structure, which of the following control structures are used
in flowchart A in Figure 7-47?

a.	 selection
b.	 repetition
c.	 both selection and repetition

2.	 In addition to the sequence structure, which of the following control structures are used
in flowchart B in Figure 7-47?

a.	 selection
b.	 repetition
c.	 both selection and repetition

3.	 In addition to the sequence structure, which of the following control structures are used
in flowchart C in Figure 7-47?

a.	 selection
b.	 repetition
c.	 both selection and repetition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

238

4.	 In addition to the sequence structure, which of the following control structures are
used in flowchart D in Figure 7-47?

a.	 selection
b.	 repetition
c.	 both selection and repetition

5.	 Which of the following indicates that the loop should stop when the value in the
quantity variable is less than the number 50?

a.	 while (quantity >= 50)

b.	 while (quantity < 50)

c.	 while (quantity !> 50)

d.	 while (quantity <= 50)

6.	 Which of the following is a good sentinel value for a program that allows the user to
enter a person’s age?

a.	 –4

b.	 350

c.	 999

d.	 all of the above

7.	 Values that are used to end loops are referred to as _____________________ values.

a.	 closing

b.	 ending

c.	 sentinel

d.	 stop

8.	 A program allows the user to enter one or more numbers. The first input instruction
will get the first number only and is referred to as the _____________________ read.

a.	 entering

b.	 initializer

c.	 initializing

d.	 priming

9.	 How many times will the computer process the cout statement in the following code?

int numTimes = 1;
while (numTimes > 5)
{
 cout << numTimes << endl;
 numTimes += 1;
} //end while

a.	 0

b.	 1

c.	 3

d.	 4

10.	 How many times will the computer process the cout statement in the following code?

for (int numTimes = 1; numTimes < 10; numTimes += 2)
 cout << numTimes << endl;
//end for

a.	 0

b.	 5

c.	 6

d.	 9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

239

Exercises 	

11.	 What value stops the loop in Review Question 10?

a.	 6

b.	 9

c.	 10

d.	 11

12.	 How many times will the computer process the cout statement in the following code?

for (int numTimes = 4; numTimes <= 10; numTimes += 1)
 cout << numTimes << endl;
//end for

a.	 0

b.	 7

c.	 10

d.	 11

13.	 What value stops the loop in Review Question 12?

a.	 4

b.	 9

c.	 10

d.	 11

14.	 Which of the following updates the total accumulator variable by the value in the
sales variable?

a.	 total = total + sales;

b.	 total = sales + total;

c.	 total += sales;

d.	 all of the above

15.	 Which of the following statements can be used to code a loop whose instructions you
want processed 10 times?

a.	 for

b.	 repeat

c.	 while

d.	 either a or c

Exercises

Pencil and Paper

1.	 Complete a desk-check table for the code shown in Figure 7-48. What will the code
display on the computer screen? What value stops the loop? (The answers to TRY THIS
Exercises are located at the end of the chapter.)

Figure 7-48

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

240

2.	 Complete a desk-check table for the code shown in Figure 7-49. What will the code
display on the computer screen? What value stops the loop? (The answers to TRY
THIS Exercises are located at the end of the chapter.)

Figure 7-49

3.	 Rewrite the code shown in Figure 7-48 to use the for statement.

4.	 Rewrite the code shown in Figure 7-49 to use the while statement.

5.	 Write an assignment statement that updates a counter variable named numEmployees
by 1.

6.	 Write an assignment statement that updates an accumulator variable named
totalPay by the value in the grossPay variable.

7.	 Write a C++ while clause that processes the loop instructions as long as the value in
the age variable is greater than the number 18.

8.	 Write a C++ for clause that processes the loop instructions 10 times. Use numTimes
as the counter variable’s name.

9.	 Figure 7-23 in the chapter showed two examples of the for statement. List the
processing steps for the code shown in Example 2, using Figure 7-24 as a guide.

10.	 Write a C++ while clause that stops the loop when the value in the inStock variable
is less than or equal to the value in the reorder variable.

11.	 Write an assignment statement that updates a counter variable named quantity by –5.

12.	 Write an assignment statement that subtracts the contents of the salesReturns
variable from the sales accumulator variable.

13.	 Modify the solution shown earlier in Figure 7-2. The solution should now keep track
of the number of times Sahirah’s laser beam missed the spider. After saying “You
are safe now. The spider is dead.”, Sahirah should say one of the following: “I got him
immediately.”, “I missed him one time.”, or “I missed him x times.” (where x is the value
in the counter).

Computer

14.	 Create a program that allows the user to enter any number of integers. The program
should display the sum of the integers. Use the while statement and a negative num-
ber as the sentinel value. If necessary, create a new project named TryThis14 Project,
and save it in the Cpp8\Chap07 folder. Enter the C++ instructions into a source file
named TryThis14.cpp. Also enter appropriate comments and any additional instruc-
tions required by the compiler. Test the program appropriately. (The answers to TRY
THIS Exercises are located at the end of the chapter.)

TRY THIS

MODIFY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

241

Exercises 	

15.	 Create a program that allows the user to enter the ages (in years) of five people. The
program should display the average age. Use the for statement. Display the average age
with one decimal place. If necessary, create a new project named TryThis15 Project, and
save it in the Cpp8\Chap07 folder. Enter the C++ instructions into a source file named
TryThis15.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Test the program using the following ages: 23, 31, 37, 19, and
43. (The answers to TRY THIS Exercises are located at the end of the chapter.)

16.	 In this exercise, you will modify the tip program shown earlier in Figure 7-31. Follow
the instructions for starting C++ and viewing the ModifyThis16.cpp file, which is con-
tained in either the Cpp8\Chap07\ModifyThis16 Project folder or the Cpp8\Chap07
folder. (You may need to open the project/solution file first.) Change the for statement
to a while statement. Save and then run the program. Test the program using 90.50 as
the restaurant bill. The three tips should appear as shown earlier in Figure 7-32.

17.	 In this exercise, you will modify the sales program from Lab7-2. If necessary, create a
new project named ModifyThis17 Project, and save it in the Cpp8\Chap07 folder. Enter
(or copy) the Lab7-2.cpp instructions into a new source file named ModifyThis17.cpp.
Change Lab7-2.cpp in the first comment to ModifyThis17.cpp. In addition to the
current output, the program should also display the annual increase amounts. Display
each amount on a separate line, using the message “Year x increase: $y”, in which x is the
year number and y is the increase amount. The increase amounts should be displayed
with no decimal places. Save and then run the program. Enter 125000 as the current
year’s sales. (Hint: The first line in the output should say “Year 1 increase: $6875”.)

18.	 Create a program that displays the weekly gross pay for any number of employees. The
user will input the number of hours the employee worked and the employee’s hourly
rate. Employees working more than 40 hours receive time and one-half for the hours
worked over 40. If necessary, create a new project named Introductory18 Project, and
save it in the Cpp8\Chap07 folder. Enter the C++ instructions into a source file named
Introductory18.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Save, run, and test the program.

19.	 Create a program that a teacher can use to enter the midterm and final test scores for
any number of students. Each test is worth 200 points. The program should display
each student’s grade, which is based on the total points the student earned, as indicated
in Figure 7-50. If necessary, create a new project named Introductory19 Project, and
save it in the Cpp8\Chap07 folder. Enter the C++ instructions into a source file named
Introductory19.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Save, run, and test the program.

Total points
360 – 400
320 – 359
280 – 319
240 – 279
below 240

Grade
A
B
C
D
F

Figure 7-50

TRY THIS

MODIFY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

242

20.	 Create a program that displays a multiplication table similar to the one shown in
Figure 7-51. If necessary, create a new project named Introductory20 Project, and save
it in the Cpp8\Chap07 folder. Enter your C++ instructions into a source file named
Introductory20.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Save, run, and test the program.

Figure 7-51

21.	 A thrift store discounts the price of its items using rates of 10% through 40% in
increments of 5%. Create a program that allows the store clerk to enter an item’s
original price. The program should display the seven discount amounts and discounted
prices. If necessary, create a new project named Intermediate21 Project, and save
it in the Cpp8\Chap07 folder. Enter your C++ instructions into a source file named
Intermediate21.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Save, run, and test the program.

22.	 Baxter Skating Rink holds a weekly ice-skating competition. Competing skaters must per-
form a two-minute program in front of a panel of judges. The number of judges varies from
week to week. At the end of a skater’s program, each judge assigns a score of 0 through
10 to the skater. Create a program that allows the rink manager to enter each judge’s
score for a specific skater. The program should display the number of scores entered, the
skater’s total score, and the skater’s average score. If necessary, create a new project named
Intermediate22 Project, and save it in the Cpp8\Chap07 folder. Enter the C++ instructions
into a source file named Intermediate22.cpp. Also enter appropriate comments and any
additional instructions required by the compiler. Save, run, and test the program.

23.	 Create a program that allows the user to enter the gender (either F or M) and GPA
(0.0 through 4.0) for any number of students. The program should calculate and display
the average GPA for all students, the average GPA for male students, and the average GPA
for female students. If necessary, create a new project named Intermediate23 Project, and
save it in the Cpp8\Chap07 folder. Enter the C++ instructions into a source file named
Intermediate23.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Save, run, and test the program.

24.	 Create a program that displays the ending balance in a savings account, given the begin-
ning balance, the deposit amounts, and the withdrawal amounts. Use two loops in the
program: one to get the deposit amounts, and the other to get the withdrawal amounts.

a.	 Create an IPO chart for the problem, and then desk-check the algorithm two times,
using the data shown in Figure 7-52.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

243

Exercises 	

b.	 List the input, processing, and output items, as well as the algorithm, in a chart similar
to the one shown earlier in Figure 7-42. Then code the algorithm into a program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Advanced24 Project, and save it in

the Cpp8\Chap07 folder. Enter your C++ instructions into a source file named
Advanced24.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Display the ending balance with two decimal places.

e.	 Save and then run the program. Test the program using the same data used to desk-
check the program.

 First desk-check Second desk-check
Beginning balance: 2456.75 9855.89
Deposits: 200, 56.50, 25.78, 3.50 1200, 75
Withdrawals: 25, 100 900.75

Figure 7-52

25.	 In this exercise, you create a program for the sales manager at Computer Haven, a
small business that offers motivational seminars to local companies. Figure 7-53 shows
the charge for attending a seminar. Notice that the charge per person depends on the
number of people the company registers. For example, the cost for four registrants is
$400; the cost for two registrants is $300. The program should allow the sales manager
to enter the number of registrants for as many companies as needed. When the sales
manager has finished entering the data, the program should calculate and display the
total number of people registered, the total charge for those registrants, and the average
charge per registrant. For example, if one company registers four people and another
company registers two people, the total number of people registered is six, the total
charge is $700, and the average charge per registrant is $116.67.

Number of people a company registers Charge per person ($)
1 – 3 150
4 – 9 100
10 or more 90

Figure 7-53

a.	 Create an IPO chart for the problem, and then desk-check the algorithm appropriately.
b.	 List the input, processing, and output items, as well as the algorithm, in a chart similar

to the one shown earlier in Figure 7-42. Then code the algorithm into a program.
c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Advanced25 Project, and save it in

the Cpp8\Chap07 folder. Enter your C++ instructions into a source file named
Advanced25.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Display the average charge with two decimal places.

e.	 Save and then run the program. Test the program using the same data used to
desk-check the program.

26.	 Create a program that displays the first 10 Fibonacci numbers (1, 1, 2, 3, 5, 8, 13, 21,
34, and 55). Notice that beginning with the third number in the series, each Fibonacci
number is the sum of the prior two numbers. For example, 2 is the sum of 1 plus 1, 3 is
the sum of 1 plus 2, 5 is the sum of 2 plus 3, and so on. Write two versions of the code:
one using the while statement, and the other using the for statement. If necessary,

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

244

create a new project named Advanced26 Project, and save it in the Cpp8\Chap07
folder. Enter the C++ instructions into a source file named Advanced26.cpp. Also enter
appropriate comments and any additional instructions required by the compiler. Save
and then run the program. The Fibonacci numbers should appear twice on the screen.

27.	 If necessary, create a new project named Advanced27 Project, and save it in the
Cpp8\Chap07 folder. Enter the C++ instructions shown earlier in Figure 7-11 into
a source file named Advanced27.cpp. Also enter appropriate comments and any
additional instructions required by the compiler. When the user has finished entering
the sales amounts, the program should display the number of sales amounts entered
and the average commission. Save run, and test the program.

28.	 Follow the instructions for starting C++ and viewing the SwatTheBugs28.cpp file,
which is contained in either the Cpp8\Chap07\SwatTheBugs28 Project folder or
the Cpp8\Chap07 folder. (You may need to open the project/solution file first.) The
program should display the number of positive integers and the number of negative
integers entered by the user, but it is not working correctly. Debug the program.

29.	 Follow the instructions for starting C++ and viewing the SwatTheBugs29.cpp file, which is
contained in either the Cpp8\Chap07\SwatTheBugs29 Project folder or the Cpp8\ Chap07
folder. (You may need to open the project/solution file first.) The program should display
the numbers 1, 2, 3, and 4, but it is not working correctly. Debug the program.

30.	 Follow the instructions for starting C++ and viewing the SwatTheBugs30.cpp file,
which is contained in either the Cpp8\Chap07\SwatTheBugs30 Project folder or the
Cpp8\Chap07 folder. (You may need to open the project/solution file first.) The pro-
gram should display each salesperson’s bonus, which is calculated by multiplying the
salesperson’s sales by 10%. The program is not working correctly. Debug the program.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 See Figure 7-54. The code will display the numbers 6, 4, 2, and 0 on separate lines on
the computer screen. The loop stops when the num variable’s value is –2.

num
6
4
2
0

–2

Figure 7-54

ADVANCED

SWAT THE BUGS

SWAT THE BUGS

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

245

Exercises 	

2.	 See Figure 7-55. The code will display Number: 3, Number: 9, and Number: 15 on separate
lines on the computer screen. The loop stops when the num variable’s value is 7.

num
1
3
5
7

Figure 7-55

Computer

14.	 See Figure 7-56.

Figure 7-56

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 7 The Repetition Structure

246

15.	 See Figure 7-57.

Figure 7-57

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8
More on the Repetition
Structure

After studying Chapter 8, you should be able to:

�� Include a posttest loop in pseudocode

�� Include a posttest loop in a flowchart

�� Code a posttest loop using the C++ do while statement

�� Nest repetition structures

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

248

Posttest Loops
As you learned in Chapter 7, a repetition structure can be either a pretest loop or a posttest
loop. Both types of loops differ in when their loop condition is evaluated. Unlike the condition
in a pretest loop, which is evaluated before the instructions within the loop are processed, the
condition in a posttest loop is evaluated after the instructions within the loop are processed.
As a result, the instructions in a posttest loop will always be processed at least once, whereas
the instructions in a pretest loop may never be processed. Although pretest loops are more
commonly used, it is essential to understand the way posttest loops work because you may
encounter a situation where a posttest loop is the better choice. Or, you may encounter a
posttest loop in another programmer’s code that you are either modifying or debugging.

The problem specification, illustrations, and algorithms shown in Figure 8-1 will help clarify
the difference between pretest and posttest loops. Both algorithms contain the instructions
for getting Sherri from her current location to one that is directly in front of the fountain.
Algorithm 1 contains a pretest loop, and Algorithm 2 contains a posttest loop. In the pretest
loop, the condition appears in the first line, which indicates that Sherri should evaluate it before
she follows the walk forward one complete step instruction in the loop body. In the posttest
loop, the condition appears in the last line, indicating that Sherri should evaluate it only after
following the walk forward one complete step instruction. The pretest loop in Algorithm 1
will work when Sherri is zero or more steps away from the fountain. The posttest loop in
Algorithm 2, however, will work only when Sherri is at least one step away from the fountain.

Problem specification
Sherri is standing an unknown number of steps away from the Burlington fountain. Write the
instructions that direct Sherri to walk from her current location to the fountain.

Illustration A Illustration B

Algorithm 1 – pretest loop

repeat while (you are not directly in front of the fountain)
 walk forward one complete step
end repeat

Algorithm 2 – posttest loop
repeat
 walk forward one complete step
end repeat while (you are not directly in front of the fountain)

Figure 8-1   Problem specification, illustrations, and algorithms containing pretest and posttest loops
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Pretest and
posttest loops
are also called
top-driven and
bottom-driven

loops, respectively.

condition

condition

works when Sherri is
zero or more steps
away from the fountain

works only when
Sherri is at least
one step away
from the fountain

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

249

Posttest Loops 	﻿

To understand why the loops in Figure 8-1 are not interchangeable, you will desk-check
them using the two illustrations shown in the figure. For the first desk-check, we will use
Illustration A, which shows Sherri at least one step away from the fountain. For the purposes
of this desk-check, we will assume that Sherri is three steps away from her final destination.
In the pretest loop, the loop’s condition checks Sherri’s current location. Sherri is not directly
in front of the fountain, so she is told to walk forward one complete step; after she takes
this first step, the loop’s condition is evaluated again. The condition still evaluates to true,
so Sherri is told to walk forward one complete step (her second step), after which the loop’s
condition is evaluated again. The condition still evaluates to true, so Sherri is told to walk
forward one complete step (her third step), and then the loop’s condition is evaluated again.
At this point, Sherri is directly in front of the fountain, so the condition evaluates to false,
and the pretest loop ends.

The posttest loop, on the other hand, instructs Sherri to walk forward one complete step
(her first step) before evaluating the loop’s condition. Sherri is still not directly in front of
the fountain, so she is told to walk forward one complete step (her second step), after which
the loop’s condition is evaluated again. The condition still evaluates to true, so Sherri is told
to walk forward one complete step (her third step), and then the loop’s condition is evalu-
ated again. At this point, Sherri is directly in front of the fountain, so the condition evaluates
to false, and the posttest loop ends. Notice that when Sherri is three steps away from the
fountain, the pretest and posttest loops produce the same result: Both loops place her right
in front of the fountain. If you desk-check both loops using other values for the number of
steps, you will find that both loops are interchangeable when Sherri is at least one step away
from her final destination.

For the second desk-check, we will use Illustration B, which shows Sherri already
standing in front of the fountain. The condition in the pretest loop checks Sherri’s current
location. Sherri is already positioned correctly, so the walk forward one complete step
instruction is bypassed and the loop ends. The posttest loop, on the other hand, instructs
Sherri to walk forward one complete step before the loop’s condition is evaluated. But if
Sherri walks forward, she will bump into the fountain. Obviously, the posttest loop in
Algorithm 2 does not work correctly when Sherri starts out directly in front of the fountain.
You can fix this problem by adding a selection structure to the algorithm, as shown
in Figure 8-2.

Modified Algorithm 2 – posttest loop within a selection structure
if (you are not directly in front of the fountain)
 repeat
 walk forward one complete step
 end repeat while (you are not directly in front of the fountain)
 end if

Figure 8-2   Selection structure added to Algorithm 2 from Figure 8-1

The posttest loop in Figure 8-2 is identical to the posttest loop in Figure 8-1 except it is
processed only when the selection structure’s condition evaluates to true, which is when Sherri
is not directly in front of the fountain. Although the modified algorithm in Figure 8-2 works
correctly, most programmers prefer to use a pretest loop, rather than a posttest loop within a
selection structure, because it is easier to write and understand. Posttest loops should be used
only when their instructions must be processed at least once. You often will find a posttest loop

works when Sherri is
zero or more steps
away from the fountain

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

250

in programs that allow the user to select from a menu, such as a game program. This type of
program uses the posttest loop to control the display of the menu, which must appear on the
screen at least once.

Flowcharting a Posttest Loop
For many people, it is easier to understand the difference between a pretest loop and a posttest
loop by viewing both loops in a flowchart. Figure 8-3 shows the problem specification for the
commission program from Chapter 7. It also shows two correct algorithms in flowchart form.
Algorithm 1 (which is from Figure 7-5 in Chapter 7) uses a pretest loop, and Algorithm 2 uses a
posttest loop. Notice that the decision diamond, which contains the loop’s condition, appears at
the top of a pretest loop in a flowchart; however, it appears at the bottom of a posttest loop. The
instructions in Algorithm 2’s flowchart will always be processed at least once. The instructions
in Algorithm 1’s flowchart, on the other hand, may never be processed.

Problem specification
Create a program that calculates the commission for each of a company’s salespeople. The
commission is calculated by multiplying the salesperson’s sales amount by 20%.

Algorithm 1 (pretest loop):

F

stop

start

enter the
 sales

sales not
equal to –1

commission =
sales *

commission rate

T display the
commission

enter the
sales

Algorithm 2 (posttest loop):

F

start

enter the
sales

T

stop

commission =
sales *

commission rate

display the
commission

enter the
sales

sales not
equal to –1

Figure 8-3   Commission program’s problem specification and flowcharts (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

251

Flowcharting a Posttest Loop 	﻿

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

(continued)

Problem specification
Create a program that calculates the commission for each of a company’s salespeople. The
commission is calculated by multiplying the salesperson’s sales amount by 20%.

Algorithm 1 (pretest loop):

F

stop

start

enter the
 sales

sales not
equal to –1

commission =
sales *

commission rate

T display the
commission

enter the
sales

Algorithm 2 (posttest loop):

F

start

enter the
sales

T

stop

commission =
sales *

commission rate

display the
commission

enter the
sales

sales not
equal to –1

Figure 8-3   Commission program’s problem specification and flowcharts

Mini-Quiz 8-1
1.	 If the user enters the numbers 5, 8, 9, and –1, how many times will the condition in the

following algorithm be evaluated, and what will the algorithm display?
1. enter number

2. repeat while (number is greater than or equal to 0)

 display number

 enter number

 end repeat

3. display “Done”

2.	 If the user enters the number –4, how many times will the condition in Question 1’s
algorithm be evaluated, and what will the algorithm display?

3.	 If the user enters the numbers 5, 8, 9, and –1, how many times will the condition in the
following algorithm be evaluated, and what will the algorithm display?
1. enter number

2. repeat

 display number

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

252

 enter number
 end repeat while (number is greater than or equal to 0)
3. display “Done”

4.	 If the user enters the numbers 0 and –4, how many times will the condition in
Question 3’s algorithm be evaluated, and what will the algorithm display?

The do while Statement
C++ provides the do while statement for coding a posttest loop. The statement’s syntax is
shown in Figure 8-4, along with examples of using the statement. As in the while statement, the
condition in the do while statement must be phrased as a looping condition that evaluates to
either true or false. Recall that a looping condition indicates the requirement for repeating the
loop body instructions. The condition can contain variables, constants, functions, and operators
(arithmetic, comparison, or logical). Although not a requirement, some programmers use a
comment (such as //begin loop) to mark the beginning of the do while statement because it
makes the program easier to read and understand.

The braces in
a do while
statement are
not required
when the loop

body contains only one
statement. However,
a one-statement loop
body is rare.

How To �Use the do while Statement

Syntax
do
{
 one or more statements to be processed one time, and
 thereafter as long as the condition is true
} while (condition)

Example 1

Example 2

Figure 8-4   How to use the do while statement

the statement ends with a semicolon

priming read

update read
semicolon

priming read

update read

semicolon

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

253

The do while Statement 	﻿

The while clause in Example 1 indicates that the loop body instructions should be repeated
as long as (or while) the value in the hours variable is greater than 0. The loop will stop when
the second number entered by the user is either less than or equal to 0. When processing the
while clause in Example 2, the computer temporarily converts the another variable’s value to
uppercase and then compares the result to the uppercase letter Y. In this case, the loop will stop
when the user’s second entry is anything other than the letter Y entered in either uppercase or
lowercase.

Earlier, in Figure 8-3, you viewed the problem specification and algorithms (in flowchart form)
for the commission problem from Chapter 7. Figure 8-5 shows the pseudocode and C++
instructions corresponding to Algorithm 2 in Figure 8-3. Recall that the algorithm contains a
posttest loop. The beginning and end of the loop are shaded in the figure, which also contains a
sample run of the program.

IPO chart information
Input
 commission rate (20%)
 sales

Processing
 none

Output
 commission

Algorithm
1. enter the sales

2. repeat

 calculate the commission by multiplying
 the sales by the commission rate

 display the commission

 enter the sales

 end repeat while (the sales are not equal to –1)

C++ instructions

Figure 8-5   Commission program containing a posttest loop

For more
examples
of using
the do
while

statement, see the
Using the do while
Statement section in the
Ch08WantMore.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

254

Mini-Quiz 8-2
1.	 Which clause marks the beginning of the C++ do while statement?

a.	 do

b.	 do while

c.	 repeat

d.	 while

2.	 The while clause in the C++ do while statement ends with a ________________________.

a.	 brace
b.	 colon

c.	 comma
d.	 semicolon

3.	 Write a C++ while clause that processes the body of a posttest loop as long as the value
in the ordered variable is less than or equal to the value in the inventory variable.

4.	 Write a C++ while clause that processes the body of a posttest loop as long as the value
in a char variable named letter is either Y or y. Use the built-in toupper function.

Nested Repetition Structures
Like selection structures, repetition structures can be nested, which means you can place one loop
(called the nested or inner loop) within another loop (called the outer loop). Both loops can be pre-
test loops, or both can be posttest loops. Or, one can be a pretest loop and the other a posttest loop.

A programmer determines whether a problem’s solution requires a nested loop by studying the
problem specification. The first problem specification you will examine in this chapter involves
a waitress named Trixie. The problem specification and an illustration of the problem are shown
in Figure 8-6, along with an appropriate algorithm. The algorithm requires a loop because the
instructions for telling each table about the daily specials must be repeated for every table that
needs to be waited on. However, it does not require a nested loop. This is because the instruc-
tions within the loop should be followed only once per table.

Problem specification and algorithm
Trixie works as a waitress at a local diner. The diner just opened for the day, and there are
customers already sitting at several of the tables. Write the instructions that direct Trixie to
go to each table that needs to be waited on and tell the customers about the daily specials.

repeat for (each table that needs to be waited on)
 go to a table that needs to be waited on
 tell the customers at the table about the daily specials
end repeat

Figure 8-6   Problem specification and algorithm that requires a loop
Image by Diane Zak; created with Reallusion CrazyTalk Animator

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

follow these
instructions
for each
table

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

255

The Clock Program 	﻿

Now we will add some additional tasks for Trixie to perform. After telling the customers at a
table about the daily specials, Trixie should now take each customer’s order and then submit
the order for the entire table to the cook. Figure 8-7 shows the modified problem specification
along with the modified algorithm, which requires a nested loop. The nested loop begins with
the repeat for (each customer at the table) clause and ends with the first end repeat clause. Notice
that the nested loop is contained entirely within the outer loop. This must be true for the loop to
be nested and work correctly.

Problem specification and algorithm
Trixie works as a waitress at a local diner. The diner just opened for the day, and there are
customers already sitting at several of the tables. Write the instructions that direct Trixie to
go to each table that needs to be waited on and tell the customers about the daily specials.
While at each table, Trixie should take each customer’s order. She should then submit the
order for the entire table to the cook.

repeat for (each table that needs to be waited on)
 go to a table that needs to be waited on
 tell the customers at the table about the daily specials
 repeat for (each customer at the table)
 ask the customer for his or her order
 record the order on the order slip for that table
 end repeat
 go over to the cook at the counter
 tear the appropriate order slip from the order pad
 give the order slip to the cook
end repeat

Figure 8-7   Modified problem specification and algorithm that requires a nested loop

The Clock Program
A clock uses nested repetition structures to keep track of the time. For simplicity, consider a
clock’s minute and second hands only. The second hand on a clock moves one position, clock-
wise, for every second that has elapsed. After the second hand moves 60 positions, the minute
hand moves one position, also clockwise. The second hand then begins its journey around the
clock again.

The algorithm used by a clock’s minute and second hands is shown in Figure 8-8. The
outer loop controls the minute hand, while the inner (nested) loop controls the second
hand. Here, too, the nested loop (which is shaded in the figure) is contained entirely within
the outer loop, which is a requirement for the loop to be nested and work correctly. The
figure also contains the C++ instructions for a program that simulates the minute and
second hands, along with a sample run of the program. However, to make it easier to
desk-check the instructions, the nested loop uses three seconds per minute and the outer
loop stops after two minutes.

follow these
instructions
for each table

follow
these
instructions
for each
customer
at the
current
table

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

256

1. start minutes at 0
2. repeat while (minutes are less than 60)
 start seconds at 0
 repeat while (seconds are less than 60)
 move second hand 1 position, clockwise
 add 1 to seconds
 end repeat
 move minute hand 1 position, clockwise
 add 1 to minutes
 end repeat

Figure 8-8   Algorithm, code, and a sample run for the clock program

In the code in Figure 8-8, the outer loop’s for clause directs the computer to repeat the loop
body instructions two times. Braces are required in the outer loop because its loop body con-
tains more than one statement. The nested loop’s for clause, on the other hand, directs the
computer to repeat the one instruction in its loop body three times. Although both loops in
Figure 8-8 are coded using the for statement, one or both could be coded using the while
statement. In addition, the algorithm could have been written using one or more posttest loops.
Recall that you use the do while statement to code a posttest loop in C++.

You can observe the way the computer processes a nested loop by desk-checking the loops
shown in Figure 8-8. First, the initialization argument in the outer loop’s for clause creates
the minutes variable and initializes it to 0. The condition argument then checks whether the
variable’s value is less than 2. It is, so the instructions in the outer loop are processed.

The next
iteration of
the outer loop
(which controls
the minute

hand) occurs only after
the nested loop (which
controls the second
hand) has finished
processing.

outer loop

outer loop

Recall that the
for clause’s
condition
argument must
be phrased

as a looping condition,
which means it must
specify the requirement
for processing the loop
body instructions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

257

The Clock Program 	﻿

The first instruction in the outer loop is the nested loop’s for clause. The clause’s initialization
argument creates the seconds variable and initializes it to 0. Its condition argument then checks
whether the value in the variable is less than 3. It is, so the nested loop’s cout statement displays
the contents of the minutes (0) and seconds (0) variables on the screen.

Next, the nested for clause’s update argument adds 1 to the value in the seconds variable;
the result is 1. Its condition argument then checks whether the variable’s value is less than 3.
It is, so the nested loop’s cout statement displays the contents of the minutes (0) and seconds
(1) variables on the screen.

The update argument in the nested for clause adds 1 to the value in the seconds variable, giving 2.
The condition argument checks whether the variable’s value is less than 3. It is, so the nested loop’s
cout statement displays the contents of the minutes (0) and seconds (2) variables on the screen.

The nested for clause’s update argument increases the value in the seconds variable by 1,
giving 3. The condition argument checks whether the variable’s value is less than 3. It’s not,
so the nested loop ends, and the seconds variable is removed from the computer’s internal
memory. (Recall that the variable created in the for clause is local to the for statement and is
removed from memory when the for loop ends.) Processing continues with the first statement
following the end of the nested loop. That statement is the cout << endl; statement, which
positions the cursor on the next line on the computer screen.

After processing the cout << endl; statement, which is the last statement in the body of
the outer loop, the computer returns to the outer loop’s for clause to process its update and
condition arguments. The update argument adds 1 to the value in the minutes variable, giving 1.
The condition argument checks whether the variable’s value is less than 2. It is, so the outer
loop’s instructions are processed again.

The first instruction in the outer loop is the nested loop’s for clause, whose initialization and
condition arguments create the seconds variable and initialize it to 0 and then check whether its
value is less than 3. At this point, the variable’s value is less than 3, so the cout statement in the
nested loop displays the contents of the minutes (1) and seconds (0) variables on the screen.
Figure 8-9 shows the desk-check table and output at this point.

minutes
0

1

seconds
0
1
2
3
0

Output from loops
0
1
2

0

0
0
0

1

Figure 8-9   Current desk-check table and output

secondsminutes

The nested for clause’s update argument adds 1 to the value in the seconds variable, giving 1. The
condition argument checks whether the variable’s value is less than 3. It is, so the nested loop’s cout
statement displays the contents of the minutes (1) and seconds (1) variables on the screen.

The update argument in the nested for clause increases the value in the seconds variable by
1, giving 2. The condition argument checks whether the variable’s value is less than 3. It is, so
the nested loop’s cout statement displays the contents of the minutes (1) and seconds (2)
variables on the screen.

Here again, the nested for clause’s update argument increases the value in the seconds variable
by 1; the result is 3. The condition argument checks whether the variable’s value is less than 3.

Notice that
the nested loop
is completely
processed
prior to the

next iteration of the
outer loop.

Ch08-Clock

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

258

It’s not, so the nested loop ends, and the seconds variable is removed from the computer’s
internal memory. The cout statement below the nested loop then positions the cursor on the
next line on the computer screen.

After processing the cout statement, which is the last statement in the body of the outer
loop, the computer returns to the outer loop’s for clause to process its update and condition
arguments. The update argument adds 1 to the value in the minutes variable, giving 2. The
condition argument checks whether the variable’s value is less than 2. It’s not, so the outer loop
ends, and the minutes variable is removed from the computer’s internal memory. Figure 8-10
shows the completed desk-check table and output.

secondsminutes

minutes seconds
0

1

2

0
1
2
3
0
1
2
3

Output from loops
0
1
2

0
0
0

0
1
2

1
1
1

Figure 8-10   Completed desk-check table and output

The Car Depreciation Program
Typically, new cars depreciate—in other words, lose their value—by 15% to 25% per year.
Figure 8-11 shows the problem specification and C++ code for the car depreciation program.
The program uses a counter-controlled loop to display the value of a new car at the end of
each of five years, using a 15% annual depreciation rate. The figure also shows a sample run
of the program.

Problem specification
Create a program that displays the value of a new car at the end of each of five years,
using a 15% annual depreciation rate.

Figure 8-11   Car depreciation program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

259

The Car Depreciation Program 	﻿

loop

(continued)

Problem specification
Create a program that displays the value of a new car at the end of each of five years,
using a 15% annual depreciation rate.

Figure 8-11   Car depreciation program

Now we will modify the problem specification slightly. The program should now display
the depreciated values using three different rates: 15%, 20%, and 25%. Figure 8-12 shows the
modified problem specification and C++ code, as well as a sample run of the program. The
modifications made to the original code are shaded in the figure. Notice that the modified
code contains two loops rather than one loop. Both loops are counter-controlled loops, and
one is nested within the other. The outer loop keeps track of the depreciation rates, and the
nested loop keeps track of the years. The flowchart for the modified program is shown in
Figure 8-13.

Problem specification
Create a program that displays the value of a new car at the end of each of five years,
using annual depreciation rates of 15%, 20%, and 25%.

Figure 8-12   Modified car depreciation program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

260

(continued)

nested
loop

outer loop

Problem specification
Create a program that displays the value of a new car at the end of each of five years,
using annual depreciation rates of 15%, 20%, and 25%.

Figure 8-12   Modified car depreciation program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

261

The Car Depreciation Program 	﻿

T

start

enter
original

value

rate

0.05

0.15 < 0.26 T

F

stop

year

1

1 < 6

F

display
rate

current value =
original value

display a
blank line

subtract
depreciation

from current value

depreciation =
current value * rate

display year
and current

value

Figure 8-13   Flowchart for the modified car depreciation program

Mini-Quiz 8-3
1.	 A nested loop must be a pretest loop; it cannot be a posttest loop.

a.	 True	
b.	 False

2.	 For a(n) _________________________ loop to work correctly, it must be contained
entirely within a(n) _________________________ loop.

a.	 outer, nested
b.	 nested, outer

3.	 Consider a clock’s hour and minute hands. The hour hand is controlled by a(n)
_________________________ loop, while the minute hand is controlled by a(n)
_________________________ loop.

a.	 outer, nested
b.	 nested, outer

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

For more
examples
of nested
loops, see
the Nested

Loops section in the
Ch08WantMore.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

262

The answers
to the labs are
contained in the
Answers.pdf file.

LAB 8-1  Stop and Analyze
Study the program shown in Figure 8-14, and then answer the questions.

Figure 8-14   Code for Lab 8-1

QUESTIONS

1.	 How many loops does the program contain? How many are nested?

2.	 Desk-check the program using the number 3 as the maximum number of rows. What
will the program display?

3.	 Follow the instructions for starting C++ and viewing the Lab8-1.cpp file, which is
contained in either the Cpp8\Chap08\Lab8-1 Project folder or the Cpp8\Chap08 folder.
(Depending on your C++ development tool, you may need to open Lab8-1’s project/
solution file first.) Run the program. Test the program using the number 3 as the
maximum number of rows. What does the program display?

4.	 Run the program again. This time, use the number 10 as the maximum number of rows.
What does the program display?

5.	 Replace the outer for statement with a while statement. Save and then run the
program. Test the program using the number 10 as the maximum number of rows.
The output should agree with the results from Question 4.

notice the space

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

263

The Car Depreciation Program 	﻿

LAB 8-2  Plan and Create
In this lab, you will plan and create an algorithm for the problem specification shown
in Figure 8-15. You begin by analyzing the problem, looking first for the output and
then for the input. In this case, the program should display a person’s total earnings
before retirement at age 65, using annual raise rates of 3%, 4%, and 5%. To calculate

the amounts, the program will need to know the person’s age and current salary.

Next, you plan the algorithm and then desk-check it. Figure 8-15 shows the completed IPO
chart and desk-check table, which (for simplicity) uses an age of 62 and a salary of $25000. The
algorithm contains two loops. The outer loop keeps track of the three annual raise rates (3%, 4%,
and 5%). The nested loop keeps track of the number of years until retirement.

Problem specification
Create a program that allows the user to enter a person’s age (in years) and current salary. Both
input items should be entered as integers. The program should display a person’s total earnings
before retirement at age 65, using annual raise rates of 3%, 4%, and 5%. Display the total earning
amounts as integers.

Input Processing Output
age (1-64 years) Processing items: total earnings (at end of
current salary raise rate (3%, 4%, 5%) each of the years until
 years until retirement retirement)
 new salary
 year (counter)

 Algorithm:
 1. enter the age
 2. if (the age is less than 1 or greater than 64)
 display reenter message
 else
 enter current salary
 calculate years until retirement = 65 – age
 repeat for (each raise rate)
 assign current salary to new salary
 assign current salary to total earnings
 repeat for (year 2 to years until retirement)
 new salary = new salary * (1 + raise rate)
 add new salary to total earnings
 end repeat
 display raise rate and total earnings
 end repeat
 end if

current age current salary raise rate years until retirement
 62 25000 .03 3
 .04
 .05
 .06

new salary total earnings year
 25000.0 25000.0 2
 25750.0 50750.0 3
 26522.5 77272.5 4
 25000.0 25000.0 2
 26000.0 51000.0 3
 27040.0 78040.0 4
 25000.0 25000.0 2
 26250.0 51250.0 3
27562.5 78812.5 4

Figure 8-15   Problem specification, IPO chart, and desk-check table for the retirement algorithm (continues)

at this point, the
current salary is
year 1’s salary

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

264

3% rate total

4% rate total

5% rate total

(continued)

Problem specification
Create a program that allows the user to enter a person’s age (in years) and current salary. Both
input items should be entered as integers. The program should display a person’s total earnings
before retirement at age 65, using annual raise rates of 3%, 4%, and 5%. Display the total earning
amounts as integers.

Input Processing Output
age (1-64 years) Processing items: total earnings (at end of
current salary raise rate (3%, 4%, 5%) each of the years until
 years until retirement retirement)
 new salary
 year (counter)

 Algorithm:
 1. enter the age
 2. if (the age is less than 1 or greater than 64)
 display reenter message
 else
 enter current salary
 calculate years until retirement = 65 – age
 repeat for (each raise rate)
 assign current salary to new salary
 assign current salary to total earnings
 repeat for (year 2 to years until retirement)
 new salary = new salary * (1 + raise rate)
 add new salary to total earnings
 end repeat
 display raise rate and total earnings
 end repeat
 end if

current age current salary raise rate years until retirement
 62 25000 .03 3
 .04
 .05
 .06

new salary total earnings year
 25000.0 25000.0 2
 25750.0 50750.0 3
 26522.5 77272.5 4
 25000.0 25000.0 2
 26000.0 51000.0 3
 27040.0 78040.0 4
 25000.0 25000.0 2
 26250.0 51250.0 3
27562.5 78812.5 4

Figure 8-15   Problem specification, IPO chart, and desk-check table for the retirement algorithm

The fourth step in the problem-solving process is to code the algorithm into a program.
Figure 8-16 shows the IPO chart information and corresponding C++ instructions.

IPO chart information
Input
age (1-64 years)
current salary

Processing
raise rate (3%, 4%, 5%)
years until retirement
new salary
year (counter)

Output
total earnings (at end of
each of the years until
retirement)

Algorithm
1. enter the age

2. if (the age is less than 1 or greater than 64)
 display reenter message

 else
 enter current salary

 calculate years until retirement = 65 – age
 repeat for (each raise rate)

 assign current salary to new salary
 assign current salary to total earnings

 repeat for (year 2 to years until retirement)

 new salary = new salary * (1
 + raise rate)
 add new salary to total earnings
 end repeat

 display raise rate and total earnings

 end repeat
 end if

C++ instructions

this variable is created and initialized
in the for clause

this variable is created and initialized
in the for clause

Figure 8-16   IPO chart information and C++ instructions for the retirement program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

265

The Car Depreciation Program 	﻿

IPO chart information
Input
age (1-64 years)
current salary

Processing
raise rate (3%, 4%, 5%)
years until retirement
new salary
year (counter)

Output
total earnings (at end of
each of the years until
retirement)

Algorithm
1. enter the age

2. if (the age is less than 1 or greater than 64)
 display reenter message

 else
 enter current salary

 calculate years until retirement = 65 – age
 repeat for (each raise rate)

 assign current salary to new salary
 assign current salary to total earnings

 repeat for (year 2 to years until retirement)

 new salary = new salary * (1
 + raise rate)
 add new salary to total earnings
 end repeat

 display raise rate and total earnings

 end repeat
 end if

C++ instructions

this variable is created and initialized
in the for clause

this variable is created and initialized
in the for clause

Figure 8-16   IPO chart information and C++ instructions for the retirement program

The fifth step in the problem-solving process is to desk-check the program. Figure 8-17 shows
the completed desk-check table for the retirement program. The results agree with those shown
in the algorithm’s desk-check table in Figure 8-15.

age
0

62

currentSalary
 0
 25000

rate
0.0

 0.03
 0.04

 0.05

0.06

yearsToRetire
0
3

newSalary
 0.0

 25000.0
 25750.0
26522.5
 25000.0
 26000.0

 27040.0
 25000.0

 26250.0
 27562.5

 total
 0.0

 25000.0
 50750.0

 77272.5
 25000.0

 51000.0
 78040.0
 25000.0
 51250.0
 78812.5

year
0
2
3
4
2
3
4
2
3
4

Figure 8-17   Desk-check table for the retirement program

The final step in the problem-solving process is to evaluate and modify (if necessary) the
program. Recall that you evaluate a program by entering its instructions into the computer and
then using the computer to run (execute) it. While the program is running, you enter the same
sample data used when desk-checking the program.

(continued)

3% rate total

4% rate total

5% rate total

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

266

DIRECTIONS

1.	 Follow the instructions for starting your C++ development tool. Depending on the
development tool you are using, you may need to create a new project; if so, name
the project Lab8-2 Project, and save it in the Cpp8\Chap08 folder. Enter the instruc-
tions shown in Figure 8-18 in a source file named Lab8-2.cpp. (Do not enter the line
numbers.) Save the file in either the project folder or the Cpp8\Chap08 folder. Now
follow the appropriate instructions for running the Lab8-2.cpp file. Test the program
using 62 as the age and 25000 as the current salary. The total earning amounts
should be $77273, $78040, and $78813. If necessary, correct any bugs (errors) in
the program.

Figure 8-18   Retirement program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

267

The Car Depreciation Program 	﻿

Figure 8-18   Retirement program

LAB 8-3  Modify
If necessary, create a new project named Lab8-3 Project, and save it in the
Cpp8\Chap08 folder. Enter (or copy) the Lab8-2.cpp instructions into a new source
file named Lab8-3.cpp. Change Lab8-2.cpp in the first comment to Lab8-3.cpp.
Change the outer for loop to a posttest loop. Save, run, and test the program.

LAB 8-4  What’s Missing?
The program in this lab should display the pattern of numbers shown in Figure 8-19.
Start your C++ development tool, and view the Lab8-4.cpp file, which is contained in
either the Cpp8\Chap08\Lab8-4 Project folder or the Cpp8\Chap08 folder. (Depend-
ing on your C++ development tool, you may need to open Lab8-4’s project/solution

file first.) Put the C++ instructions in the proper order, and then determine the one or more
missing instructions. Test the program appropriately.

If the user enters the number 4 in response to the “How many rows?” prompt, the program should
display the following pattern of numbers:
1
12
123
1234

Figure 8-19   Sample output for Lab 8-4

LAB 8-5  Desk-Check
Desk-check the code shown in Figure 8-20. What will the code display on the
computer screen? What is the value in the x variable when the outer for loop ends?
What is the value in the y variable when the nested for loop ends?

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

268

Figure 8-20   Code for Lab 8-5

LAB 8-6  Debug
Follow the instructions for starting C++ and viewing the Lab8-6.cpp file, which is
contained in either the Cpp8\Chap08\Lab8-6 Project folder or the Cpp8\Chap08
folder. (Depending on your C++ development tool, you may need to open Lab8-6’s
project/solution file first.) The program should display a store’s quarterly sales, but it

is not working correctly. Debug the program.

Chapter Summary
A repetition structure can be either a pretest loop or a posttest loop. In a pretest loop, the loop
condition is evaluated before the instructions within the loop are processed. In a posttest loop,
the evaluation occurs after the instructions within the loop are processed.

The condition appears at the end of a posttest loop and determines whether the instructions
within the loop body will be processed more than once. The loop’s condition must result in
either a true or false answer only. When the condition evaluates to true, the instructions listed in
the loop body are processed again; otherwise, the loop is exited.

You use the do while statement to code a posttest loop in C++. To code a pretest loop in C++,
you can use either the while statement or the for statement.

Repetition structures can be nested, which means one loop can be placed inside another loop.
For nested repetition structures to work correctly, the inner (nested) loop must be contained
entirely within the outer loop.

Key Terms
do while statement—the statement used to code a posttest loop in C++

Nested loop—a loop (repetition structure) contained entirely within another loop
(repetition structure)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

269

Review Questions 	

Review Questions
1.	 The condition in the do while statement is evaluated _____________________ the

instructions in the loop body are processed.

a.	 after
b.	 before

2.	 The instructions in the body of the _____________________ statement are always
processed at least once during runtime.

a.	 do while
b.	 for

c.	 while
d.	 both a and b

3.	 It is possible that the instructions in the body of the _____________________ statement
will not be processed during runtime.

a.	 do while
b.	 for

c.	 while
d.	 both b and c

4.	 What numbers will the following code display on the computer screen?

int x = 0;
do
{
 cout << x << endl;
 x += 1;
} while (x < 5);

a.	 0, 1, 2, 3, 4
b.	 0, 1, 2, 3, 4, 5

c.	 1, 2, 3, 4
d.	 1, 2, 3, 4, 5

5.	 What numbers will the following code display on the computer screen?

int x = 16;
do
{
 cout << x << endl;
 x -= 4;
} while (x > 10);

a.	 16, 12, 8
b.	 16, 12

c.	 20, 16, 12, 8
d.	 20, 16, 12

6.	 What value of x causes the loop in Review Question 5 to end?

a.	 0
b.	 8

c.	 10
d.	 12

7.	 What numbers will the following code display on the computer screen?

int total = 1;
do
{
 total += 2;
 cout << total << endl;
} while (total <= 3);

a.	 1, 2
b.	 1, 3

c.	 3
d.	 3, 5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

270

8.	 What pattern of asterisks will the following code display on the computer screen?

for (int x = 1; x < 3; x += 1)
{
 for (int y = 1; y < 4; y += 1)
 cout << “*”;
 //end for
 cout << endl;
} //end for

a.	 ***

b.	 ***

c.	 **
**
**

d.	 ***

9.	 What number will the following code display on the computer screen?

int sum = 0;
int y = 0;
do
{
 for (int x = 1; x <= 5; x += 1)
 sum += x;
 //end for
 y += 1;
} while (y < 2);
cout << sum << endl;

a.	 5
b.	 8

c.	 15
d.	 30

Exercises

Pencil and Paper

1.	 Complete a desk-check table for the code shown in Figure 8-21. What will the code
display on the computer screen? What value causes the nested loop to end? What value
causes the outer loop to end? (The answers to TRY THIS Exercises are located at the
end of the chapter.)

Figure 8-21  

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

271

Exercises 	

2.	 Complete a desk-check table for the code shown in Figure 8-22. What will the code
display on the computer screen? What value causes the nested loop to end? What value
causes the outer loop to end? (The answers to TRY THIS Exercises are located at the
end of the chapter.)

Figure 8-22

3.	 Rewrite the code from Figure 8-21 so it uses the for statement for the nested loop.

4.	 Chakura is sitting at a table in a bookstore, attending her book signing. Customers are
standing in line waiting for her to sign their copy of her book. However, it is possible
that some customers in line may not have a book; they are in line simply to meet her. It’s
also possible that some customers may have more than one book for her to sign. Write
an appropriate algorithm using only the instructions listed in Figure 8-23.

accept the book from the customer
close the book
end repeat
end repeat
open the front cover of the book
place the book on the table
repeat while (the customer has a book that needs signing)
repeat while (there are customers in line)
return the book to the customer
sign your name on the first page
thank the customer

Figure 8-23

5.	 Write a C++ while clause that processes a posttest loop’s instructions as long as the
value in the inStock variable is greater than the value in the reorder variable.

6.	 A program declares an int variable named evenNum and initializes it to 2. Write
the C++ code to display the even integers 2, 4, 6, 8, and 10 on separate lines on the
computer screen. Use the do while statement.

7.	 Write the C++ code to display the integers 15, 12, 9, 6, 3, and 0 on separate lines on the
computer screen. Use the for statement and an int variable named num.

8.	 The code in Figure 8-24 should display the pattern of ampersands shown in the figure,
but it is not working correctly. Debug the code.

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

272

Pattern

Figure 8-24

Computer

9.	 In this exercise, you will create a program that uses two for statements to display the
pattern of asterisks shown in Figure 8-25. If necessary, create a new project named
TryThis9 Project, and save it in the Cpp8\Chap08 folder. Enter the C++ instructions
into a source file named TryThis9.cpp. Also enter appropriate comments and any
additional instructions required by the compiler. Save and then run the program.
(The answers to TRY THIS Exercises are located at the end of the chapter.)

Figure 8-25

10.	 In this exercise, you will create a program that displays the pattern of asterisks shown in
Figure 8-26. Use the while statement for the outer loop. Use the do while statement
for the nested loop. If necessary, create a new project named TryThis10 Project, and
save it in the Cpp8\Chap08 folder. Enter the C++ instructions into a source file named
TryThis10.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Save and then run the program. (The answers to TRY THIS
Exercises are located at the end of the chapter.)

Figure 8-26

TRY THIS

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

273

Exercises 	

11.	 In this exercise, you will modify the code from Exercise 10. If necessary, create a new
project named ModifyThis11 Project, and save it in the Cpp8\Chap08 folder. Enter (or
copy) the TryThis10.cpp instructions into a new source file named ModifyThis11.cpp.
Change TryThis10.cpp in the first comment to ModifyThis11.cpp. Replace the while
and do while statements with for statements. Save and then run the program.

12.	 In this exercise, you will modify the car depreciation program from Figure 8-12. Follow
the instructions for starting C++ and viewing the ModifyThis12.cpp file, which is
contained in either the Cpp8\Chap08\ModifyThis12 Project folder or the Cpp8\Chap08
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) Replace the nested for statement with a while statement. Test the
program appropriately.

13.	 Create a program that a professor can use to display a grade for any number of
students. Each student’s grade is based on four test scores, with each test worth 100
points. The program should total the student’s test scores and then assign the appro-
priate grade using the information shown in Figure 8-27. Display the student’s number
and grade in a message, such as “Student 1’s grade: A”. If necessary, create a new proj-
ect named Introductory13 Project, and save it in the Cpp8\Chap08 folder. Enter the
C++ instructions into a source file named Introductory13.cpp. Also enter appropriate
comments and any additional instructions required by the compiler. Save, run, and test
the program.

Total points earned
372–400
340–371
280–339
240–279
below 240

Grade
A
B
C
D
F

Figure 8-27

14.	 Create a program that displays a table consisting of four rows and five columns.
The first column should display the numbers 1 through 4. The second and sub-
sequent columns should display the result of multiplying the number in the first
column by the numbers 2 through 5. If necessary, create a new project named
Introductory14 Project, and save it in the Cpp8\Chap08 folder. Enter the C++
instructions into a source file named Introductory14.cpp. Also enter appropriate
comments and any additional instructions required by the compiler. Save and then
run the program.

15.	 Create a program that displays a table consisting of ten rows and four columns. The
first column should display prices from $5 to $50 in increments of $5. The second and
subsequent columns should display the discounted prices, using discount rates of 10%,
15%, and 20%, respectively. If necessary, create a new project named Intermediate15
Project, and save it in the Cpp8\Chap08 folder. Enter the C++ instructions into a
source file named Intermediate15.cpp. Also enter appropriate comments and any
additional instructions required by the compiler. Save and then run the program.

MODIFY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

274

16.	 In this exercise, you will modify the program from Lab 7-2 in Chapter 7. If necessary,
create a new project named Intermediate16 Project, and save it in the Cpp8\Chap08
folder. Copy the instructions from the Lab7-2.cpp file into a source file named Inter-
mediate16.cpp. The Lab7-2.cpp file is contained in either the Cpp8\Chap07\Lab7-2
Project folder or the Cpp8\Chap07 folder. (Alternatively, you can enter the instructions
from Figure 7-44 into the Intermediate16.cpp file.) Change the filename in the first
comment. Modify the program to allow the user to display the output for any number
of sales amounts. Save and then run the program. Test the program twice, using sales
amounts of 125000 and 96000.

17.	 In this exercise, you will modify the program from Lab 7-1 in Chapter 7. Follow the
instructions for starting C++ and viewing the Intermediate17.cpp file, which is con-
tained in either the Cpp8\Chap08\Intermediate17 Project folder or the Cpp8\Chap08
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) Currently, the program displays the average number of text mes-
sages sent each day for one week. Modify the program so that it also displays the
average number of text messages sent each week for four weeks. Test the program
appropriately.

18.	 At the beginning of every year, Khalid receives a raise on his previous year’s salary. He
wants a program that calculates and displays the amount of his annual raises for the
next three years, using rates of 3%, 4%, 5%, and 6%. The program should end when
Khalid enters a sentinel value as the salary.

a.	 Create an IPO chart for the problem, and then desk-check the algorithm using
annual salaries of 30000 and 50000, followed by your sentinel value.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart
similar to the one shown earlier in Figure 8-16. Then code the algorithm into a
program.

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Intermediate18 Project, and save it in

the Cpp8\Chap08 folder. Enter your C++ instructions into a source file named
Intermediate18.cpp. Also enter appropriate comments and any additional
instructions required by the compiler.

e.	 Save and then run the program. Test the program using the same data used to
desk-check the program.

19.	 Create a program that allows the user to enter an unknown number of sales
amounts for each of three car dealerships: Dealership 1, Dealership 2, and
Dealership 3. The program should calculate the total sales. Display the total sales
with a dollar sign and two decimal places.

a.	 Create an IPO chart for the problem, and then desk-check the algorithm using
23000 and 15000 as the sales amounts for Dealership 1; 12000, 16000, 34000, and
10000 for Dealership 2; and 64000, 12000, and 70000 for Dealership 3.

b.	 List the input, processing, and output items, as well as the algorithm, in a chart
similar to the one shown earlier in Figure 8-16. Then code the algorithm into a
program.

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

275

Exercises 	

c.	 Desk-check the program using the same data used to desk-check the algorithm.
d.	 If necessary, create a new project named Intermediate19 Project, and save it in

the Cpp8\Chap08 folder. Enter your C++ instructions into a source file named
Intermediate19.cpp. Also enter appropriate comments and any additional
instructions required by the compiler.

e.	 Save and then run the program. Test the program using the same data used to
desk-check the program.

20.	 Follow the instructions for starting C++ and viewing the Advanced20.cpp file, which is
contained in either the Cpp8\Chap08\Advanced20 Project folder or the Cpp8\Chap08
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.)

a.	 Run the program, which displays five rows of asterisks. Close the Command Prompt
window.

b.	 Modify the program to allow the user to specify the outer loop’s ending and incre-
ment values. The ending value determines the maximum number of asterisks to
display. The increment value determines the number of asterisks to repeat.

c.	 Save and then run the program. Test the program by entering the numbers 4 and 1
as the maximum number of asterisks and the number of asterisks to repeat, respec-
tively. The program should display four rows of asterisks as follows: one asterisk, two
asterisks, three asterisks, and four asterisks.

d.	 Run the program again. This time, enter the numbers 9 and 3 as the maximum
number of asterisks and the number of asterisks to repeat, respectively. The pro-
gram should display three rows of asterisks as follows: three asterisks, six asterisks,
and nine asterisks.

e.	 Run the program again. Enter 7 and 3 as the maximum number of asterisks and
the number of asterisks to repeat, respectively. The program displays only two
rows of asterisks. The first row contains the expected three asterisks, but the
second row contains six asterisks rather than seven asterisks. This is because
the maximum number of asterisks (7) is not evenly divisible by the number
of asterisks to repeat (3). Modify the program so that it displays the asterisks
only when the maximum number is evenly divisible by the number to repeat;
otherwise, display the message “The maximum number must be evenly divisible
by the number to repeat.”

f.	 Save and then run the program. Test the program three times, using the data from
Steps c, d, and e.

21.	 Create a program that displays movie ratings in a bar chart, similar to the one shown
in Figure 8-28. If necessary, create a new project named Advanced21 Project, and
save it in the Cpp8\Chap08 folder. Enter your C++ instructions into a source file
named Advanced21.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Save and then run the program. Test the
program appropriately.

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

276

Figure 8-28

22.	 Follow the instructions for starting C++ and viewing the SwatTheBugs22.cpp file,
which is contained in either the Cpp8\Chap08\SwatTheBugs22 Project folder or the
Cpp8\Chap08 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) Read the program’s comments, and then debug
the program.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 See Figure 8-29. The number 0 causes the nested loop to end. The number 3 causes the
outer loop to end.

outer
1
2
3

nested
0
3
2
1
0
3
2
1
0

The program displays the following:
 3 2 1
 3 2 1

Figure 8-29

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

277

Exercises 	

2.	 See Figure 8-30. The number 3 causes the nested loop to end. The number 0 causes the
outer loop to end.

region
3
2
1
0

store
1
2
3
1
2
3
1
2
3

The program displays the following:
 Region: 3
 Store: 1
 Store: 2

 Region: 2
 Store: 1
 Store: 2

 Region: 1
 Store: 1
 Store: 2

Figure 8-30

Computer

9.	 See Figure 8-31.

Figure 8-31

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 8 More on the Repetition Structure

278

10.	 See Figure 8-32.

Figure 8-32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9
Value-Returning Functions

After studying Chapter 9, you should be able to:

�� Raise a number to a power using the pow function

�� Return the square root of a number using the sqrt function

�� Generate random numbers

�� Create and invoke a function that returns a value

�� Pass information by value to a function

�� Write a function prototype

�� Understand a variable’s scope and lifetime

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

280

Functions
As you learned in Chapter 4, a function is a block of code that performs a task. Every C++ program
contains at least one function, which is named main. However, most C++ programs contain many
functions. Some of the functions used in a program are built into the C++ language. The code for
these built-in functions resides in C++ libraries, which are special files that come with the C++
language. You are already familiar with two built-in functions: toupper and tolower.
Other functions, like main, are created by the programmer. These functions are often referred
to as program-defined functions because the function definitions are typically contained in
the program itself rather than in a different file. But why would a programmer need more than
the main function? One reason is to avoid the duplication of code. If the same task needs to be
performed in more than one section of a program, it is more efficient for the programmer to enter
the code in a function and then have each section call (or invoke) the function when needed.
Program-defined functions also allow large and complex programs, which are usually written
by a team of programmers, to be broken into small and manageable tasks. Each member of
the team is assigned one or more tasks to code as a function. Doing this allows more than one
programmer to work on a program at the same time, decreasing the time it takes to write the
program. When each programmer completes his or her function, all of the functions are gathered
together into one program. Typically, a program’s main function is responsible for calling (or
invoking) each of the other program-defined functions. However, any program-defined function
can call any other program-defined or built-in function.
All program-defined and built-in functions are categorized as either value-returning functions
or void functions. Value-returning functions return a value after performing their assigned task.
Void functions, on the other hand, do not return a value after completing their task. You are
already familiar with the concept of something being either value-returning or void. The two
illustrations shown in Figure 9-1 can be used to demonstrate this fact.

In some
programming
languages,
functions
are called

methods, subroutines,
or procedures.

Figure 9-1   Illustrations of value-returning and void functions

Illustration A Illustration B

Helen:
1. ask ticket agent for a senior ticket
2. give ticket agent $5
3. receive senior ticket from ticket agent

Ticket agent (value-returning function):
1. take $5 from Helen
2. give Helen a senior ticket

Helen:
1. tell Penelope to have fun playing games
2. give Penelope $5

Penelope (void function):
1. take $5 from Helen
2. buy game tickets with the $5
3. play games and have fun

Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

281

Value-Returning Functions 	﻿

In Illustration A, Helen is at the ticket counter in her local movie theater, requesting a ticket
for the current movie. Helen gives the ticket agent a $5 bill and expects a ticket in return. The
ticket agent is similar to a value-returning function. He performs his task (fulfilling her request
for a ticket) and then returns a value (a ticket) to Helen. Compare that with Illustration B, where
Helen and her granddaughter, Penelope, are at the Blast Off Games arcade. Helen wants Penel-
ope to have fun, so she gives Penelope a $5 bill to play some games. But, unlike with the ticket
agent, Helen expects nothing from Penelope in return. This is similar to the way a void function
works. Penelope performs her task (having fun by playing games) but doesn’t need to return any
value to her grandmother.

You will learn about value-returning functions in this chapter. Void functions are covered in
Chapter 10.

Value-Returning Functions
All value-returning functions, whether built-in or program-defined, perform a task and then
return precisely one value after the task is completed. The built-in value-returning toupper
function, for example, temporarily converts a character to uppercase and then returns the result.
Likewise, the tolower function returns the result of temporarily converting a character to
lowercase.

In almost all cases, a value-returning function returns its one value to the statement from which
it was called (invoked). One exception is the main function, which returns its one value to the
operating system. Typically, the statement that invokes a function assigns the return value to a
variable. However, it may also use the return value in a calculation or comparison; or it may
simply display the return value.

The first part of this chapter covers four of the value-returning functions built into C++: pow,
sqrt, rand, and time. It also covers a built-in void function named srand. Later in the chapter,
you will learn how to create program-defined value-returning functions.

At this point, it is important to point out that functions are one of the more challenging topics
for beginning programmers. Therefore, do not be concerned if you do not understand every-
thing right away. If you still feel overwhelmed by the end of the chapter, try reading the chapter
again, paying particular attention to the examples and programs shown in the figures. And be
sure to complete the six labs at the end of the chapter.

The pow Function
Some mathematical expressions require a number (called the base number) to be raised to a
power (called the exponent). For example, in the expression 42, 4 is the base number, and 2 is
the exponent. The expression indicates that the number 4 should be squared—in other words,
multiplied by itself, like this: 4 * 4. The result of the expression is the number 16. Similarly, the
expression 53 means to cube the number, which means to multiply it by itself three times, like
this: 5 * 5 * 5. This expression evaluates to 125. Raising a number to a power is referred to as
exponentiation.

C++ provides the pow function for performing exponentiation in a program. The function’s code
is contained in the cmath library file. Therefore, a program must contain the #include <cmath>
directive in order to use the function. The directive tells the C++ compiler the location of the
function’s code.

Figure 9-2 shows the pow function’s syntax. Recall from Chapter 5 that the items within
parentheses in a function’s syntax—in this case, x and y—are called arguments. More specifically,
they are called actual arguments. An actual argument represents information that the function

The value
returned by the
main function
indicates
whether

the program ended
normally.

Recall from
Chapter 4 that
#include
directives
provide a

convenient way to
merge the source code
from one file with the
source code in another
file, without having to
retype the code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

282

needs to perform its task, and it can be a variable, named constant, literal constant, or keyword;
however, in most cases it will be a variable. The pow function contains two actual arguments
because it requires two items of information: the base number (x) and the exponent (y).

The actual arguments are passed to the pow function when it is invoked. Invoking a function
is also referred to as calling a function. You call a function simply by including its name and
actual arguments (if any) in a program statement, as shown in the examples in Figure 9-2.
When the pow function is called, it raises x to power y and then returns the result as a
double number.

How To �Use the pow Function

Syntax
pow(x, y)

Example 1

The assignment statement assigns the number 64.0, which is 4.0 raised to the third
power, to the variable.

Example 2

The statement displays the number 10, which is 100 raised to the 0.5 power. The
 expression is equivalent to finding the square root of the number 100.

Example 3

The assignment statement raises the value stored in the variable to the second
power, giving 25.0. It then multiplies the 25.0 by 3.14 and assigns the product (78.5) to
the variable.

Figure 9-2   How to use the pow function

requires the #include
<cmath> directive

The sqrt Function
Although you can use the pow function to find the square root of a number, as shown in
Example 2 in Figure 9-2, C++ provides the sqrt function specifically for that purpose. Like
the pow function, the sqrt function is defined in the cmath library file. Therefore, a program
must contain the #include <cmath> directive in order to use the function. The sqrt function
calculates a number’s square root and then returns the result as a double number.

As the syntax in Figure 9-3 indicates, the sqrt function requires one actual argument: the
number whose square root you want to find. The number must have a data type of either double
or float. Also included in Figure 9-3 are examples of statements that invoke the function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

283

Value-Returning Functions 	﻿

The Hypotenuse Program
The hypotenuse program covered in this section will use the Pythagorean theorem to calculate
the length of a right triangle’s hypotenuse, which is the longest side of the triangle. Figure 9-4
shows the theorem and provides an example of using it. Notice that the theorem requires raising
a number to the second power (in other words, squaring the number) and also taking the square
root of a number.

Pythagorean theorem
The theorem states that the length of a right triangle’s hypotenuse is equal to the square root of
the sum of the squares of the lengths of the triangle’s two adjacent sides. In other words, the
hypotenuse’s length is equal to the square root of the following sum: (side a length)2 +
(side b length)2.

Example: side a length is 10 and side b length is 24
1. square side a length 10 * 10 = 100
2. square side b length 24 * 24 = 576
3. sum the squares from Steps 1 and 2 100 + 576 = 676
4. find the square root of the sum from Step 3 26

Figure 9-4   Pythagorean theorem

How To �Use the sqrt Function

Syntax
sqrt(x)

Example 1

The function finds the square root of the number 100.0 and then returns
the result (the number 10.0) to the assignment statement, which assigns the
return value to the variable.

Example 2

The function finds the square root of the number stored in the variable
and then returns the result to the statement, which displays the return value on the
computer screen.

Figure 9-3   How to use the sqrt function

requires the #include
<cmath> directive

length of the hypotenuse

Figure 9-5 shows the problem specification, IPO chart information, and C++ instructions for the
hypotenuse program. The pow and sqrt functions are shaded in the figure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

284

Figure 9-6 shows the completed program, along with a sample run of the program.

IPO chart information
Input
 side a length
 side b length

Processing
 sum of the squares

Output
 hypotenuse length

Algorithm
1. enter side a length and side b length

2. calculate the sum of the squares =
 (side a length)2 + (side b length)2

3. calculate the hypotenuse length by
 finding the square root of the sum
 of the squares
4. display the hypotenuse length

C++ instructions

Problem specification
Create a program that uses the Pythagorean theorem to calculate the length of a right
triangle’s hypotenuse, given the lengths of its two adjacent sides (side a and side b).
Display the length with one decimal place.

Figure 9-5   Problem specification, IPO chart information, and C++ instructions for the
hypotenuse program

The flowchart
for the hypot-
enuse program
is contained
in the

Hypotenuse.pdf file.

Figure 9-6   Hypotenuse program (continues)

required for the pow
and sqrt functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

285

The rand, srand, and time Functions 	﻿

The assignment statement on Line 24 invokes the pow function twice. The first time the
function is invoked, it is passed the value stored in the sideA variable (10.0) and the integer 2.
The function squares the sideA value passed to it and then returns the result (100.0) to the
assignment statement that invoked it. The return value is stored in a temporary location in the
computer’s internal memory until the assignment statement’s expression is fully evaluated.

The second time the pow function is invoked, it is passed the value stored in the sideB variable
(24.0) and the integer 2. The function squares the sideB value passed to it and then returns the
result (576.0) to the assignment statement that invoked it. At this point, the computer adds the
function’s first return value (100.0) to its second return value (576.0) and then stores the sum
(676.0) in the sumSqrs variable.

Next, the assignment statement on Line 25 invokes the sqrt function, passing it the value stored in
the sumSqrs variable (676.0). The function calculates the square root of the value passed to it and then
returns the result (26.0) to the assignment statement, which assigns it to the hypotenuse variable.

The rand, srand, and time Functions
Many programs, such as game programs and lottery programs, require the use of random
numbers. Because of this, most programming languages provide a specific function for
producing random numbers. The numbers are not completely random, however, because a
definite mathematical algorithm is used to select them; but they are sufficiently random for
practical purposes. The function that produces the pseudo-random numbers is often referred
to as a pseudo-random number generator.

In C++, the pseudo-random number generator is the rand function. The function returns an
integer that is greater than or equal to 0 but less than or equal to the value stored in the
RAND_MAX constant, which is one of many constants built into the C++ language. Although the
value of RAND_MAX varies with different compilers, its value is always at least 32,767. (You can
display your compiler’s RAND_MAX value using the statement cout << RAND_MAX;.)

Figure 9-6   Hypotenuse program

(continued)

use the pow and
sqrt functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

286

Figure 9-7 shows the rand function’s syntax and includes examples of using the function to
generate random integers. The empty set of parentheses after the function’s name is required.
Depending on your C++ development tool, you may need to include the #include <cstdlib>
directive in your program in order to use rand and RAND_MAX.

As you learned
in Chapter 4,
the modulus
operator
divides two

integers and then
returns the remainder
as an integer.

Most programs that use random numbers require the numbers to be within a specific range.
A program that simulates rolling dice, for example, will require integers from 1 through 6 only.
Figure 9-8 shows the syntax of an expression that you can use to specify the desired range of
integers. In the syntax, lowerBound and upperBound are the lowest integer and highest integer,
respectively, in the range. Also included in Figure 9-8 are examples of using the expression in a
C++ statement. The expression in Example 1 produces random integers in the range of 1 through
6. Example 2’s expression produces random integers from 10 through 100. You can also write the
expressions in Figure 9-8 as 1 + rand() % 6 and 10 + rand() % 91. However, including the
lowerBound and upperBound values within the parentheses makes the expression clearer and
more self-documenting. The figure also shows how the computer evaluates both examples using
sample rand function values. The resulting random integers are shaded in the figure.

In C++, every
function’s name
is followed by
a set of paren-
theses, which

may or may not contain
actual arguments. How To �Use the rand Function

Syntax
rand()

Example 1
int randomNum = 0;
randomNum = rand();
The rand function generates a random integer that is greater than or equal to 0 but
less than or equal to RAND_MAX. It then returns the random integer to the assignment
statement, which assigns it to the randomNum variable.

Example 2
cout << rand();
The rand function generates a random integer that is greater than or equal to 0
but less than or equal to RAND_MAX. It then returns the random integer to the cout
statement, which displays it on the computer screen.

Example 3
int tripleNum = 0;
tripleNum = rand() * 3;
The rand function generates a random integer that is greater than or equal to 0 but
less than or equal to RAND_MAX. It then returns the random integer to the assignment
statement, which multiplies it by 3 and assigns the result to the tripleNum variable.

Figure 9-7   How to use the rand function

your compiler may require the
#include <cstdlib> directive

How To �Generate Random Integers within a Specific Range

Syntax
lowerBound + rand() % (upperBound – lowerBound + 1)

Example 1
cout << 1 + rand() % (6 – 1 + 1);
displays a random integer from 1 through 6 on the computer screen

 Results using different rand values:
 rand value: 27 1 + 27 % (6 – 1 + 1)
 6 – 1 + 1 is evaluated first and results in 6 1 + 27 % 6
 27 % 6 is evaluated next and results in 3 1 + 3
 1 + 3 is evaluated last and results in 4 4

 rand value: 8 1 + 8 % (6 – 1 + 1)
 6 – 1 + 1 is evaluated first and results in 6 1 + 8 % 6
 8 % 6 is evaluated next and results in 2 1 + 2
 1 + 2 is evaluated last and results in 3 3

 rand value: 324 1 + 324 % (6 – 1 + 1)
 6 – 1 + 1 is evaluated first and results in 6 1 + 324 % 6
 324 % 6 is evaluated next and results in 0 1 + 0
 1 + 0 is evaluated last and results in 1 1

Example 2
int num = 0;
num = 10 + rand() % (100 – 10 + 1);
assigns a random integer from 10 through 100 to the num variable

 Results using different rand values:
 rand value: 352 10 + 352 % (100 – 10 + 1)
 100 – 10 + 1 is evaluated first and results in 91 10 + 352 % 91
 352 % 91 is evaluated next and results in 79 10 + 79
 10 + 79 is evaluated last and results in 89 89

 rand value: 4 10 + 4 % (100 – 10 + 1)
 100 – 10 + 1 is evaluated first and results in 91 10 + 4 % 91
 4 % 91 is evaluated next and results in 4 10 + 4
 10 + 4 is evaluated last and results in 14 14

 rand value: 2500 10 + 2500 % (100 – 10 + 1)
 100 – 10 + 1 is evaluated first and results in 91 10 + 2500 % 91
 2500 % 91 is evaluated next and results in 43 10 + 43
 10 + 43 is evaluated last and results in 53 53

Figure 9-8   How to generate random integers within a specific range (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

287

The rand, srand, and time Functions 	﻿

Syntax
lowerBound + rand() % (upperBound – lowerBound + 1)

Example 1
cout << 1 + rand() % (6 – 1 + 1);
displays a random integer from 1 through 6 on the computer screen

 Results using different rand values:
 rand value: 27 1 + 27 % (6 – 1 + 1)
 6 – 1 + 1 is evaluated first and results in 6 1 + 27 % 6
 27 % 6 is evaluated next and results in 3 1 + 3
 1 + 3 is evaluated last and results in 4 4

 rand value: 8 1 + 8 % (6 – 1 + 1)
 6 – 1 + 1 is evaluated first and results in 6 1 + 8 % 6
 8 % 6 is evaluated next and results in 2 1 + 2
 1 + 2 is evaluated last and results in 3 3

 rand value: 324 1 + 324 % (6 – 1 + 1)
 6 – 1 + 1 is evaluated first and results in 6 1 + 324 % 6
 324 % 6 is evaluated next and results in 0 1 + 0
 1 + 0 is evaluated last and results in 1 1

Example 2
int num = 0;
num = 10 + rand() % (100 – 10 + 1);
assigns a random integer from 10 through 100 to the num variable

 Results using different rand values:
 rand value: 352 10 + 352 % (100 – 10 + 1)
 100 – 10 + 1 is evaluated first and results in 91 10 + 352 % 91
 352 % 91 is evaluated next and results in 79 10 + 79
 10 + 79 is evaluated last and results in 89 89

 rand value: 4 10 + 4 % (100 – 10 + 1)
 100 – 10 + 1 is evaluated first and results in 91 10 + 4 % 91
 4 % 91 is evaluated next and results in 4 10 + 4
 10 + 4 is evaluated last and results in 14 14

 rand value: 2500 10 + 2500 % (100 – 10 + 1)
 100 – 10 + 1 is evaluated first and results in 91 10 + 2500 % 91
 2500 % 91 is evaluated next and results in 43 10 + 43
 10 + 43 is evaluated last and results in 53 53

Figure 9-8   How to generate random integers within a specific range

As indicated in Figure 9-8, the expression in Example 1 evaluates to the integers 4, 3, and 1 when
the rand values are 27, 8, and 324, respectively. Notice that the three random integers (4, 3, and 1)
are within the range of 1 through 6. The expression in Example 2 evaluates to 89, 14, and 53 when
the rand values are 352, 4, and 2500, respectively. In this case, the three random integers (89, 14,
and 53) are within the required range of 10 through 100.

You should initialize the random number generator in each program in which it is used.
Otherwise, it will generate the same series of numbers each time the program is executed.
Typically, the initialization task is performed at the beginning of the program. You initialize the
generator using the srand function. Like the rand function, the srand function is a built-in
C++ function. However, unlike the rand function, the srand function is a void function, which

Ch09-Random Range

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

288

means it does not return a value. (You will learn more about void functions in Chapter 10.)
Depending on your C++ development tool, you may need to include the #include <cstdlib>
directive in your program in order to use srand.

Figure 9-9 shows the syntax of the srand function and includes examples of using the function.
The seed actual argument in the syntax is an integer that represents the starting point for the
random number generator. The computer uses the starting point (or seed) in the mathematical
algorithm it employs when selecting the random numbers. You can have the user enter the seed,
as shown in Example 1 in Figure 9-9. However, a more common way to initialize the generator is
to use the C++ time function as the seed, as shown in Examples 2 and 3.

The time function is a built-in value-returning function that returns the current time (according
to your computer system’s clock) as seconds elapsed since midnight on January 1, 1970. However,
because the time function returns a time_t object, you will need to use a type cast to convert the
function’s return value to an integer, as shown in Examples 2 and 3 in Figure 9-9. In both examples,
the time function is passed one actual argument: the number 0. Using the time function as the srand
function’s seed ensures that the random number generator is initialized with a unique integer each
time the program is executed. The unique integer will produce a unique series of random numbers.
To use the time function in a program, the program must contain the #include <ctime> directive.

Figure 9-9   How to use the srand function

How To �Use the srand Function

Syntax
srand(seed)

Example 1
int x = 0;
cout << "Enter an integer: ";
cin >> x;
srand(x);
cout << rand() << endl;
The srand function initializes the random number generator using the integer entered by
the user. The cout statement displays a random integer that will be greater than or equal
to 0 but less than or equal to RAND_MAX.

Example 2
srand(static_cast<int>(time(0)));
cout << rand() << endl;
The srand function initializes the random number generator using the value returned by
the time function after it has been converted to the int data type. The cout statement
displays a random integer that will be greater than or equal to 0 but less than or equal to
RAND_MAX.

Example 3
int randNum = 0;
srand(static_cast<int>(time(0)));
randNum = 1 + rand() % (10 - 1 + 1);
The srand function initializes the random number generator using the value returned by
the time function after it has been converted to the int data type. The assignment
statement assigns a random integer that is greater than or equal to 1 but less than or
equal to 10 to the randNum variable.

your compiler may require the
#include <cstdlib> directive

the time function requires the
#include <ctime> directive

the time function requires the
#include <ctime> directive

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

289

The rand, srand, and time Functions 	﻿

The Guessing Game Program
Figure 9-10 shows the IPO chart information and corresponding C++ instructions for the
guessing game program. The program generates a random number from 1 through 10 and then
allows the user as many chances as needed to guess the number. The srand, time, and rand
functions are shaded in the figure.

IPO chart information
Input
 random number (from
 1 through 10)
 guess

Processing
 none

Output
 appropriate message

Algorithm
1. generate random number

2. enter guess

3. repeat while (guess is not
 random number)
 display “Sorry, guess
 again:” message
 enter guess
 end repeat

4. display “Yes, the number
 is” and the random number

C++ instructions

Problem specification
Create a program that generates a random number from 1 through 10 and then allows the user as
many chances as needed to guess the number. If the user guesses the number, display the
message “Yes, the number is” followed by the number. Otherwise, display the “Sorry, guess again:”
message.

Figure 9-10   Problem specification, IPO chart information, and C++ instructions for the guessing
game program

Figure 9-11 shows the completed guessing game program and includes a sample run of the
program. The statement on Line 15 uses the srand and time functions to initialize the random
number generator. The rand function, which appears in the assignment statement on Line 16,
generates a random integer from 1 through 10. The statement assigns the random integer to the
randomNumber variable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

290

Mini-Quiz 9-1
1.	 Which of the following expressions will return the square root of the number 16?

a.	 pow(16.0, 2)

b.	 sqrt(16.0)

c.	 sqrt(16.0, 0.5)

d.	 both a and b

Figure 9-11   Guessing game program

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

required for the
time function your compiler may require

this directive to use the
rand and srand functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

291

Creating Program-Defined Value-Returning Functions 	﻿

2.	 Which of the following expressions will generate a random integer from 25 through 50,
inclusive?

a.	 1 + rand() % (50 – 25 + 1)

b.	 50 + rand() % (50 – 25 + 1)

c.	 25 + rand() % (50 – 25 + 1)

d.	 25 + rand() % (50 – 25 - 1)

3.	 Which of the following functions initializes the random number generator in C++?

a.	 initialize()

b.	 startRand()

c.	 rand(time(0))

d.	 none of the above

4.	 Which of the following directives is necessary for a program to use the C++ time
function?

a.	 #include <ctime>

b.	 #include <stime>

c.	 #include <time>

d.	 none of the above

Creating Program-Defined Value-Returning Functions
As mentioned earlier, you can create your own functions in C++. The functions you create
are referred to as program-defined functions because their definitions are typically contained
in the program itself rather than in a different file. You already know how to create one
program-defined value-returning function: main.

Figure 9-12 shows the syntax for creating (or defining) a value-returning function in a C++
program. The figure also shows examples of program-defined value-returning functions. The
getRandomNumber function in Example 1 returns a random integer from 1 through 10. The
getRectangleArea function in Example 2 calculates and returns the area of a rectangle, using
the values stored in the len and wid variables. Both values will be passed to the function by
the statement from which it is called. The function returns the area as a double number. The
getSubtotal function in Example 3 uses the values passed to it to calculate a subtotal, which
the function returns as a double number. At this point, you should not be concerned if you do
not fully understand the examples. They will become clearer to you as you progress through
the chapter.

How To �Create a Program-Defined Value-Returning Function

Syntax
returnDataType functionName([parameterList])
{
 one or more statements
 return expression;
} //end of functionName function

Example 1
int getRandomNumber()
{
 int randInteger = 0;
 randInteger = 1 + rand() % (10 - 1 + 1);
 return randInteger;
} //end of getRandomNumber function
The function generates a random integer from 1 through 10 and then returns the random
integer.

Example 2
double getRectangleArea(double len, double wid)
{
 return len * wid;
} //end of getRectangleArea function
The function calculates the area of a rectangle and then returns the result as a double
number.

Example 3
double getSubtotal(int sold, double costPerItem)
{
 double subtotal = 0.0;
 subtotal = sold * costPerItem;
 return subtotal;
} //end of getSubtotal function
The function calculates the subtotal and then returns the result as a double number.

Figure 9-12   How to create a program-defined value-returning function (continues)

function header

function body

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

292

As Figure 9-12 indicates, a function definition contains a function header and a function
body. The function header for a value-returning function begins with returnDataType, which
indicates the data type of the value the function returns. The getRandomNumber function in
the figure returns an integer; therefore, its returnDataType is int. The getRectangleArea
and getSubtotal functions, on the other hand, return a double number and have a
returnDataType of double.

The function header also specifies the function’s name. The rules for naming functions are the
same as for naming variables. However, it is a common practice to begin a function’s name
with a verb. To make your programs more self-documenting and easier to understand, you
should use meaningful names that describe the task the function performs. The names of the
functions in Figure 9-12 indicate that the functions return a random number, the area of a
rectangle, and a subtotal.

The function header also contains an optional parameterList enclosed in parentheses. Keep in
mind that only the parameterList is optional; the parentheses are a required part of the syntax.
The parameterList contains the data type and name of one or more memory locations. The
memory locations in a function’s parameterList are called formal parameters. Each formal
parameter will store an item of information that is passed to the function when the function is
called. In Example 1 in Figure 9-12, the empty set of parentheses in the function header indi-
cates that the getRandomNumber function will not be passed any information by the statement
that calls it. The function header in Example 2, however, contains two formal parameters
and indicates that the getRectangleArea function will be passed two items of information

Syntax
returnDataType functionName([parameterList])
{
 one or more statements
 return expression;
} //end of functionName function

Example 1
int getRandomNumber()
{
 int randInteger = 0;
 randInteger = 1 + rand() % (10 - 1 + 1);
 return randInteger;
} //end of getRandomNumber function
The function generates a random integer from 1 through 10 and then returns the random
integer.

Example 2
double getRectangleArea(double len, double wid)
{
 return len * wid;
} //end of getRectangleArea function
The function calculates the area of a rectangle and then returns the result as a double
number.

Example 3
double getSubtotal(int sold, double costPerItem)
{
 double subtotal = 0.0;
 subtotal = sold * costPerItem;
 return subtotal;
} //end of getSubtotal function
The function calculates the subtotal and then returns the result as a double number.

Figure 9-12   How to create a program-defined value-returning function

(continued)

function definition

Recall that a
value-returning
function can
return only one
value.

Rather than
using an empty
set of paren-
theses when a
function is not

passed any information,
as in Example 1, some
programmers enter the
keyword void within
the parentheses.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

293

Calling a Function 	﻿

when it is invoked. Both items will have the double data type. The getSubtotal function in
Example 3 will receive an int item followed by a double item from the statement that invokes
it. You will learn more about the parameterList later in the chapter and also in Chapter 10.

The function body in a function definition contains the instructions for performing the function’s
assigned task. The function body begins with the opening brace ({) and ends with the closing
brace (}). Using a comment to mark the end of a program-defined function will make your
programs easier to read and understand.

In most cases, the last statement in the function body of a value-returning function is return
expression;, in which expression represents the function’s one and only return value. The data type
of the expression must agree with the returnDataType specified in the function header. The return
statement returns the expression’s value to the statement that called the function. After the return
statement is processed, the function ends, and program execution continues in the calling function.

Mini-Quiz 9-2
1.	 The header in a value-returning function consists of _________________________.

a.	 the data type of the function’s return value
b.	 the function’s name
c.	 an optional parameterList
d.	 all of the above

2.	 Which of the following is a valid function header for the getArea function? The
function returns a double number and does not have any formal parameters.

a.	 double getArea()

b.	 double getArea

c.	 double getArea();

d.	 double getArea;

3.	 Write the function header for the getGrossPay function. The function returns a
double number and has two formal parameters: an int variable named hours and a
double variable named rate.

4.	 The getGrossPay function from Question 3 calculates and returns an employee’s gross
pay. Write a C++ statement that returns the gross pay to the statement that called the
function. The gross pay is stored in a double variable named gross.

Calling a Function
For a function to perform its task, it must be called (or invoked). The main function in a C++
program is invoked automatically when the program is executed. Functions other than main,
however, must be called by a statement within the program. As you observed in the programs
from earlier in the chapter, you call a built-in function by including its name and actual
arguments (if any) in the statement, like this: hypotenuse = sqrt(sumSqrs);. The statement
invokes the built-in value-returning sqrt function, passing it one actual argument: the value
stored in the sumSqrs variable. You use the same method to call a program-defined
value-returning function, as shown in Figure 9-13.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

294

The number of actual arguments passed to a function should match the number of formal
parameters in its function header. In addition, the data type and order (or position) of each
actual argument must agree with the data type and order (position) of its corresponding formal
parameter. This is because when the function is called, the computer stores the value of the first
actual argument in the function’s first formal parameter, the value of the second actual argument
in its second formal parameter, and so on.

The assignment statement in Example 1 in Figure 9-13 calls the getRandomNumber function
shown earlier in Figure 9-12. The empty set of parentheses in the function’s header indicates that
it requires no information to be passed to it in order to complete its task. Therefore, the func-
tion call—getRandomNumber()—contains an empty set of parentheses. The function generates
a random integer from 1 through 10 and then returns the integer to the assignment statement
that invoked it. The statement assigns the return value to the num1 variable.

The function call in Example 2 passes two double numbers (7.25 and 21.0) to the
getRectangleArea function from Figure 9-12. This is because the function’s header contains two
formal parameters, both of which have the double data type. The computer stores the number
7.25 in the len formal parameter and stores the number 21.0 in the wid formal parameter. The
function uses the values stored in its formal parameters to calculate the area. It then returns the
area to the cout statement that called it. That statement displays the area on the computer screen.

How To �Call (Invoke) a Value-Returning Function

Syntax
functionName([argumentList])

Example 1
int num1 = 0;
num1 = getRandomNumber();
The assignment statement calls the getRandomNumber function and then assigns the
function’s return value to the num1 variable.

Example 2
cout << getRectangleArea(7.25, 21.0);
The cout statement calls the getRectangleArea function, passing it the double
numbers 7.25 and 21.0. It then displays the function’s return value on the computer
screen.

Example 3
int quantity = 0;
double itemPrice = 0.0;
double salesTax = 0.0;
cin >> quantity;
cin >> itemPrice;
salesTax = getSubtotal(quantity, itemPrice) * 0.05;
The assignment statement calls the getSubtotal function, passing it the integer stored
in the quantity variable and the double number stored in the itemPrice variable. It then
multiplies the function’s return value by the double number 0.05 and stores the result in
the salesTax variable.

Figure 9-13   How to call (invoke) a value-returning function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

295

Calling a Function 	﻿

As you learned earlier, an actual argument can be a variable, named constant, literal constant, or
keyword; however, in most cases it will be a variable. Each variable you declare in a program has
both a value and a unique address that represents the location of the variable in the computer’s
internal memory. C++ allows you to pass either a copy of the variable’s value or its address
to a function. Passing a copy of a variable’s value is referred to as passing by value. Passing a
variable’s address is referred to as passing by reference. Unless you specify otherwise, variables
in C++ are automatically passed by value. For now, you do not need to concern yourself with
passing by reference because all variables passed to functions in this chapter are passed by value.
You will learn how to pass variables by reference in Chapter 10.

The function call in Example 3 in Figure 9-13 passes a copy of the values stored in two variables
to the getSubtotal function from Figure 9-12. The function definition and the statement con-
taining the function call are shown together in Figure 9-14.

Ch09-Pass By Value

salesTax = getSubtotal(quantity, itemPrice) * 0.05;

double getSubtotal(int sold, double costPerItem)
{
 double subtotal = 0.0;
 subtotal = sold * costPerItem;
 return subtotal;
} //end of getSubtotal function

Figure 9-14   Function call and function definition

The getSubtotal function header indicates that the function is expecting to receive two values,
in this order: an integer that represents the number of items sold and a double number that
represents the cost per item. Because of this, the function call passes two actual arguments in
the required data type and order: the int quantity variable first and the double itemPrice
variable second. As the arrows in Figure 9-14 indicate, the computer stores a copy of the value
contained in the first actual argument (quantity) in the first formal parameter (sold) and a
copy of the value contained in the second actual argument (itemPrice) in the second formal
parameter (costPerItem). Notice that the names of the actual arguments do not have to be
identical to the names of their corresponding formal parameters. In fact, to avoid confusion, you
should use different names for the arguments and their corresponding parameters.

The getSubtotal function uses the values in its formal parameters to calculate the subtotal. It
then returns the subtotal (as a double number) to the assignment statement that called it. The
assignment statement multiplies the function’s return value by 0.05 and assigns the result to the
salesTax variable.

Keep in mind that when the computer encounters a statement that calls a function, it temporarily
leaves the calling function to process the code contained in the called function. It returns to the
calling function only after the called function ends.

The Savings Account Program
Figure 9-15 shows the problem specification, IPO chart information, and C++ instructions for
the savings account program. The program allows the user to enter the initial deposit made
into a savings account and the annual interest rate. It then displays the amount of money in the
account at the end of 1 through 3 years, assuming no additional deposits or withdrawals are
made. As the problem specification states, you can calculate the savings account balances using
the following formula: b = p * (1 + r)n. In the formula, p is the principal (the amount of the initial
deposit), r is the annual interest rate, n is the number of years, and b is the balance in the savings
account at the end of the nth year.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

296

main function
C++ instructions

this variable is created and initialized
in the for clause

getBalance function
C++ instructions

Example 1: using 1000 for p, 0.02 for r, and 1 for n
b = 1000 * (1 + 0.02)1
b = 1020

Example 2: using 5000 for p, 0.03 for r, and 2 for n
b = 5000 * (1 + 0.03)2
b = 5304.50

main function
IPO chart information
Input
 deposit
 rate
 year (counter: 1 to 3)

Processing
 none

Output
 account balance (at end of each of
 the 3 years)

Algorithm
1. enter deposit and rate

2. repeat for (year from 1 to 3)

 call the getBalance function to
 calculate the current account balance;
 pass the deposit, rate, and year

 display the year and current
 account balance
 end repeat

getBalance function
IPO chart information
Input
 deposit (formal parameter)
 rate (formal parameter)
 year (formal parameter)

Processing
 none

Output
 account balance

Algorithm
1. calculate the account balance
2. return the account balance

Problem specification
Create a program that allows the user to enter the initial deposit made into a savings account and
the annual interest rate. The program should display the amount of money in the account at the end
of 1 through 3 years, assuming no additional deposits or withdrawals are made. You can calculate
the savings account balances using the following formula: b = p * (1 + r)n. In the formula, p is the
principal (the amount of the initial deposit), r is the annual interest rate, n is the number of years,
and b is the balance in the savings account at the end of the nth year.

Figure 9-15   Problem specification, IPO chart information, and C++ instructions for the savings
account program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

297

Calling a Function 	﻿

Figure 9-16 shows the flowcharts for the savings account program. The call to a function is often
placed in a rectangle with side borders, as shown in the figure.

Before you can enter the C++ instructions from Figure 9-15 into a file, you need to learn about
function prototypes.

main function
C++ instructions

this variable is created and initialized
in the for clause

getBalance function
C++ instructions

Example 1: using 1000 for p, 0.02 for r, and 1 for n
b = 1000 * (1 + 0.02)1
b = 1020

Example 2: using 5000 for p, 0.03 for r, and 2 for n
b = 5000 * (1 + 0.03)2
b = 5304.50

main function
IPO chart information
Input
 deposit
 rate
 year (counter: 1 to 3)

Processing
 none

Output
 account balance (at end of each of
 the 3 years)

Algorithm
1. enter deposit and rate

2. repeat for (year from 1 to 3)

 call the getBalance function to
 calculate the current account balance;
 pass the deposit, rate, and year

 display the year and current
 account balance
 end repeat

getBalance function
IPO chart information
Input
 deposit (formal parameter)
 rate (formal parameter)
 year (formal parameter)

Processing
 none

Output
 account balance

Algorithm
1. calculate the account balance
2. return the account balance

Problem specification
Create a program that allows the user to enter the initial deposit made into a savings account and
the annual interest rate. The program should display the amount of money in the account at the end
of 1 through 3 years, assuming no additional deposits or withdrawals are made. You can calculate
the savings account balances using the following formula: b = p * (1 + r)n. In the formula, p is the
principal (the amount of the initial deposit), r is the annual interest rate, n is the number of years,
and b is the balance in the savings account at the end of the nth year.

Figure 9-15   Problem specification, IPO chart information, and C++ instructions for the savings
account program

call getBalance to
calculate the current

account balance; pass
deposit, rate, and year

start

stop

main function

enter deposit
and rate

getBalance function

start

stop

calculate
account balance

return account
balance

year

1

< 41
T

F

display year
and current

account balance

Figure 9-16   Flowcharts for the savings account program

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

298

Function Prototypes
Most C++ programmers enter the function definitions below the main function in a
program. When a function definition appears below the main function, you must enter a
function prototype above the main function. Otherwise, the compiler won’t recognize the
function’s name when it is used in the main function. A function prototype is a statement
that specifies the function’s name, the data type of its return value, and the data type of
each of its formal parameters (if any). You can also include each formal parameter’s name;
however, that is not a requirement.

A program will have one function prototype for each function defined below the main function.
You usually place the function prototypes at the beginning of the program, after the #include
directives and using namespace std; statement. A function prototype alerts the C++ compiler
that the function will be defined later in the program. The function prototypes in a program are
similar to the table of contents in a book. Like each entry in a table of contents, each prototype is
simply a preview of what will be expanded on later in the program (or in the book).

Keep in mind that a function prototype is necessary only when the function is defined below the
main function in the program. It is not needed for a function whose definition appears above
the main function. In this book, the function definitions will be entered below the main function
because that is the format used by most C++ programmers. This means that each program-
defined function will need a corresponding function prototype above the main function.

Figure 9-17 shows a function prototype’s syntax, which is almost identical to a function
header’s syntax. However, unlike a function header, a function prototype ends with a semi-
colon. The figure also shows two ways of writing the function prototype for the getBalance
function in the savings account program. As Example 2 indicates, it is not necessary to include
the names of the formal parameters in a function prototype. However, many programmers
include the names to make the program easier to read and understand. Some also include the
names for convenience because it makes entering the function prototype an easy task: Simply
copy the function’s header, then paste it in the function prototype section of the program, and
then type a semicolon at the end of it.

How To �Write a Function Prototype

Syntax
returnDataType functionName([parameterList]);

Example 1 – with the optional names
double getBalance(int amount, double rate, int y);

Example 2 – without the optional names
double getBalance(int, double, int);

Figure 9-17   How to write a function prototype

semicolon

each formal parameter’s data
type and (optionally) name

Completing the Savings Account Program
Figure 9-18 shows all of the code entered in the savings account program. The function proto-
type on Line 11 alerts the computer that the getBalance function is defined somewhere below
the main function in the program. In this case, the function definition appears on Lines 37
through 42. Some programmers use a comment to separate the function definitions from

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

299

Function Prototypes 	﻿

the main function, as shown on Line 36; however, that is not a requirement. Figure 9-18 also
includes a sample run of the program.

 1 //Savings.cpp - displays the account balance at
 2 //the end of 1 through 3 years
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <iomanip>
 7 #include <cmath>
 8 using namespace std;
 9
10 //function prototype
11 double getBalance(int amount, double rate, int y);
12
13 int main()
14 {
15 int deposit = 0;
16 double interestRate = 0.0;
17 double acctBalance = 0.0;
18
19 cout << "Deposit: ";
20 cin >> deposit;
21 cout << "Rate (in decimal form): ";
22 cin >> interestRate;
23
24 cout << fixed << setprecision(2);
25 for (int year = 1; year < 4; year += 1)
26 {
27 acctBalance =
28 getBalance(deposit, interestRate, year);
29 cout << "Year " << year << ": $"
30 << acctBalance << endl;
31 } //end for
32
33 return 0;
34 } //end of main function
35
36 //*****function definitions*****
37 double getBalance(int amount, double rate, int y)
38 {
39 double balance = 0.0;
40 balance = amount * pow((1 + rate), y);
41 return balance;
42 } //end of getBalance function

Figure 9-18   Savings account program

function prototype

function call

function definition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

300

Desk-checking the savings account program will help you understand how the computer
processes a program-defined function. The declaration statements on Lines 15 through 17 create
and initialize three variables. The cout and cin statements on Lines 19 through 22 prompt the
user to enter the initial deposit and annual interest rate and then store the user’s responses in two
of the main function’s variables. The statement on Line 24 tells the computer to display the out-
put in fixed-point notation with two decimal places. The for clause on Line 25 creates a counter
variable named year and initializes it to 1. Figure 9-19 shows the desk-check table at this point,
assuming the user enters 1000 and 0.02 as the initial deposit and annual interest rate, respectively.

Ch09-Savings
Desk-Check

deposit
0

1000

interestRate
0.0

0.02

acctBalance
0.0

year
1

Figure 9-19   Desk-check table after the instructions on Lines 15 through 25 are processed

these four variables
belong to the main
function

Note: The names in black indicate variables that belong to the main function. The names in red
indicate variables that belong to the getBalance function.

year
1

deposit
0

1000

amount
1000

interestRate
0.0

0.02

rate
0.02

acctBalance
0.0

y
1

Figure 9-20   Desk-check table after the function header on Line 37 is processed

balance
0.0

1020.0

Note: The names in black indicate variables that belong to the main function. The names in red
indicate variables that belong to the getBalance function.

year
1

deposit
0

1000

amount
1000

interestRate
0.0

0.02

rate
0.02

acctBalance
0.0

y
1

Figure 9-21   Desk-check table after the first two statements in the getBalance function are processed

The for clause checks whether the value in the year variable is less than 4. It is, so the
statements in the loop body are processed. The first statement is an assignment statement that
invokes the getBalance function, passing it a copy of the values stored in three variables. At
this point, the computer temporarily leaves the main function to process the getBalance
function’s code, beginning with the function header on Line 37 in the program.

The getBalance function’s header contains three formal parameters. The parameters tell the
computer to reserve three memory locations: an int variable named amount, a double variable
named rate, and an int variable named y. After reserving the variables, the computer stores
a copy of the values passed to the function—in this case, the numbers 1000, 0.02, and 1—in the
variables. Figure 9-20 shows the desk-check table after the function header is processed.

The first statement in the getBalance function creates and initializes a double variable named
balance. The second statement calculates the current balance using the values stored in the
amount (1000), rate (0.02), and y (1) variables. The statement assigns the current balance
(1020.0) to the balance variable, as shown in Figure 9-21.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

301

Function Prototypes 	﻿

The getBalance function’s return statement is processed next and returns the value stored
in the balance variable (1020.0) to the statement that called the function. That statement,
which appears on Lines 27 and 28 in the main function, assigns the value to the main function’s
acctBalance variable.

After the getBalance function’s return statement is processed, the function ends, and the
computer removes the amount, rate, y, and balance variables from its internal memory.
Figure 9-22 shows the desk-check table at this point in the program. Notice that only the
main function’s variables are still in the computer’s internal memory. (When desk-checking,
you do not need to cross out the columns that contain the getBalance function’s variables
when the function ends. You can simply cross out the ending values and then reuse the
columns for the next call to the function, as shown later in Figure 9-33. The columns are
crossed out in this section to make it obvious that the variables no longer exist when the
getBalance function ends.)

balance
0.0

1020.0

Note: The names in black indicate variables that belong to the main function. The names in red
indicate variables that belong to the getBalance function.

year
1

deposit
0

1000

amount
1000

interestRate
0.0

0.02

rate
0.02

acctBalance
0.0

1020.0

y
1

Figure 9-22   Desk-check table after the getBalance function’s return statement is processed

After the assignment statement in the for loop is processed, the loop’s cout statement displays
the message “Year 1: $1020.00” on the computer screen. Next, the for clause updates the year
variable by 1, giving 2. The clause then checks whether the variable’s value is less than 4. It is, so
the statements in the loop body are processed again.

The first statement in the loop body invokes the getBalance function, passing it a copy of
the values stored in its actual arguments. At this point, the computer temporarily leaves the
main function to process the getBalance function’s code, beginning with the function header.
The function’s formal parameters tell the computer to create an int variable named amount, a
double variable named rate, and an int variable named y. After reserving the variables, the
computer stores a copy of the values passed to the function—in this case, the numbers 1000,
0.02, and 2—in the variables.

The first statement in the getBalance function creates and initializes a double variable named
balance. The second statement calculates the current balance using the values stored in the
amount (1000), rate (0.02), and y (2) variables. The statement assigns the current balance
(1040.4) to the balance variable.

The getBalance function’s return statement is processed next and returns the value stored
in the balance variable (1040.4) to the statement that called the function. That statement,
which appears on Lines 27 and 28 in the main function, assigns the value to the main function’s
acctBalance variable, as shown in Figure 9-23.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

302

After the getBalance function’s return statement is processed, the function ends, and the
computer removes the amount, rate, y, and balance variables from its internal memory. As
Figure 9-24 indicates, only the main function’s variables are still in the computer’s internal memory.

Note: The names in black indicate variables that belong
to the main function. The names in red indicate variables
that belong to the getBalance function.

deposit
0

1000

interestRate
0.0

0.02

acctBalance
0.0

1020.0
1040.4

year
1
2

balance
0.0

1020.0

amount
1000

rate
0.02

y
1

balance
0.0

1040.4

amount
1000

rate
0.02

y
2

Figure 9-23   Desk-check table after the return balance; statement is processed the second time

Note: The names in black indicate variables that belong
to the main function. The names in red indicate variables
that belong to the getBalance function.

deposit
0

1000

interestRate
0.0

0.02

acctBalance
0.0

1020.0
1040.4

year
1
2

balance
0.0

1020.0

amount
1000

rate
0.02

y
1

balance
0.0

1040.4

amount
1000

rate
0.02

y
2

Figure 9-24   Desk-check table after the getBalance function ends the second time

The loop’s cout statement is processed next and displays the message “Year 2: $1040.40” on the
computer screen. Then, the for clause updates the year variable by 1, giving 3, and checks whether
the variable’s value is less than 4. It is, so the statements in the loop body are processed again.

The first statement in the loop body invokes the getBalance function, passing it a copy of the
values stored in its actual arguments. Here again, the computer temporarily leaves the main
function to process the getBalance function’s code. Using the formal parameters as a guide, the
computer creates three variables and stores a copy of the values passed to the function (1000,
0.02, and 3) in the variables.

The first statement in the getBalance function creates and initializes a double variable named
balance. The second statement calculates the current balance using the values stored in the
amount (1000), rate (0.02), and y (3) variables. The statement assigns the current balance
(1061.208) to the balance variable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

303

Function Prototypes 	﻿

The getBalance function’s return statement is processed next and returns the value stored
in the balance variable (1061.208) to the assignment statement on Lines 27 and 28 in the main
function. The statement assigns the value to the main function’s acctBalance variable.

After the getBalance function’s return statement is processed, the function ends and the
computer removes the amount, rate, y, and balance variables from its internal memory. At
this point, only the main function’s variables are still in the computer’s internal memory, as
shown in Figure 9-25. (As mentioned earlier, you do not need to cross out the columns that
contain the called function’s variables each time the function ends. You can simply cross out
the ending values and then reuse the columns for the next call to the function, as shown later
in Figure 9-33. The columns are crossed out in this section to make it obvious that the variables
no longer exist when the getBalance function ends.)

Note: The names in black indicate variables that belong
to the main function. The names in red indicate variables
that belong to the getBalance function.

deposit
0

1000

interestRate
0.0

0.02

acctBalance
0.0

1020.0
1040.4

1061.208

year
1
2
3

balance
0.0

1020.0

amount
1000

rate
0.02

y
1

balance
0.0

1040.4

amount
1000

rate
0.02

y
2

balance
0.0

1061.208

amount
1000

rate
0.02

y
3

Figure 9-25   Desk-check table after the getBalance function ends the third time

The loop’s cout statement is processed next and displays the message “Year 3: $1061.21” on
the computer screen. Then, the for clause updates the year variable by 1, giving 4, and checks
whether the variable’s value is less than 4. It isn’t, so the for loop ends, and the computer
removes the year variable from its internal memory.

The return 0; statement on Line 33 is processed next. After the statement is processed, the
main function ends, and the computer removes the deposit, interestRate, and acctBalance
variables from its internal memory.

At this point, you may be wondering why the main function needs to pass a copy of the values
stored in the deposit, interestRate, and year variables to the getBalance function. Why
can’t the getBalance function just use the main function’s variables? You may also be wondering
why the computer removes the variables at different times while the program is running. To
answer these questions, you will need to learn about the scope and lifetime of a variable. The
scope and lifetime of a variable are the last topics covered in this chapter.

For more
examples
of value-
returning
functions,

see the Value-Returning
Functions section in the
Ch09WantMore.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

304

The Scope and Lifetime of a Variable
A variable’s scope indicates where in the program the variable can be used, and its lifetime
indicates how long the variable remains in the computer’s internal memory. Although variables
can have either local or global scope, most of the variables used in a program will have local
scope. This is because fewer unintentional errors occur in programs when the variables are
declared using the minimum scope needed, which usually is local scope.

A variable’s scope and lifetime are determined by where you declare the variable in the
program. Variables declared within a statement block, a function’s parameterList, or a
for clause have local scope and are referred to as local variables. Recall that a statement
block is a set of instructions enclosed in braces. A program-defined function is an example
of a statement block. Variables declared within the function, and those that appear in
its parameterList, can be used only by that function. You also observed the use of a local
variable in the swapping program in Figure 5-8 in Chapter 5. As you may remember, the
statement block in the if statement’s true path declares a local variable named temp. The
temp variable is local to the true path and can be used only by the statements in that path.
A variable declared in a for clause also has a local scope; it can be used only by the for loop
and remains in memory until the loop ends.

Unlike local variables, global variables are declared outside of any function in the program,
and they remain in memory until the program ends. Also unlike a local variable, any statement
in the program can use a global variable. Declaring a variable as global rather than local allows
unintentional errors to occur when a function that should not have access to the variable
inadvertently changes the variable’s contents. Because of this, you should avoid using global
variables in your programs. If more than one function needs access to the same variable, it is
better to create a local variable in one of the functions and then pass that variable to the other
functions that need it.

In the savings account program shown earlier in Figure 9-18, the deposit, interestRate, and
acctBalance variables are declared on Lines 15 through 17 in the main function. As a result,
the variables are local to the main function and can be used only by statements below Line 17
within the main function. In other words, their scope begins with Line 18 and ends with Line 34.
The getBalance function, which begins on Line 37, is not even aware of the existence of these
variables in memory. If you want the getBalance function to use the values stored in those
variables, you will need to pass the values to the function. The variables are removed from
memory when the main function ends.

The year variable, which is declared in the for clause on Line 25, is local to the for loop. This
means its scope is limited to the loop—in this case, the statements from Line 25 through Line 31.
The year variable’s lifetime lasts only as long as the loop is processing. When the loop ends, the
year variable is removed from the computer’s internal memory.

The amount, rate, y, and balance variables are local to the getBalance function—the
first three because they appear in the function’s parameterList and the last because it is
declared within the function. Only the getBalance function can use the four variables,
and they will be removed from the computer’s internal memory when the getBalance
function ends.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

305

The Scope and Lifetime of a Variable 	﻿

Mini-Quiz 9-3
1.	 The getArea function returns a double number and has no formal parameters. Which

of the following calls the getArea function and assigns its return value to a double
variable named area?

a.	 area = getArea

b.	 area = getArea();

c.	 area = getArea(double);

d.	 getArea(area);

2.	 Which of the following is a valid function prototype for the getArea function from
Question 1?

a.	 double getArea()

b.	 double getArea

c.	 double getArea();

d.	 double getArea;

3.	 Write a C++ statement that will display the value returned by the getArea function
from Question 1.

4.	 Write a function prototype for the getGrossPay function. The function returns a
double number and has two formal parameters: an int variable named hours and a
double variable named rate.

5.	 Write a statement that invokes the getGrossPay function from Question 4. The state-
ment should pass the function the integer 40 and a copy of the value stored in a double
variable named payRate. The statement should assign the function’s return value to a
double variable named weekGross.

LAB 9-1  Stop and Analyze
Study the program shown in Figure 9-26, and then answer the questions.

 1 //Lab9-1.cpp – circle calculations
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <cmath>
 6 using namespace std;
 7
 8 //function prototypes
 9 double getArea(double rad);
10 double getDiameter(double rad);
11
12 int main()
13 {
14 int choice = 0;
15 double radius = 0.0;
16
17 cout << "1 Circle area" << endl;
18 cout << "2 Circle diameter" << endl;
19 cout << "Enter your choice (1 or 2): ";
20 cin >> choice;
21
22 if (choice < 1 || choice > 2)
23 cout << "Invalid choice" << endl;
24 else
25 {
26 cout << "Radius: ";
27 cin >> radius;
28 if (choice == 1)
29 cout << "Area: " << getArea(radius);
30 else
31 cout << "Diameter: " << getDiameter(radius);
32 //end if
33 cout << endl;
34 } //end if
35 return 0;
36 } //end of main function
37
38 //*****function definitions*****
39 double getArea(double rad)
40 {
41 const double PI = 3.141593;
42 double area = 0.0;
43 area = PI * pow(rad, 2);
44 return area;
45 } //end getArea function
46
47 double getDiameter(double rad)
48 {
49 return 2 * rad;
50 } //end getDiameter function

Figure 9-26   Code for Lab 9-1 (continues)

The answers
to the labs are
contained in the
Answers.pdf file.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

306

 1 //Lab9-1.cpp – circle calculations
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <cmath>
 6 using namespace std;
 7
 8 //function prototypes
 9 double getArea(double rad);
10 double getDiameter(double rad);
11
12 int main()
13 {
14 int choice = 0;
15 double radius = 0.0;
16
17 cout << "1 Circle area" << endl;
18 cout << "2 Circle diameter" << endl;
19 cout << "Enter your choice (1 or 2): ";
20 cin >> choice;
21
22 if (choice < 1 || choice > 2)
23 cout << "Invalid choice" << endl;
24 else
25 {
26 cout << "Radius: ";
27 cin >> radius;
28 if (choice == 1)
29 cout << "Area: " << getArea(radius);
30 else
31 cout << "Diameter: " << getDiameter(radius);
32 //end if
33 cout << endl;
34 } //end if
35 return 0;
36 } //end of main function
37
38 //*****function definitions*****
39 double getArea(double rad)
40 {
41 const double PI = 3.141593;
42 double area = 0.0;
43 area = PI * pow(rad, 2);
44 return area;
45 } //end getArea function
46
47 double getDiameter(double rad)
48 {
49 return 2 * rad;
50 } //end getDiameter function

Figure 9-26   Code for Lab 9-1

QUESTIONS

1.	 Why are the statements on Lines 9 and 10 necessary?

2.	 How else could you write the statement on Line 9?

3.	 If the program does not include the outer selection structure, what will the program
display if the user enters the numbers 3 and 10 as the choice and radius, respectively?

4.	 What are the scope and lifetime of the choice and radius variables?

5.	 What are the scope and lifetime of the rad variable used in the getArea function?

6.	 What are the scope and lifetime of the PI constant and the area variable?

7.	 What are the scope and lifetime of the rad variable used in the getDiameter function?

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

307

The Scope and Lifetime of a Variable 	﻿

8.	 Follow the instructions for starting C++ and viewing the Lab9-1.cpp file, which is con-
tained in either the Cpp8\Chap09\Lab9-1 Project folder or the Cpp8\Chap09 folder.
(Depending on your C++ development tool, you may need to open Lab9-1’s project/
solution file first.) Use the program to display the area of a circle with a radius of 25.5.
Then use it to display the diameter of a circle with a radius of 10.

9.	 Modify the program to allow the user to display a circle’s circumference, given its radius.
Save and then run the program. Test the program appropriately.

LAB 9-2  Plan and Create
In this lab, you will plan and create an algorithm for the problem specification shown
in Figure 9-27. (Hint: You can use a calculator or a spreadsheet program such as
Microsoft Excel to verify the payments shown in the figure and also to perform your
own calculations using the periodic payment formula.)

Problem specification
Many car dealers offer customers a choice of either a large cash rebate or an extremely low
financing rate that is much lower than a local credit union charges. Create a program that
calculates the monthly car payment for each of the following two scenarios:

 • Scenario 1: The user accepts the dealer’s rebate offer and finances the car through his
 or her local credit union.

 • Scenario 2: The user declines the dealer’s rebate offer but accepts the dealer’s lower
 financing rate.

The formula for calculating a periodic payment on a loan is shown below. In the formula,
principal is the amount of the loan, rate is the periodic interest rate, and term is the number of
periodic payments. Also shown below are two examples that use the formula to calculate a
periodic payment. Example 1 calculates the annual payment for a $9,000 loan for three years at
5% interest. The annual payment rounded to the nearest cent is $3,304.88. In other words, if
you borrow $9,000 for three years at 5% interest, you would need to make three annual
payments of $3,304.88 to pay off the loan. Example 2 calculates the monthly payment for a
$12,000 loan for five years at 6% interest. To pay off this loan, you would need to make 60
payments of $231.99.

When you apply for a loan, the lender typically quotes you an annual interest rate and expresses
the term in years. Therefore, when calculating a monthly payment, you must convert the annual
interest rate to a monthly rate by dividing the annual rate by 12. You also need to convert the
term from years to months by multiplying the number of years by 12.

Periodic payment formula
principal * rate / (1 – (rate + 1)–term)

Example 1 annual payment for a $9,000 loan for 3 years at 5% interest
Principal: 9,000
Annual rate: 0.05
Term (years): 3
Formula: 9,000 * 0.05 / (1 – (0.05 + 1)–3)
Annual payment: $3,304.88 (rounded to the nearest cent)

Example 2 monthly payment for a $12,000 loan for 5 years at 6% interest
Principal: 12,000
Monthly rate: 0.005 (annual rate of 0.06 divided by 12
Term (months): 60 (5 years multiplied by 12)
Formula: 12,000 * 0.005 / (1 – (0.005 + 1)–60)
Monthly payment: $231.99 (rounded to the nearest cent)

Figure 9-27   Problem specification and sample calculations for Lab 9-2 (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

308

Problem specification
Many car dealers offer customers a choice of either a large cash rebate or an extremely low
financing rate that is much lower than a local credit union charges. Create a program that
calculates the monthly car payment for each of the following two scenarios:

 • Scenario 1: The user accepts the dealer’s rebate offer and finances the car through his
 or her local credit union.

 • Scenario 2: The user declines the dealer’s rebate offer but accepts the dealer’s lower
 financing rate.

The formula for calculating a periodic payment on a loan is shown below. In the formula,
principal is the amount of the loan, rate is the periodic interest rate, and term is the number of
periodic payments. Also shown below are two examples that use the formula to calculate a
periodic payment. Example 1 calculates the annual payment for a $9,000 loan for three years at
5% interest. The annual payment rounded to the nearest cent is $3,304.88. In other words, if
you borrow $9,000 for three years at 5% interest, you would need to make three annual
payments of $3,304.88 to pay off the loan. Example 2 calculates the monthly payment for a
$12,000 loan for five years at 6% interest. To pay off this loan, you would need to make 60
payments of $231.99.

When you apply for a loan, the lender typically quotes you an annual interest rate and expresses
the term in years. Therefore, when calculating a monthly payment, you must convert the annual
interest rate to a monthly rate by dividing the annual rate by 12. You also need to convert the
term from years to months by multiplying the number of years by 12.

Periodic payment formula
principal * rate / (1 – (rate + 1)–term)

Example 1 annual payment for a $9,000 loan for 3 years at 5% interest
Principal: 9,000
Annual rate: 0.05
Term (years): 3
Formula: 9,000 * 0.05 / (1 – (0.05 + 1)–3)
Annual payment: $3,304.88 (rounded to the nearest cent)

Example 2 monthly payment for a $12,000 loan for 5 years at 6% interest
Principal: 12,000
Monthly rate: 0.005 (annual rate of 0.06 divided by 12
Term (months): 60 (5 years multiplied by 12)
Formula: 12,000 * 0.005 / (1 – (0.005 + 1)–60)
Monthly payment: $231.99 (rounded to the nearest cent)

Figure 9-27   Problem specification and sample calculations for Lab 9-2

First, analyze the problem, looking for the output first and then for the input. In this case, the
user wants the program to display two monthly payments: one if the car is financed through the
credit union and the other if the car is financed through the dealer. To calculate the monthly
payments, the computer will need to know the following information: the price of the car (after
any trade-in), the rebate amount, the credit union’s annual interest rate, the dealer’s annual inter-
est rate, and the term (in years). After analyzing the problem, you plan the algorithm. Recall that
most algorithms follow the format of entering the input items, processing the input items, and
displaying, printing, or storing the output items.

Figures 9-28 and 9-29 show the completed IPO charts for the program’s main and getPayment
functions, respectively. Notice that the main function calls the getPayment function twice: once
to determine the credit union payment and again to determine the car dealer payment. When
calling the getPayment function to calculate the credit union payment, the main function will
pass the difference between the car price and the rebate as the principal. It will also pass the
monthly credit union rate (which is the annual credit union rate divided by 12) and the number
of months (which is the term times 12). Similarly, when calling the getPayment function to
calculate the dealer payment, the main function will pass the car price as the principal and also
pass the monthly dealer rate and the number of months.

function
Input Processing Output
car price Processing items: none credit union payment
rebate dealer payment
credit union rate (annual)
dealer rate (annual)
term (years)
 Algorithm:
 1. enter the car price, rebate, credit union
 rate, dealer rate, and term

 2. call the getPayment function to calculate
 the credit union payment; pass the car price
 minus the rebate, the credit union rate / 12,
 and the term * 12

 3. call the getPayment function to calculate
 the dealer payment; pass the car price, the
 dealer rate / 12, and the term * 12

 4. display the credit union payment and the
 dealer payment

start

stop

call getPayment to calculate
the credit union payment;

pass car price minus rebate,
credit union rate / 12, and

term * 12

call getPayment to calculate
the dealer payment; pass car
price, dealer rate / 12, and

term * 12

enter car price,
rebate, credit union
rate, dealer rate,

and term

display the credit
union payment and
the dealer payment

Figure 9-28   IPO chart for the main function (continues)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

309

The Scope and Lifetime of a Variable 	﻿

function
Input Processing Output
car price Processing items: none credit union payment
rebate dealer payment
credit union rate (annual)
dealer rate (annual)
term (years)
 Algorithm:
 1. enter the car price, rebate, credit union
 rate, dealer rate, and term

 2. call the getPayment function to calculate
 the credit union payment; pass the car price
 minus the rebate, the credit union rate / 12,
 and the term * 12

 3. call the getPayment function to calculate
 the dealer payment; pass the car price, the
 dealer rate / 12, and the term * 12

 4. display the credit union payment and the
 dealer payment

start

stop

call getPayment to calculate
the credit union payment;

pass car price minus rebate,
credit union rate / 12, and

term * 12

call getPayment to calculate
the dealer payment; pass car
price, dealer rate / 12, and

term * 12

enter car price,
rebate, credit union
rate, dealer rate,

and term

display the credit
union payment and
the dealer payment

Figure 9-28   IPO chart for the main function

getPayment function
Input Processing Output
principal Processing items: none monthly payment
monthly rate
number of months

 Algorithm:
 1. calculate the monthly payment
 using the periodic payment formula
 2. return the monthly payment

start

stop

return the monthly
payment

calculate the
monthly payment
using the periodic
payment formula

Figure 9-29   IPO chart for the getPayment function (continues)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

310

getPayment function
Input Processing Output
principal Processing items: none monthly payment
monthly rate
number of months

 Algorithm:
 1. calculate the monthly payment
 using the periodic payment formula
 2. return the monthly payment

start

stop

return the monthly
payment

calculate the
monthly payment
using the periodic
payment formula

Figure 9-29   IPO chart for the getPayment function

The third step in the problem-solving process is to desk-check the algorithm. You will
desk-check the algorithms for the main and getPayment functions using 16000, 3000, 0.08,
0.03, and 4 as the car price (after any trade-in), rebate, annual credit union rate, annual dealer
rate, and term (in years), respectively. Using these values, the monthly payments should be
$317.37 (credit union) and $354.15 (dealer). Therefore, it will be cheaper to finance the car
through the credit union. Figure 9-30 shows the completed desk-check table.

Note: The names in black indicate items that belong to the main function.
The names in red indicate items that belong to the getPayment function.

car price
16000

rebate
3000

credit union rate
0.08

dealer rate
0.03

term
4

credit union payment
317.37

dealer payment
354.15

monthly payment
317.37
354.15

principal
13000
16000

monthly rate
.0067
.0025

number of months
48
48

Figure 9-30   Completed desk-check table for the car payment algorithms

The fourth step in the problem-solving process is to code the algorithm into a program.
The IPO chart information and C++ instructions for the main and getPayment functions
are shown in Figures 9-31 and 9-32, respectively. The variables declared in Figure 9-31
are local to the main function and remain in memory until the main function ends. The
variables in Figure 9-32 are local to the getPayment function and remain in memory until
the getPayment function ends.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

311

The Scope and Lifetime of a Variable 	﻿

main function
IPO chart information
Input
 car price
 rebate
 credit union rate (annual)
 dealer rate (annual)
 term (years)

Processing
 none

Output
 credit union payment
 dealer payment

Algorithm
1. enter the car price, rebate, credit union
 rate, dealer rate, and term

2. call the getPayment function to
 calculate the credit union payment; pass
 the car price minus the rebate, the credit
 union rate / 12, and the term * 12
3. call the getPayment function to
 calculate the dealer payment; pass the car
 price, the dealer rate / 12, and the term * 12
4. display the credit union payment and
 the dealer payment

main function
C++ instructions

int carPrice = 0;
int rebate = 0;
double creditRate = 0.0;
double dealerRate = 0.0;
int term = 0;

double creditPayment = 0.0;
double dealerPayment = 0.0;

cout << "Car price (after any
trade-in): ";
cin >> carPrice;
cout << "Rebate: ";
cin >> rebate;
cout << "Credit union rate: ";
cin >> creditRate;
cout << "Dealer rate: ";
cin >> dealerRate;
cout << "Term in years: ";
cin >> term;

creditPayment = getPayment
(carPrice - rebate,
creditRate / 12, term * 12);

dealerPayment = getPayment(carPrice,
dealerRate / 12, term * 12);

cout << "Credit union payment: $"
 << creditPayment << endl;
cout << "Dealer payment: $"

 << dealerPayment << endl;

Figure 9-31   IPO chart information and C++ instructions for the main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

312

getPayment function
IPO chart information
Input
 principal (formal parameter)
 monthly rate (formal parameter)
 number of months (formal parameter)

Processing
 none

Output
 monthly payment

Algorithm
1. calculate the monthly payment using
 the periodic payment formula
2. return the monthly payment

getPayment function
C++ instructions

Figure 9-32   IPO chart information and C++ instructions for the getPayment function

The fifth step in the problem-solving process is to desk-check the program. Figure 9-33 shows
the completed desk-check table for the car payment program. The results agree with those
shown in the algorithm’s desk-check table in Figure 9-30. (Rather than crossing out the called
function’s variables each time the function ends, as shown earlier in Figures 9-22 through 9-25,
you can simply cross out the last values in those columns and then reuse them for the next call
to the function. You would then cross out the variables only after the last call to the function, as
shown in Figure 9-33.)

Note: The names in black indicate variables that belong
to the main function. The names in red indicate variables
that belong to the getPayment function.

carPrice
0

16000

rebate
0

3000

creditRate
0.0
0.08

dealerRate
0.0
0.03

monthPay
0.0

317.37
0.0

354.15

term
0
4

prin
13000
16000

monthRate
.0067
.0025

months
48
48

creditPayment
0.0

317.37

dealerPayment
0.0

354.15

Figure 9-33   Completed desk-check table for the car payment program

The final step in the problem-solving process is to evaluate and modify (if necessary) the
program. Recall that you evaluate a program by entering its instructions into the computer and
then using the computer to run (execute) it. While the program is running, you enter the same
sample data used when desk-checking the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

313

The Scope and Lifetime of a Variable 	﻿

DIRECTIONS

Follow the instructions for starting your C++ development tool. Depending on the development
tool you are using, you may need to create a new project; if so, name the project Lab9-2 Project,
and save it in the Cpp8\Chap09 folder. Enter the instructions shown in Figure 9-34 in a source
file named Lab9-2.cpp. (Do not enter the line numbers.) Save the file in either the project folder
or the Cpp8\Chap09 folder. Now follow the appropriate instructions for running the Lab9-2.cpp
file. Test the program using the same data you used to desk-check the program. If necessary, cor-
rect any bugs (errors) in the program.

 1 //Lab9-2.cpp - displays two monthly car payments
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <cmath>
 6 #include <iomanip>
 7 using namespace std;
 8
 9 //function prototype
10 double getPayment(int, double, int);
11
12 int main()
13 {
14 int carPrice = 0;
15 int rebate = 0;
16 double creditRate = 0.0;
17 double dealerRate = 0.0;
18 int term = 0;
19 double creditPayment = 0.0;
20 double dealerPayment = 0.0;
21
22 cout << "Car price (after any trade-in): ";
23 cin >> carPrice;
24 cout << "Rebate: ";
25 cin >> rebate;
26 cout << "Credit union rate: ";
27 cin >> creditRate;
28 cout << "Dealer rate: ";
29 cin >> dealerRate;
30 cout << "Term in years: ";
31 cin >> term;
32
33 //call function to calculate payments
34 creditPayment = getPayment(carPrice - rebate,
35 creditRate / 12, term * 12);
36 dealerPayment = getPayment(carPrice,
37 dealerRate / 12, term * 12);
38
39 //display payments
40 cout << fixed << setprecision(2) << endl;
41 cout << "Credit union payment: $"
42 << creditPayment << endl;
43 cout << "Dealer payment: $"
44 << dealerPayment << endl;
45 return 0;
46 }//end of main function
47
48 //*****function definitions*****
49 double getPayment(int prin,
50 double monthRate,
51 int months)
52 {
53 //calculates and returns a monthly payment
54 double monthPay = 0.0;
55 monthPay = prin * monthRate /
56 (1 - pow(monthRate + 1, -months));
57 return monthPay;
58 } //end of getPayment function

Figure 9-34   Car payment program (continues)

the names
of the formal
parameters are
not required

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9 Value-Returning Functions

314

 1 //Lab9-2.cpp - displays two monthly car payments
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <cmath>
 6 #include <iomanip>
 7 using namespace std;
 8
 9 //function prototype
10 double getPayment(int, double, int);
11
12 int main()
13 {
14 int carPrice = 0;
15 int rebate = 0;
16 double creditRate = 0.0;
17 double dealerRate = 0.0;
18 int term = 0;
19 double creditPayment = 0.0;
20 double dealerPayment = 0.0;
21
22 cout << "Car price (after any trade-in): ";
23 cin >> carPrice;
24 cout << "Rebate: ";
25 cin >> rebate;
26 cout << "Credit union rate: ";
27 cin >> creditRate;
28 cout << "Dealer rate: ";
29 cin >> dealerRate;
30 cout << "Term in years: ";
31 cin >> term;
32
33 //call function to calculate payments
34 creditPayment = getPayment(carPrice - rebate,
35 creditRate / 12, term * 12);
36 dealerPayment = getPayment(carPrice,
37 dealerRate / 12, term * 12);
38
39 //display payments
40 cout << fixed << setprecision(2) << endl;
41 cout << "Credit union payment: $"
42 << creditPayment << endl;
43 cout << "Dealer payment: $"
44 << dealerPayment << endl;
45 return 0;
46 }//end of main function
47
48 //*****function definitions*****
49 double getPayment(int prin,
50 double monthRate,
51 int months)
52 {
53 //calculates and returns a monthly payment
54 double monthPay = 0.0;
55 monthPay = prin * monthRate /
56 (1 - pow(monthRate + 1, -months));
57 return monthPay;
58 } //end of getPayment function

Figure 9-34   Car payment program

LAB 9-3  Modify
If necessary, create a new project named Lab9-3 Project, and save it in the Cpp8\
Chap09 folder. Enter (or copy) the Lab9-2.cpp instructions into a new source file
named Lab9-3.cpp. Change Lab9-2.cpp in the first comment to Lab9-3.cpp. Make the
three modifications listed in Figure 9-35. Save, run, and test the program.

1. Compare both monthly payments and then display one of the following three messages:
 a. Take the rebate and finance through the credit union.
 b. Don’t take the rebate. Finance through the dealer.
 c. You can finance through the dealer or the credit union.
2. The user should be able to calculate the monthly payments as many times as needed
 without having to run the program again.
3. Allow the user to enter an interest rate as either a whole number or a decimal number.
 For example, if the interest rate is 5%, the user should be able to enter the rate as either
 5 or .05.

Figure 9-35   Modifications for Lab 9-3

LAB 9-4  What’s Missing?
The program in this lab should display the total due, given the quantity purchased
and the item price. Start your C++ development tool, and view the Lab9-4.cpp file,
which is contained in either the Cpp8\Chap09\Lab9-4 Project folder or the Cpp8\
Chap09 folder. (Depending on your C++ development tool, you may need to open

Lab9-4’s project/solution file first.) Put the C++ instructions in the proper order, and then deter-
mine the one or more missing instructions. Test the program appropriately.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

315

The Scope and Lifetime of a Variable 	﻿

LAB 9-5  Desk-Check
Use the data shown in Figure 9-36 to desk-check the figure’s code. What current total
will the code display on the screen?

Test data: 100 (the beginning number), 4, –3, 10, 9, and –5
 1 //Lab9-5.cpp - displays the current total
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <cmath>
 6 using namespace std;
 7
 8 //function prototype
 9 double getCurrentTotal(int current, int num);
10
11 int main()
12 {
13 int currentTotal = 0;
14 int number = 0;
15
16 cout << "Beginning number: ";
17 cin >> currentTotal;
18
19 for (int x = 1; x < 6; x += 1)
20 {
21 cout << "Enter a positive or negative number: ";
22 cin >> number;
23 currentTotal = getCurrentTotal(currentTotal, number);
24 } //end for
25
26 cout << endl << "Current total: " << currentTotal << endl;
27 return 0;
28 } //end of main function
29
30 //*****function definitions*****
31 double getCurrentTotal(int current, int num)
32 {
33 if (num >= 0)
34 current += pow(num, 2);
35 else
36 current += num * 2;
37 //end if
38 return current;
39 } //end of getCurrentTotal function

Figure 9-36   Test data and code for Lab 9-5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9  Value-Returning Functions

316

LAB 9-6  Debug
Follow the instructions for starting C++ and viewing the Lab9-6.cpp file, which is
contained in either the Cpp8\Chap09\Lab9-6 Project folder or the Cpp8\Chap09
folder. (Depending on your C++ development tool, you may need to open Lab9-6’s
project/solution file first.) Test the program using 20500, 3500, and 10 as the asset

cost, salvage value, and useful life, respectively. The depreciation should be $1700.00. Debug
the program.

Chapter Summary

Functions allow a programmer to avoid duplicating code in different parts of a program. They
also allow large and complex programs to be broken into small and manageable tasks.

Some of the functions used in a program are built-in functions. Others, like main, are program-
defined functions.

All functions are classified as either value-returning functions or void functions. A value-returning
function returns precisely one value after completing its assigned task. The value is returned to
the statement that called the function. Void functions, which you will learn about in Chapter 10,
do not return a value.

The C++ pow function raises a number to a power and then returns the result as a double
number. To use the pow function, a program must contain the #include <cmath> directive.

The C++ sqrt function finds the square root of a number and then returns the result as a
double number. To use the sqrt function, a program must contain the #include <cmath>
directive.

The items within parentheses in a function call are referred to as actual arguments.

The C++ language provides the rand function for generating random numbers. The rand
function is a value-returning function. It returns an integer that is greater than or equal to 0 but
less than or equal to RAND_MAX, whose value is always at least 32,767.

You can use the expression lowerBound + rand() % (upperBound – lowerBound + 1) to
produce random integers within a specific range.

You can initialize the rand function using the C++ built-in void srand function. Most
programmers use the built-in value-returning time function as the srand function’s seed
argument. To use the time function, a program must contain the #include <ctime>
directive.

A function definition is composed of a function header and a function body.

The function header for a value-returning function specifies the type of data the function
returns, the function’s name, and an optional parameterList enclosed in parentheses.

The items listed in a function’s parameterList are called formal parameters.

The parameterList in a function header contains the data type and name of each formal param-
eter. The quantity, data type, and position (order) of the formal parameters in the parameterList
should agree with the quantity, data type, and position (order) of the actual arguments passed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

317

Key Terms 	

to the function. In most cases, the name of each formal parameter is different from the name of
its corresponding actual argument. Functions that do not require a parameterList will have an
empty set of parentheses after the function’s name.

The function body in a function definition contains the instructions that the function must
follow to perform its assigned task. The function body begins with an opening brace and ends
with a closing brace. Typically, the return statement, which instructs the function to return a
value, is the last statement in the function body of a value-returning function.

You call a function by including its name and actual arguments (if any) in a statement.

Unless specified otherwise, variables in C++ are passed to a function by value, which means that
only a copy of the value stored in the variable is passed.

A program will have one function prototype for each function defined below the main function.
Functions defined above the main function in a program do not need a function prototype.

A variable’s scope, which can be either local or global, indicates where in a program a variable
can be used. A variable’s lifetime indicates how long the variable remains in the computer’s
internal memory.

Local variables can be used only within the statement block, parameterList, or for clause in
which they are declared, and they remain in memory until the end of the statement block,
function, or for loop, respectively. Global variables, which you should avoid using, can be used
anywhere in the program. Unlike local variables, global variables remain in memory until the
program ends.

Key Terms
Actual argument—an item of information passed (sent) to a function when the function is
called (invoked)

Built-in functions—blocks of code that perform a task and are included in libraries that come
with the C++ language; examples include the pow, sqrt, rand, srand, and time functions

Exponentiation—the process of raising a number to a power

Formal parameters—the memory locations listed in a function header’s parameterList; a
formal parameter stores an item of information passed to a function when the function is
invoked (called)

Function prototype—a statement that specifies the function’s name, the data type of its return
value (if any), and the data type and (optionally) name of each of its formal parameters (if any);
required for every function that is defined below the main function in a program

Global variables—variables that are declared outside of any function in a program; global vari-
ables can be used by any statement below their variable declaration in the program, and they
remain in memory until the program ends; you should avoid using global variables in a program

Lifetime—indicates how long an item, such as a variable, remains in the computer’s internal
memory

Local variables—variables that are declared within a statement block, a function’s parameterList,
or a for clause; local variables can be used only by the statement block, function, or for loop in
which they are declared; local variables remain in memory until the end of the statement block,
function, or for loop

Passing by reference—refers to the process of passing a variable’s address to a function

Passing by value—refers to the process of passing a copy of a variable’s value to a function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9  Value-Returning Functions

318

pow function—a built-in C++ function that raises a number to a power and then returns the
result as a double number

Program-defined functions—functions created by the programmer and whose definitions
typically reside in the current program

Pseudo-random number generator—a function that produces a sequence of numbers that
meet certain statistical requirements for randomness; the rand function is the pseudo-random
number generator in C++

rand function—a built-in C++ function that returns a random integer that is greater than or
equal to 0 but less than or equal to the value stored in the RAND_MAX constant; the pseudo-
random number generator in C++

RAND_MAX—a C++ built-in constant that represents the largest integer generated by the rand
function; its value is always at least 32,767

return statement—in most cases, the last statement in a value-returning function; it returns a
value to the statement that called the function and then alerts the computer that the function
has completed its task

Scope—indicates where in the program an item, such as a variable, can be used

sqrt function—a C++ built-in function whose purpose is to return the square root of a real
number; returns the square root as a double number

srand function—a C++ built-in function used to initialize the rand function

time function—a C++ built-in function that returns the current time (according to your
computer system’s clock) as seconds elapsed since midnight on January 1, 1970; often used as
the seed argument in the srand function

Value-returning functions—functions that return precisely one value after they complete their
assigned task

Review Questions
1.	 Value-returning functions can return _____________________ .

a.	 one value only

b.	 one or more values

c.	 the number 0 only

d.	 none of the above

2.	 The function header specifies _____________________ .

a.	 the data type of the function’s return value (if any)
b.	 the name of the function
c.	 the function’s formal parameters (if any)
d.	 all of the above

3.	 Which of the following is false?

a.	 The number of actual arguments should agree with the number of formal parameters.
b.	 The data type of each actual argument should match the data type of its correspond-

ing formal parameter.
c.	 The name of each actual argument should be identical to the name of its corre-

sponding formal parameter.
d.	 When you pass information to a function by value, the function stores the value of

each item it receives in a separate memory location.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

319

Review Questions 	

4.	 Each memory location listed in a function header’s parameterList is referred to
as _____________________ .

a.	 an actual argument

b.	 an actual parameter

c.	 a formal argument

d.	 a formal parameter

5.	 A program contains the statement tax = calcTax(sales);. The tax and sales
variables have the double data type. Which of the following is a valid function header
for the calcTax function?

a.	 calcTax(double sales);
b.	 double calcTax(salesAmount)
c.	 double calcTax(double salesAmount)
d.	 double calcTax(int sales);

6.	 Which of the following is a valid function header for the getFee function, which
receives an integer first and a number with a decimal place second? The function
returns a number with a decimal place.

a.	 getFee(int base, double rate);
b.	 double getFee(int base, double rate);
c.	 double getFee(double base, int rate)
d.	 double getFee(int base, double rate)

7.	 Which of the following is a valid function prototype for the function described in
Review Question 6?

a.	 getFee(int base, double rate);
b.	 int getFee(int, double)
c.	 double getFee(int base, double rate)
d.	 double getFee(int, double);

8.	 Which of the following directs a function to return the contents of the stateTax
variable to the statement that invoked it, which is contained in the main function?

a.	 restore stateTax;

b.	 return stateTax

c.	 return to main(stateTax);

d.	 none of the above

9.	 Unless specified otherwise, variables in C++ are passed _____________________ .

a.	 by address

b.	 by content

c.	 by reference

d.	 by value

10.	 A variable’s _____________________ indicates where in the program a variable can
be used.

a.	 lifetime

b.	 range

c.	 scope

d.	 span

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9  Value-Returning Functions

320

11.	 A program contains three functions named main, calcGross, and displayGross.
Two of the functions—main and calcGross—declare a variable named pay. The
pay variable name also appears in the displayGross function header. When the
computer processes the statement pay = hours * rate; in the calcGross
function, it multiplies the contents of the hours variable by the contents of the rate
variable. It then stores the result in which function’s pay variable?

a.	 calcGross
b.	 displayGross
c.	 main
d.	 none of the above because you can’t have more than one memory location with

the same name

12.	 The variables in a function header have local scope.

a.	 True
b.	 False

Exercises

Pencil and Paper

1.	 Write the C++ code for a function that receives an integer followed by a double
number from the calling statement. The function should multiply the integer by the
double number and then return the result as a double number. Name the function
getProduct. Name the formal parameters num1 and num2. (The answers to TRY
THIS Exercises are located at the end of the chapter.)

2.	 Write the function prototype for the getProduct function from Pencil and Paper
Exercise 1. Also write the statement to call the function, assigning its return value to
the product variable. Name the actual arguments firstNum and secondNum. (The
answers to TRY THIS Exercises are located at the end of the chapter.)

3.	 Write an assignment statement that raises the number 3 to the 16th power and then
assigns the result to a double variable named answer.

4.	 Write a C++ statement that displays a random integer from 50 through 100 on the
computer screen.

5.	 Write a C++ statement that assigns the square root of a number to a double variable
named sqRoot. The number is stored in a double variable named num.

6.	 Write the C++ code for a function that prompts the user to enter a character and then stores
the character in a char variable named response. The function should return the contents
of the response variable. Name the function getCharacter. (The function will not have
any actual arguments passed to it.) Also write an appropriate function prototype for the
getCharacter function. In addition, write a statement that invokes the getCharacter
function and assigns its return value to a char variable named custCode.

TRY THIS

TRY THIS

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

321

Exercises 	

7.	 Write a C++ statement that adds the cube of the number stored in the num1 variable to
the square root of the number stored in the num2 variable. The statement should assign
the result to the answer variable. All of the variables have the double data type.

8.	 Write a C++ statement that calculates the square root of the following expression:
x2 * y3. The x and y variables have the double data type. Assign the result to a
double variable named answer.

9.	 Write a C++ statement that calculates the result of the following expression:
(x / y)4 – 10. The x and y variables have the double data type. Assign the
result to a double variable named answer.

10.	 A program’s main function declares three double variables named salesTax, sales,
and taxRate. It also declares a char variable named status. The main function contains
the following statement: salesTax = getSalesTax(sales, status, taxRate);.
The getSalesTax function header is shown here. Correct the function header.

int getSalesTax(char code, int sold, double rate)

Computer

11.	 If necessary, create a new project named TryThis11 Project, and save it in the
Cpp8\Chap09 folder. Create a program that displays the average of three integers.
The program should pass the three integers to a program-defined function named
calcAvg, which should return the result as a double number. Name the formal
parameters n1, n2, and n3. Use the following names for the actual arguments: num1,
num2, and num3. Assign the function’s return value to a double variable named avg.
Enter your C++ instructions into a source file named TryThis11.cpp. Also enter
appropriate comments and any additional instructions required by the compiler.
Display the average in fixed-point notation with one decimal place. Test the program
using the numbers 20, 35, and 67; the average should be 40.7. (The answers to TRY
THIS Exercises are located at the end of the chapter.)

12.	 If necessary, create a new project named TryThis12 Project, and save it in the
Cpp8\Chap09 folder. Code the IPO charts shown in Figure 9-37. Enter your C++
instructions into a source file named TryThis12.cpp. Also enter appropriate com-
ments and any additional instructions required by the compiler. Display the Celsius
temperature in fixed-point notation with no decimal places. Test the program using
the following Fahrenheit temperatures: 32 and 212. (The answers to TRY THIS
Exercises are located at the end of the chapter.)

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

SWAT THE BUGS

TRY THIS

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9  Value-Returning Functions

322

main function
Input Processing Output
Fahrenheit temperature Processing items: none Celsius temperature

 Algorithm:
 1. enter Fahrenheit temperature
 2. call calcCelsius to calculate the Celsius
 temperature; pass the Fahrenheit temperature
 3. display the Celsius temperature

calcCelsius function
Input Processing Output
Fahrenheit temperature Processing items: none Celsius temperature

 Algorithm:
 1. Celsius temperature = 5.0 / 9.0 *
 (Fahrenheit temperature – 32.0)
 2. return the Celsius temperature

Figure 9-37

13.	 In this exercise, you will modify the hypotenuse program shown earlier in Figure 9-6.
Follow the instructions for starting C++ and viewing the ModifyThis13.cpp file, which
is contained in either the Cpp8\Chap09\ModifyThis13 Project folder or the Cpp8\
Chap09 folder. (Depending on your C++ development tool, you may need to open this
exercise’s project/solution file first.) Remove both calculation tasks from the main
function, and assign both to a program-defined value-returning function named
getHypotenuse. Test the program appropriately.

14.	 In this exercise, you will modify the program from Computer Exercise 12. If necessary,
create a new project named ModifyThis14 Project, and save it in the Cpp8\Chap09
folder. Enter (or copy) the TryThis12.cpp instructions into a new source file named
ModifyThis14.cpp. Change TryThis12.cpp in the first comment to ModifyThis14.cpp.
Modify the program so that the user can convert as many temperatures as desired
without having to run the program again. Test the program appropriately.

15.	 In this exercise, you will modify the guessing game program shown earlier in Figure 9-11.
Follow the instructions for starting C++ and viewing the ModifyThis15.cpp file,
which is contained in either the Cpp8\Chap09\ModifyThis15 Project folder or the
Cpp8\Chap09 folder. (Depending on your C++ development tool, you may need to open
this exercise’s project/solution file first.) Modify the program so that it allows the user
only five chances to guess the number. After the fifth wrong guess, display the number on
the computer screen. Test the program appropriately.

16.	 In this exercise, you will create a program that displays a table consisting of four rows
and three columns. The first column should contain the numbers 10 through 13. The
second and third columns should contain the results of squaring and cubing, respec-
tively, the numbers 10 through 13. The table will look similar to the one shown in
Figure 9-38. If necessary, create a new project named Introductory16 Project, and save
it in the Cpp8\Chap09 folder. Enter your C++ instructions into a source file named
Introductory16.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Test the program appropriately.

MODIFY THIS

MODIFY THIS

MODIFY THIS

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

323

Exercises 	

Number
10
11
12
13

Square
100
121
144
169

Cube
1000
1331
1728
2197

Figure 9-38

17.	 In this exercise, you will create a program that displays the gross pay for one or more
employees. If necessary, create a new project named Introductory17 Project, and save
it in the Cpp8\Chap09 folder. The program should allow the user to enter the number
of hours the employee worked and his or her hourly pay rate. Use a negative sentinel
value to stop the program. Employees are paid at their regular pay rate for hours
worked from 1 through 37. They are paid time and one-half for the hours worked from
38 through 50, and double-time for the hours worked over 50. Use a program-defined
function to calculate and return the employee’s overtime pay, if applicable. Enter your
C++ instructions into a source file named Introductory17.cpp. Also enter appropriate
comments and any additional instructions required by the compiler. Test the applica-
tion appropriately. (Hint: If an employee earns $10 per hour and works 37 hours, the
gross pay is $370.00. If he or she works 38 hours, the gross pay is $385.00. If he or she
works 51 hours, the gross pay is $585.00.)

18.	 In this exercise, you will create a program that displays a measurement in either
inches or centimeters. If necessary, create a new project named Introductory18
Project, and save it in the Cpp8\Chap09 folder. The program should allow the user
the choice of converting a measurement from inches to centimeters or vice versa. Use
two program-defined functions: one for each different conversion type. Enter your
C++ instructions into a source file named Introductory18.cpp. Also enter appropriate
comments and any additional instructions required by the compiler. Test the applica-
tion appropriately.

19.	 In this exercise, you will modify the car payment program from Lab 9-2. If necessary,
create a new project named Intermediate19 Project, and save it in the Cpp8\Chap09
folder. Copy the instructions from the Lab9-2.cpp file into a source file named
Intermediate19.cpp. (Alternatively, you can enter the instructions from Figure 9-34
into the Intermediate19.cpp file.) Change the filename in the first comment. Make the
modifications listed in Figure 9-39. Test the program appropriately.

1. Before calculating a monthly payment, verify that the denominator in the periodic
 payment formula is not the number 0. If it is 0, the function should return the
 number –1 (the negative number 1).
2. In addition to displaying the monthly payments, the program should also display
 the following two amounts:
 a. The total amount the user will pay for the car if the loan is financed through
 the credit union.
 b. The total amount the user will pay for the car if the loan is financed through
 the car dealer.

Figure 9-39

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9  Value-Returning Functions

324

20.	 In this exercise, you will modify the savings account program shown earlier in Figure 9-18.
Follow the instructions for starting C++ and viewing the Intermediate20.cpp file, which is
contained in either the Cpp8\Chap09\Intermediate20 Project folder or the Cpp8\Chap09
folder. (Depending on your C++ development tool, you may need to open this exercise’s
project/solution file first.) Modify the program to allow the user to enter the minimum
and maximum interest rates, as shown in Figure 9-40. Test the program appropriately.

Deposit: 1000
Minimum rate (in decimal form): 0.02
Maximum rate (in decimal form): 0.04
Rate 2%:
 Year 1: $1020.00
 Year 2: $1040.40
 Year 3: $1061.21
Rate 3%:
 Year 1: $1030.00
 Year 2: $1060.90
 Year 3: $1092.73
Rate 4%:
 Year 1: $1040.00
 Year 2: $1081.60
 Year 3: $1124.86

Figure 9-40

21.	 In this exercise, you will modify the program that you created in Chapter 6’s Lab
6-2. If necessary, create a new project named Intermediate21 Project, and save it in
the Cpp8\Chap09 folder. Copy the instructions from the Lab6-2.cpp file (which is
contained in either the Cpp8\Chap06\Lab6-2 Project folder or the Cpp8\Chap06
folder) into a source file named Intermediate21.cpp. (Alternatively, you can enter the
instructions from Figure 6-29 into the Intermediate21.cpp file.) Change the filename in
the first comment. Modify the program so that it uses two value-returning functions:
one to calculate and return the price of a medium pizza and the other to calculate and
return the price of a large pizza. In addition to the $2 coupon on the purchase of a large
pizza, Sophia is now e-mailing customers a $1 coupon on the purchase of a medium
pizza. Test the program appropriately.

22.	 A local department store wants a program that displays the number of reward points a
customer earns each month. The reward points are based on the customer’s member-
ship type and total monthly purchase amount, as shown in Figure 9-41. The program
should use a separate function for each membership type. If necessary, create a new
project named Advanced22 Project, and save it in the Cpp8\Chap09 folder. Enter your
C++ instructions into a source file named Advanced22.cpp. Also enter appropriate
comments and any additional instructions required by the compiler. Display the reward
points in fixed-point notation with no decimal places. Test the program appropriately.

INTERMEDIATE

INTERMEDIATE

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

325

Exercises 	

 Total monthly
Membership type purchase ($) Reward points
Standard Less than 75 5% of the total monthly purchase
 75–149.99 7.5% of the total monthly purchase
 150 and over 10% of the total monthly purchase

Plus Less than 150 6% of the total monthly purchase
 150 and over 13% of the total monthly purchase

Premium Less than 200 4% of the total monthly purchase
 200 and over 15% of the total monthly purchase

Figure 9-41

23.	 An online retailer wants a program that displays the total amount a customer owes,
including shipping. The user will enter the total amount due before shipping. The
amount to charge for shipping is based on the customer’s membership status, which
can be either Standard or Premium. The appropriate shipping charges are shown in
Figure 9-42. The program should use two program-defined functions: one to determine
the shipping charge for a Standard member and the other to determine the shipping
charge for a Premium member. If necessary, create a new project named Advanced23
Project, and save it in the Cpp8\Chap09 folder. Enter your C++ instructions into
a source file named Advanced23.cpp. Also enter appropriate comments and any
additional instructions required by the compiler. Display the total due in fixed-point
notation with two decimal places. Test the program appropriately.

 Total due before
Membership type shipping ($) Shipping ($)
Standard 0–100 12.99
 Over 100 4.99

Premium 0–49.99 4.99
 Over 49.99 0

Figure 9-42

24.	 Create a program that displays five random addition problems, one at a time, on the
computer screen. Each problem should be displayed as a question, like this: What is
the sum of x + y?. The x and y in the question represent random numbers from 1 to 10,
inclusive. After displaying the question, the program should allow the user to enter the
answer. It should then compare the user’s answer with the correct answer. If the user’s
answer matches the correct answer, the program should display the “Correct!” message.
Otherwise, it should display the “Sorry, the answer is” message followed by the correct
answer and a period. If necessary, create a new project named Advanced24 Project, and
save it in the Cpp8\Chap09 folder. Enter your C++ instructions into a source file named
Advanced24.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Test the program appropriately.

25.	 In this exercise, you will create a program that displays the amount of a cable bill. The
amount is based on the type of customer, as shown in Figure 9-43. For a residential cus-
tomer, the user will need to enter the number of premium channels only. For a business
customer, the user will need to enter the number of connections and the number of
premium channels. Use a separate program-defined function for each customer type.

ADVANCED

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9  Value-Returning Functions

326

If necessary, create a new project named Advanced25 Project, and save it in the
Cpp8\Chap09 folder. Enter your C++ instructions into a source file named
Advanced25.cpp. Also enter appropriate comments and any additional instructions
required by the compiler. Test the program appropriately.

Residential customers:
 Processing fee: $4.50
 Basic service fee: $30
 Premium channels: $5 per channel

Business customers:
 Processing fee: $16.50
 Basic service fee: $80 for the first 5 connections; $4 for each additional connection
 Premium channels: $50 per channel for any number of connections

Figure 9-43

26.	 Follow the instructions for starting C++ and viewing the SwatTheBugs26.cpp file,
which is contained in either the Cpp8\Chap09\SwatTheBugs26 Project folder or the
Cpp8\Chap09 folder. (Depending on your C++ development tool, you may need to
open this exercise’s project/solution file first.) The program should calculate and
display the miles per gallon, but it is not working correctly. Debug the program.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 double getProduct(int num1, double num2)

{
 return num1 * num2;
} //end of getProduct function

2.	 double getProduct(int num1, double num2);

or

double getProduct(int, double);

product = getProduct(firstNum, secondNum)

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

327

Exercises 	

Computer

11.	 See Figure 9-44.

//TryThis11.cpp - displays an average
//Created/revised by <your name> on <current date>

#include <iostream>
#include <iomanip>
using namespace std;

//function prototype
double calcAvg(int n1, int n2, int n3);

int main()
{
 int num1 = 0;
 int num2 = 0;
 int num3 = 0;
 double avg = 0.0;

 cout << "First number: ";
 cin >> num1;
 cout << "Second number: ";
 cin >> num2;
 cout << "Third number: ";
 cin >> num3;

 avg = calcAvg(num1, num2, num3);
 cout << fixed << setprecision(1);
 cout << "Average: " << avg << endl;
 return 0;
} //end of main function

 //*****function definitions*****
double calcAvg(int n1, int n2, int n3)
{
 return (n1 + n2 + n3) / 3.0;
} //end of calcAvg function

Figure 9-44

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 9  Value-Returning Functions

328

12.	 See Figure 9-45.

//TryThis12.cpp - converts Fahrenheit to Celsius
//Created/revised by <your name> on <current date>

#include <iostream>
#include <iomanip>
using namespace std;

//function prototype
double calcCelsius(double tempF);

int main()
{
 double fahrenheit = 0.0;
 double celsius = 0.0;

 cout << "Enter Fahrenheit temperature: ";
 cin >> fahrenheit;
 celsius = calcCelsius(fahrenheit);

 cout << fixed << setprecision(0);
 cout << "Celsius temperature: " << celsius << endl;
 return 0;
} //end of main function

//*****function definitions*****
double calcCelsius(double tempF)
{
 double tempC = 0.0;
 tempC = 5.0 / 9.0 * (tempF - 32.0);
 return tempC;
} //end of calcCelsius function

Figure 9-45

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying Chapter 10, you should be able to:

�� Create a void function

�� Invoke a void function

�� Pass information by reference to a function

C h a p t e r 10
Void Functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

330

Functions
As discussed in Chapter 9, all functions are categorized as either value-returning functions or
void functions. Recall that a value-returning function performs a task and then returns precisely
one value to the statement that called it. Void functions, on the other hand, do not return a
value after completing their task.

The illustration shown in Figure 10-1 may help clarify the difference between the two categories
of functions. Sarah and her two siblings are planning a surprise birthday party for their mother.
Being the oldest of the three children, Sarah will handle most of the party plans herself.
However, she does need to delegate some tasks to her brother (Jacob) and sister (Sonja). She
delegates the task of putting up the decorations (streamers, balloons, and so on) to Jacob and
delegates the task of getting the birthday present (a bottle of perfume) to Sonja. Like a void
function, Jacob will perform his task but will not need to return anything to Sarah after doing
so. However, like a value-returning function, Sonja will perform her task and then return a value
(the bottle of perfume) to Sarah for wrapping.

Figure 10-1   Illustration of value-returning and void functions
Image by Diane Zak; created with Reallusion CrazyTalk Animator

In Chapter 9, you learned how to use one built-in void function, srand, to initialize the
C++ random number generator. In this chapter, you will learn how to create and invoke
program-defined void functions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

331

Creating Program-Defined Void Functions 	﻿

Creating Program-Defined Void Functions
A program might use a void function to display information (such as a title and column
headings) at the top of each page in a report. Rather than duplicating the required code several
times in the program, the code can be entered in a void function that can then be called
whenever and wherever it is needed in the program. A void function is appropriate in this
situation because it does not need to return a value after completing its task.

Figure 10-2 shows the syntax for creating a void function in a C++ program. When you compare
this syntax with the one for creating a value-returning function (shown in Figure 9-12 in
Chapter 9), you will notice two differences. First, a void function’s header begins with the
keyword void rather than with a data type. The void keyword indicates that the function does
not return a value. Second, the function body in a void function does not contain a return
statement, which is required in the function body of a value-returning function. The return
statement is not necessary in a void function body because a void function does not return a
value. Also included in Figure 10-2 are examples of program-defined void functions.

Figure 10-2   How to create a program-defined void function

How To �Create a Program-Defined Void Function

Syntax
void functionName([parameterList])
{
 one or more statements
} //end of functionName function

Example 1
void displayLine()
{
 cout << "-------------------------" << endl;
} //end of displayLine function
The function displays a straight line composed of 25 hyphens.

Example 2
void displayCompanyInfo()
{
 cout << "Martin Sports" << endl;
 cout << "Atlanta, GA" << endl << endl;
} //end of displayCompanyInfo function
The function displays a company’s name, city, and state.

Example 3
void displayTotalSales(double total)
{
 cout << fixed << setprecision(2);
 cout << "Total sales: $" << total << endl;
} //end of displayTotalSales function
The function displays the total sales it receives from the statement that invoked it.

function header

function body

function
definition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

332

How To �Call (Invoke) a Void Function

Syntax
functionName([argumentList])

Statements for calling the void functions from Figure 10-2
displayLine();
displayCompanyInfo();
displayTotalSales(totalSales);

You use the same method to invoke (call) a void function as you do to invoke a value-returning
function: You simply include the function’s name and actual arguments (if any) in a program
statement. However, unlike a call to a value-returning function, a call to a void function is
an independent statement. Figure 10-3 shows the statements you would use to call the void
functions defined in Figure 10-2.

Figure 10-3   How to call (invoke) a void function

Figure 10-4 shows the problem specification, IPO chart information, and C++ instructions for
the Martin Sports program, which uses the void functions and function calls from Figures 10-2
and 10-3. The program displays two horizontal lines, as well as the company’s name, city, and
state. It also displays the total sales made in the company’s two stores.

Recall that
value-returning
functions
are typically
called from

statements that display
the return value,
use the return value
in a calculation or
comparison, or assign
the return value to a
variable.

Figure 10-4   Problem specification, IPO chart information, and C++ instructions for the Martin Sports
program (continues)

Problem specification
Create a program that allows the sales manager of Martin Sports to enter the sales made in two
stores. The program should total both sales amounts and then display the following information, in
which total is the total sales:

Martin Sports
Atlanta, GA

Total sales: $total

main function
IPO chart information
Input
 store 1’s sales
 store 2’s sales

Processing
 none

Output
 total sales

 straight line (2 of them)
 name, city, and state

Algorithm

main function
C++ instructions

(displayed by the
displayTotalSales function)
displayed by the displayLine function
displayed by the displayCompanyInfo function

call displayLine

start

 enter store 1’s sales
and store 2’s sales

stop

total sales = store 1’s
sales + store 2’s sales

call displayCompanyInfo

call displayTotalSales;
pass total sales

call displayLine

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

333

Creating Program-Defined Void Functions 	﻿

Figure 10-4   Problem specification, IPO chart information, and C++ instructions for the Martin Sports
program (continues)

Problem specification
Create a program that allows the sales manager of Martin Sports to enter the sales made in two
stores. The program should total both sales amounts and then display the following information, in
which total is the total sales:

Martin Sports
Atlanta, GA

Total sales: $total

main function
IPO chart information
Input
 store 1’s sales
 store 2’s sales

Processing
 none

Output
 total sales

 straight line (2 of them)
 name, city, and state

Algorithm

main function
C++ instructions

(displayed by the
displayTotalSales function)
displayed by the displayLine function
displayed by the displayCompanyInfo function

call displayLine

start

 enter store 1’s sales
and store 2’s sales

stop

total sales = store 1’s
sales + store 2’s sales

call displayCompanyInfo

call displayTotalSales;
pass total sales

call displayLine

displayLine function
IPO chart information
Input
 none

Processing
 none

Output
 straight line (25 hyphens)

Algorithm

displayLine function
C++ instructions

displayed using a string literal constant

displayCompanyInfo function
C++ instructions

displayed using string literal constants

stop

start

display a
straight line

displayCompanyInfo function
IPO chart information
Input
 none

Processing
 none

Output
 name, city, and state

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

334

(continued)

displayLine function
IPO chart information
Input
 none

Processing
 none

Output
 straight line (25 hyphens)

Algorithm

displayLine function
C++ instructions

displayed using a string literal constant

displayCompanyInfo function
C++ instructions

displayed using string literal constants

stop

start

display a
straight line

displayCompanyInfo function
IPO chart information
Input
 none

Processing
 none

Output
 name, city, and state

Algorithm

displayTotalSales function
C++ instructions

stored in the total formal parameter

stop

start

display name,
city, state

displayTotalSales function
IPO chart information
Input

total sales (formal parameter)

Processing
none

Output
total sales

Algorithm

stop

start

display total
sales

Figure 10-4   Problem specification, IPO chart information, and C++ instructions for the Martin Sports
program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

335

Creating Program-Defined Void Functions 	﻿

Figure 10-5 shows all of the code entered in the Martin Sports program. The function
prototypes and calls are shaded in the figure. Notice that each call to a void function is a
self-contained statement.

Figure 10-5   Martin Sports program

 1 //Martin.cpp - displays the total sales
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 //function prototypes
 9 void displayLine();
10 void displayCompanyInfo();
11 void displayTotalSales(double total);
12
13 int main()
14 {
15 double store1Sales = 0.0;
16 double store2Sales = 0.0;
17 double totalSales = 0.0;
18
19 cout << "Store 1's sales: ";
20 cin >> store1Sales;
21 cout << "Store 2's sales: ";
22 cin >> store2Sales;
23
24 totalSales = store1Sales + store2Sales;
25
26 displayLine();
27 displayCompanyInfo();
28 displayTotalSales(totalSales);
29 displayLine();
30
31 return 0;
32 } //end of main function
33
34 //*****function definitions*****
35 void displayLine()
36 {
37 cout << "-------------------------" << endl;
38 } //end of displayLine function
39
40 void displayCompanyInfo()
41 {
42 cout << "Martin Sports" << endl;
43 cout << "Atlanta, GA" << endl << endl;
44 } //end of displayCompanyInfo function
45
46 void displayTotalSales(double total)
47 {
48 cout << fixed << setprecision(2);
49 cout << "Total sales: $" << total << endl;
50 } //end of displayTotalSales function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

336

When the computer processes a statement that calls a program-defined void function, the
computer first locates the function’s code in the program. If the function call contains an
argumentList, the computer passes a copy of the values stored in the actual arguments (assuming
the variables included in the argumentList are passed by value) to the called function. The function
receives the values and stores them in the formal parameters listed in its parameterList. Then, the
computer processes the function’s code. When the function ends, the computer continues program
execution with the statement immediately below the one that called the function.

In the program shown in Figure 10-5, for example, the statement on Line 26 calls the displayLine
function. After processing the function’s code, the computer returns to the main function to process
the statement on Line 27. The statement on Line 27 calls the displayCompanyInfo function.

When the computer finishes processing the code in the displayCompanyInfo function, it
returns to the main function and processes the statement on Line 28. That statement calls
the displayTotalSales function, passing it a copy of the value stored in the totalSales
variable. The function stores the value in its formal parameter (total) and then displays the
value in a message on the computer screen.

When the displayTotalSales function ends, the computer returns to the main function to
process the displayLine(); statement on Line 29. After the displayLine function completes
its task, the computer returns to the main function to process the return 0; statement on
Line 31. Figure 10-6 shows a sample run of the program. As the figure indicates, the sample run
contains the output from each of the program’s four functions.

Figure 10-6   Sample run of the Martin Sports program

main function

displayLine function

main function

displayLine function

displayTotalSales function

displayCompanyInfo function

Mini-Quiz 10-1
1.	 In C++, the function header for a function that does not return a value begins with the

keyword _________________________.

2.	 Write a C++ statement that calls a void function named displayTaxes, passing it a
copy of the values stored in two double variables named federalTax and localTax.

3.	 Write the function header for the displayTaxes function from Question 2.
Use fedTax and stateTax as the names for the formal parameters.

4.	 The return statement is typically the last statement in a C++ void function.

a.	 True
b.	 False

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

337

Passing Variables to a Function 	﻿

Passing Variables to a Function
As you learned in Chapter 9, the items passed to a function are called actual arguments. An
actual argument can be a variable, named constant, literal constant, or keyword; however, in
most cases, it will be a variable. Recall that each variable declared in a program has both a value
and a unique address that represents the location of the variable in the computer’s internal
memory. C++ allows you to pass either a copy of the variable’s value or its address to a function.
Passing a copy of a variable’s value is referred to as passing by value, whereas passing its
address is referred to as passing by reference. The method you choose—by value or by
reference—depends on whether you want the receiving function to have access to the variable
in memory. In other words, it depends on whether you want to allow the receiving function to
change the contents of the variable.

You already are familiar with the concept of passing information by value and by reference.
The illustrations shown in Figure 10-7 can be used to demonstrate this fact. Assume you have a
savings account at a local bank. (Think of the savings account as a variable.) During a conversation
with your friend Melissa, you mention the amount of money you have in the account, as shown in
Illustration A. Sharing this information with Melissa is similar to passing a variable by value.
Knowing the balance in your account does not give Melissa access to your bank account. It merely
provides information that she can use to compare with the amount of money she has saved.

Now we’ll use the savings account example to demonstrate passing information by reference.
(Here again, think of your savings account as a variable.) To either deposit money into your
account or withdraw money from your account, you must provide the bank teller with your
account number, as shown in Illustration B in Figure 10-7. The account number represents the
location of your account at the bank and allows the teller to change the account balance. Giving
the teller your bank account number is similar to passing a variable by reference. The account
number allows the teller to change the contents of your bank account, similar to the way a
variable’s address allows the receiving function to change the contents of the variable.

The internal
memory of
a computer
is similar to
a large post

office. Like each post
office box, each mem-
ory cell has a unique
address.

Only variables
can be passed
by reference.

Figure 10-7   Illustrations of passing by value and passing by reference
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Illustration A Illustration B

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

338

Before learning how to pass a variable by reference, we will review the concept of passing by
value, which you learned about in Chapter 9.

Reviewing Passing Variables by Value
Recall that unless you specify otherwise, variables are passed by value in C++. This means that
the computer passes only a copy of the variable’s contents to the receiving function. When only
a copy of the contents is passed, the receiving function is not given access to the variable in
memory, and, therefore, it cannot change the value stored inside of the variable. It is appropriate
to pass a variable by value when the receiving function needs to know the variable’s contents but
does not need to change the contents.

The company ratings program shown in Figure 10-8 passes a variable by value to a void
function named displayRating. The function definition is located below the main function
(on Lines 28 through 34). Therefore, the program includes an appropriate function prototype
above the main function (on Line 8). Because the displayRating function is a void function,
its function call (on Line 18) appears as a statement by itself. The function call passes the
numStars variable by value to the void function. This means that only a copy of the variable’s
value is passed to the function, which stores that value in its formal parameter (num). The
displayRating function does not have access to the numStars variable. It is not even aware
of the variable’s existence in the computer’s internal memory.

 1 //Ratings.cpp - displays company ratings
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 using namespace std;
 6
 7 //function prototype
 8 void displayRating(int num);
 9
10 int main()
11 {
12 int numStars = 0;
13
14 cout << "Rate the XYZ Company (1 to 5 stars): ";
15 cin >> numStars;
16 while (numStars > 0 && numStars < 6)
17 {
18 displayRating(numStars);
19 cout << "Rate the XYZ Company (1 to 5 stars): ";
20 cin >> numStars;
21 } //end while
22 cout << "End of ratings" << endl;
23
24 return 0;
25 } //end of main function
26
27 //*****function definitions*****
28 void displayRating(int num)
29 {
30 for (int star = 1; star <= num; star += 1)
31 cout << "*";
32 //end for
33 cout << endl;
34 } //end of displayRating function

Figure 10-8   Company ratings program (continues)

the name is not required
in the function prototype

function call

function header

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

339

Passing Variables to a Function 	﻿

Notice that the data type of the actual argument in the function call—in this case, int—matches
the data type of the formal parameter listed in both the void function’s header and its prototype.
Also notice that the names of the actual argument (numStars) and the formal parameter (num)
are not the same. Recall from Chapter 9 that to avoid confusion, you should use different names
for an actual argument and its corresponding formal parameter.

To review the concept of passing by value, we will desk-check the program in Figure 10-8 using
the following ratings: 4, 2, and –1 (a sentinel value). The first statement in the main function
creates and initializes an int variable named numStars. The variable is local to the main
function and will remain in memory until the main function ends. The next two statements
prompt the user to enter a rating and then store the user’s response (4) in the numStars variable.

The while statement’s condition is evaluated next. The condition evaluates to true, so the first
statement in the loop invokes the displayRating function, passing it the value stored in the
numStars variable (4). At this point, the computer temporarily leaves the main function to
process the code contained in the displayRating function.

The displayRating function’s header tells the computer to create a local int variable named
num. The computer stores the value passed to the function in the variable. The for loop in
the function uses an int variable named star to display the appropriate number of asterisks.
The number of asterisks to display was passed to the displayRating function from the main
function and is stored in the num variable. When the for loop ends, the star variable is removed
from the computer’s internal memory.

The last statement in the displayRating function moves the cursor to the next line on
the computer screen. When the function ends, the num variable is removed from memory,
as indicated in the desk-check table shown in Figure 10-9. Only the main function’s local
numStars variable remains in the computer’s memory.

Figure 10-8   Company ratings program

 1 //Ratings.cpp - displays company ratings
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 using namespace std;
 6
 7 //function prototype
 8 void displayRating(int num);
 9
10 int main()
11 {
12 int numStars = 0;
13
14 cout << "Rate the XYZ Company (1 to 5 stars): ";
15 cin >> numStars;
16 while (numStars > 0 && numStars < 6)
17 {
18 displayRating(numStars);
19 cout << "Rate the XYZ Company (1 to 5 stars): ";
20 cin >> numStars;
21 } //end while
22 cout << "End of ratings" << endl;
23
24 return 0;
25 } //end of main function
26
27 //*****function definitions*****
28 void displayRating(int num)
29 {
30 for (int star = 1; star <= num; star += 1)
31 cout << "*";
32 //end for
33 cout << endl;
34 } //end of displayRating function

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

340

Now the computer returns to the main function to process the statement immediately following
the one that called the displayRating function. That statement and the one immediately
below it prompt the user to enter a rating and then store the user’s response (2) in the numStars
variable. Next, the while statement’s condition is evaluated again. The condition still evaluates
to true, so the first statement in the loop calls the displayRating function and passes it the
value stored in the numStars variable (2). Here again, the computer temporarily leaves the main
function to process the code contained in the displayRating function.

Using the displayRating function’s header as a guide, the computer recreates the num variable and
then stores the value passed to the function (2) in the variable. Next, the for loop in the function
recreates its star variable and uses it to keep track of the appropriate number of asterisks to display.
When the for loop ends, the star variable is removed from the computer’s internal memory.

The last statement in the displayRating function moves the cursor to the next line on
the computer screen. When the function ends, the num variable is removed from memory,
as indicated in the desk-check table shown in Figure 10-10. Only the main function’s local
numStars variable remains in the computer’s memory.

As you learned
in Chapter 9,
the variables
listed in a
function

header are local to
the function, and they
remain in memory until
the function ends.

Figure 10-10   Desk-check table after the displayRating function ends the second time

Figure 10-9   Desk-check table after the displayRating function ends the first time

Note: The names in black indicate variables that belong to the function. The names in red
indicate variables that belong to the function.

numStars
0
4

star
1
2
3
4
5

num
4

Note: The names in black indicate variables that belong to the function. The names in red
indicate variables that belong to the function.

numStars
0
4
2

star
1
2
3
4
5

star
1
2
3

num
2

num
4

After processing the code in the displayRating function, the computer returns to the main
function to process the statement immediately following the one that called the function.
That statement and the one immediately below it prompt the user to enter a rating and then
store the user’s response (–1) in the numStars variable. The while statement’s condition is
evaluated once again. This time, the condition evaluates to false, so the computer processes
the cout statement on Line 22. That statement displays the “End of ratings” message on the

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

341

Passing Variables to a Function 	﻿

computer screen. Finally, the return 0; statement is processed and ends the program.
At this point, the computer removes the main function’s local numStars variable from its
internal memory.

Passing Variables by Reference
Instead of passing a copy of a variable’s value to a function, you can pass the variable’s location
in the computer’s internal memory—in other words, its address. As you learned earlier, passing
a variable’s address is referred to as passing by reference, and it gives the receiving function
access to the variable being passed. You pass a variable by reference when you want the receiving
function to change the contents of the variable.

To pass a variable by reference in C++, you include an ampersand (&) before the name of the
corresponding formal parameter in the receiving function’s header and in its prototype (if there
is one). The & (ampersand) is called the address-of operator, and it tells the computer to pass
the variable’s address rather than a copy of its contents. If the function’s prototype does not
include the formal parameter’s name, you enter a space followed by the address-of operator after
the formal parameter’s data type.

The tips program shown in Figure 10-11 demonstrates how you pass a variable by reference.
The program uses a void function named getTips to calculate both a 15% tip and a 20% tip on
a restaurant bill. The statement that calls the function appears on Line 22. The statement
passes three variables to the getTips function. The first variable (totalBill) is passed by
value, whereas the second and third variables (tip15 and tip20) are passed by reference. You
can tell that the tip15 and tip20 variables are passed by reference because the address-of
operator precedes the names of their corresponding formal parameters in the getTips func-
tion’s header (on Lines 30 and 31) and in its prototype (on Lines 9 through 11). As Figure 10-11
shows, the statement that calls a function does not indicate whether an item is passed by value
or by reference. That information can be determined only by examining the parameterList in
either the receiving function’s header or its prototype. Figure 10-11 also shows a sample run of
the program.

Recall that
only functions
defined below
the main
function require

a function prototype
above the main
function.

 1 //Tips.cpp - displays the tips on a restaurant bill
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 //function prototype
 9 void getTips(double bill,
10 double &percent15,
11 double &percent20);
12
13 int main()
14 {
15 double totalBill = 0.0;
16 double tip15 = 0.0;
17 double tip20 = 0.0;
18
19 cout << "Total bill: ";
20 cin >> totalBill;
21
22 getTips(totalBill, tip15, tip20);
23 cout << fixed << setprecision(2);
24 cout << "15% tip: $" << tip15 << endl;
25 cout << "20% tip: $" << tip20 << endl;
26 return 0;
27 } //end of main function
28
29 //*****function definitions*****
30 void getTips(double bill,
31 double &percent15, double &percent20)
32 {
33 percent15 = bill * 0.15;
34 percent20 = bill * 0.2;
35 } //end getTips function

function prototype

Figure 10-11   Tips program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

342

Notice that the data types of the actual arguments in the function call match the data types of
the getTips formal parameters, which are listed in both the function’s header and prototype.
Also notice that the names of the actual arguments are different from the names of the formal
parameters.

Desk-checking the tips program shown in Figure 10-11 will help you understand the concept
of passing by reference. The first three statements in the main function create and initialize
three double variables. The variables are local to the main function and will remain in memory
until the main function ends. Next, the cout and cin statements prompt the user to enter the
total bill and then store the user’s response in the totalBill variable. Figure 10-12 shows the
desk-check table at this point, assuming the user enters 100 as the total bill.

Figure 10-12   Desk-check table before the getTips function is called

tip15
0.0

tip20
0.0

totalBill
0.0

100.0

Ch10-Tips

The statement on Line 22 calls the getTips function, passing it a copy of the value stored in the
totalBill variable, the address of the tip15 variable, and the address of the tip20 variable. At
this point, the computer temporarily leaves the main function to process the code contained in
the getTips function, beginning with the function header.

Figure 10-11   Tips program

 1 //Tips.cpp - displays the tips on a restaurant bill
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 //function prototype
 9 void getTips(double bill,
10 double &percent15,
11 double &percent20);
12
13 int main()
14 {
15 double totalBill = 0.0;
16 double tip15 = 0.0;
17 double tip20 = 0.0;
18
19 cout << "Total bill: ";
20 cin >> totalBill;
21
22 getTips(totalBill, tip15, tip20);
23 cout << fixed << setprecision(2);
24 cout << "15% tip: $" << tip15 << endl;
25 cout << "20% tip: $" << tip20 << endl;
26 return 0;
27 } //end of main function
28
29 //*****function definitions*****
30 void getTips(double bill,
31 double &percent15, double &percent20)
32 {
33 percent15 = bill * 0.15;
34 percent20 = bill * 0.2;
35 } //end getTips function

function call

function header

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

343

Passing Variables to a Function 	﻿

The first formal parameter in the getTips function header tells the computer to create a local
double variable named bill. The computer stores a copy of the first actual argument’s value
(100.0) in the variable. (Recall that if the formal parameter does not include an ampersand, it
means that the actual argument is being passed by value.)

The ampersands in the next two formal parameters indicate that the function receives the
addresses of two double variables. (Recall that the ampersand indicates that an actual argument
is being passed by reference.) When you pass a variable’s address to a function, the computer
uses the address to locate the variable in its internal memory. It then assigns the formal
parameter’s name to the memory location. In this case, the computer locates the tip15 variable
in memory and assigns the name percent15 to it. It then locates the tip20 variable and assigns
it the name percent20. As indicated in the desk-check table in Figure 10-13, two of the memory
locations now have two names: one assigned by the main function and the other assigned by
the getTips function. Although both functions can access the memory locations, each function
uses different names to do so. The main function uses the names tip15 and tip20, whereas the
getTips function uses the names percent15 and percent20.

Figure 10-13   Desk-check table after the getTips function header is processed

percent15
tip15
0.0

percent20
tip20
0.0

bill
100.0

totalBill
0.0

100.0

Note: The names in black indicate variables that belong
to the main function. The names in red indicate variables
that belong to the getTips function.

Next, the computer processes the two statements contained in the getTips function body. The
first statement calculates a 15% tip and stores the result in the percent15 variable. The second
statement calculates a 20% tip and stores the result in the percent20 variable. Figure 10-14
shows the desk-check table after the statements are processed. Notice that changing the value
in the percent15 variable also changes the value in the tip15 variable. This is because both
variable names refer to the same location in memory. Likewise, changing the value in the
percent20 variable also changes the value in the tip20 variable.

Figure 10-14   Desk-check table after the statements in the getTips function are processed

percent15
tip15
0.0

15.0

percent20
tip20
0.0

20.0

bill
100.0

totalBill
0.0

100.0

Note: The names in black indicate variables that belong
to the main function. The names in red indicate variables
that belong to the getTips function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

344

The getTips function ends when the computer encounters the function’s closing brace. At
that point, the computer removes the bill variable from its internal memory. It also removes
the percent15 and percent20 names from their locations in memory. Figure 10-15 shows the
desk-check table after the getTips function ends. Notice that only the main function’s variables
remain in internal memory.

percent15
tip15
0.0

15.0

percent20
tip20
0.0

20.0

bill
100.0

totalBill
0.0

100.0

Note: The names in black indicate variables that belong
to the main function. The names in red indicate variables
that belong to the getTips function.

Figure 10-15   Desk-check table after the getTips function ends

Next, the computer returns to the main function to process the statement immediately
following the function call. That statement tells the computer to display the program output
in fixed-point notation with two decimal places. The next two statements display the contents
of the tip15 and tip20 variables on the computer screen. The last statement in the main
function, return 0;, returns the number 0 to the operating system to indicate that the
program ended normally. When the program ends, the main function’s variables are removed
from the computer’s internal memory.

Keep in mind that when you pass a variable by value, the computer uses the data type and
name of its corresponding formal parameter to create a separate variable in which to store the
passed value. When you pass a variable by reference, on the other hand, the computer locates
the variable in memory and then assigns the name of its corresponding formal parameter to
the variable. This means that when you pass a variable by reference, the variable will have two
names: one assigned by the calling function and the other assigned by the receiving function.
Void functions use variables that are passed by reference to send information back to the calling
function. Value-returning functions, on the other hand, send information back to the calling
function through their return value.

Mini-Quiz 10-2
1.	 Write the function header for a void function named calcTaxes. The function is

passed the value of a double variable named gross and the addresses of two double
variables named federal and state. Use pay, fedTax, and stateTax for the names of
the formal parameters.

2.	 Write a C++ statement to call the calcTaxes function from Question 1.

3.	 Write the function prototype for the calcTaxes function from Question 1.

4.	 Unless specified otherwise, a variable’s address is passed to a function in C++.

a.	 True
b.	 False

For more
examples
of void
functions,
see the

Void Functions section
in the Ch10WantMore.
pdf file.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

345

Passing Variables to a Function 	﻿

Figure 10-16   Sample run of the program for Lab 10-1

Figure 10-17   Code for Lab 10-1 (continues)

LAB 10-1  Stop and Analyze
Figure 10-16 shows a sample run of the program for Lab 10-1. Study the program’s
code shown in Figure 10-17, and then answer the questions.

The answers
to the labs are
contained in
the Answers.
pdf file.

The answers
to the labs are
contained in
the Answers.
pdf file.

 1 //Lab10-1.cpp - circle calculations
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <cmath>
 6 using namespace std;
 7
 8 //function prototypes
 9 void displayChoices();
10 void getArea(double rad, double &area);
11 void getDiameter(double rad, double &diameter);
12
13 int main()
14 {
15 int choice = 0;
16 double radius = 0.0;
17 double circleArea = 0.0;
18 double circleDiameter = 0.0;
19
20 displayChoices();
21 cout << "Enter your choice (1 or 2): ";
22 cin >> choice;
23
24 if (choice < 1 || choice > 2)
25 cout << "Invalid choice" << endl;
26 else
27 {
28 cout << "Radius: ";
29 cin >> radius;
30 if (choice == 1)
31 {
32 getArea(radius, circleArea);
33 cout << "Area: " << circleArea;
34 }
35 else
36 {
37 getDiameter(radius, circleDiameter);
38 cout << "Diameter: " << circleDiameter;
39 } //end if
40 cout << endl;
41 } //end if
42 return 0;
43 } //end of main function
44
45 //*****function definitions*****
46 void displayChoices()
47 {
48 cout << "1 Circle area" << endl;
49 cout << "2 Circle diameter" << endl;
50 }
51
52 void getArea(double rad, double &area)
53 {
54 const double PI = 3.141593;
55 area = PI * pow(rad, 2);
56 } //end getArea function
57
58 void getDiameter(double rad, double &diameter)
59 {
60 diameter = 2 * rad;
61 } //end getDiameter function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

346

 1 //Lab10-1.cpp - circle calculations
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <cmath>
 6 using namespace std;
 7
 8 //function prototypes
 9 void displayChoices();
10 void getArea(double rad, double &area);
11 void getDiameter(double rad, double &diameter);
12
13 int main()
14 {
15 int choice = 0;
16 double radius = 0.0;
17 double circleArea = 0.0;
18 double circleDiameter = 0.0;
19
20 displayChoices();
21 cout << "Enter your choice (1 or 2): ";
22 cin >> choice;
23
24 if (choice < 1 || choice > 2)
25 cout << "Invalid choice" << endl;
26 else
27 {
28 cout << "Radius: ";
29 cin >> radius;
30 if (choice == 1)
31 {
32 getArea(radius, circleArea);
33 cout << "Area: " << circleArea;
34 }
35 else
36 {
37 getDiameter(radius, circleDiameter);
38 cout << "Diameter: " << circleDiameter;
39 } //end if
40 cout << endl;
41 } //end if
42 return 0;
43 } //end of main function
44
45 //*****function definitions*****
46 void displayChoices()
47 {
48 cout << "1 Circle area" << endl;
49 cout << "2 Circle diameter" << endl;
50 }
51
52 void getArea(double rad, double &area)
53 {
54 const double PI = 3.141593;
55 area = PI * pow(rad, 2);
56 } //end getArea function
57
58 void getDiameter(double rad, double &diameter)
59 {
60 diameter = 2 * rad;
61 } //end getDiameter function

Figure 10-17   Code for Lab 10-1

QUESTIONS

1.	 The main function passes two variables to the getArea function. Which lines in the
program indicate whether the variables are passed by value or by reference?

2.	 Why is the radius variable passed by value? Why are the circleArea and
circleDiameter variables passed by reference?

3.	 Why is the displayChoices function a void function?

4.	 How do the getArea and getDiameter functions, which are void functions, send
information back to the main function?

5.	 Follow the instructions for starting C++ and viewing the Lab10-1.cpp file, which is
contained in either the Cpp8\Chap10\Lab10-1 Project folder or the Cpp8\Chap10 folder.
(Depending on your C++ development tool, you may need to open Lab10-1’s project/
solution file first.) Run the program. Type 1 and press Enter, and then type 5.5 and press
Enter. The program displays the number 95.0332, as shown earlier in Figure 10-16.

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

347

Passing Variables to a Function 	﻿

6.	 Use the program to calculate the diameter for a circle whose radius is 25.7. The
diameter is 51.4.

7.	 Change the getArea function to a value-returning function. Save and then run the pro-
gram. Use the program to calculate the area of a circle whose radius is 5.5. Then use it to
calculate the diameter of a circle whose radius is 25.7.

Lab 10-2  Plan and Create
In this lab, you will plan and create an algorithm for Patterson Windows. The
problem specification and sample calculations are shown in Figure 10-18.

Create a program for Patterson Windows, a company that sells energy-efficient replacement
windows for homes. The program should display the total amount a customer owes, given the
number of windows ordered and the price per window. The total owed is calculated by multiplying
the number of windows ordered by the price per window. However, several times during the year,
the company has a BOGO (buy one, get one free) offer.

Example using regular pricing Example using BOGO pricing
Number of windows: 11 Number of windows: 15
Price per window: 300 Price per window: 200
Total owed (11 * 300): $3300.00 Total owed (8 * 200): $1600.00

Figure 10-18   Problem specification and a sample calculation for Lab 10-2

First, analyze the problem, looking for the output first and then for the input. In this case, the
program needs to display the total amount the customer owes. To calculate that amount, the
computer will need to know the number of windows ordered, the price per window, and the
pricing option (either regular or BOGO).

After analyzing the problem, you plan the algorithm. In this case, in addition to the main
function, the program will use three void functions named displayOptions, getRegular,
and getBoGo. The displayOptions function will display the pricing options on the computer
screen. A void function is appropriate for this task because the function will not need to return
a value.

The getRegular function will calculate the total owed using the regular pricing option. The
getBoGo function, on the other hand, will calculate the total owed using the BOGO pricing
option. The getRegular and getBoGo functions could be coded as either value-returning or
void functions. For this lab, you will use void functions. (You will change the functions to value-
returning functions in Lab 10-3.)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

348

Figure 10-19   IPO charts for the functions in the Lab10-2 program (continues)

 function
Input
pricing option
number of windows
window price

Processing
Processing items: none

Output
total owed

Algorithm:
 1. call the displayOptions function to display
 the pricing options
 2. get the pricing option
 3. if (the pricing option is either 1 or 2)
 get the number of windows and the window price
 if (the pricing option is 1)
 call the getRegular function to calculate
 the total owed; pass the number of windows
 and the window price, as well as the address
 of a variable to store the total owed
 else
 call the getBoGo function to calculate
 the total owed; pass the number of windows
 and the window price, as well as the address
 of a variable to store the total owed
 end if
 display the total owed
 else
 display “Invalid option” message
 end if

To calculate the total owed, the getRegular and getBoGo functions will need to know the
number of windows ordered and the price per window. The calling statement will pass that
information by value to the functions. Because both functions will be void functions, they will
also need the calling statement to pass them the address of a variable in which to store the
calculated results. Figure 10-19 shows the completed IPO charts for the program’s four functions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

349

Passing Variables to a Function 	﻿

Figure 10-19   IPO charts for the functions in the Lab10-2 program (continues)

start

get pricing
option

call
displayOptions

pricing
option

is 1 or 2

TF
get number
of windows

and window price

pricing
option
is 1

T

call getRegular; pass
number of windows,

window price, and the
address of a variable toaddress of a variable to

store the total owed

F

call getBoGo; pass
number of windows,

window price, and the
address of a variable to

store the total owed

display “Invalid
option”

message

stop

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

350

(continued)

Figure 10-19   IPO charts for the functions in the Lab10-2 program (continues)

 function
Input
none

Processing
Processing items: none

Algorithm:
1. display pricing options

Output
pricing options

stop

start

display pricing
options

stop

getRegular function
Input
number of windows
window price
address of a variable to
store the total owed

Processing
Processing items: none

Algorithm:
 1. calculate total owed = number
 of windows * window price

Output
total owed

start

total owed = number of
windows * window price

stop

 function
Input
number of windows
window price
address of a variable to
store the total owed

Processing
Processing items: none

Algorithm:
 1. calculate total owed = (number of
 windows / 2 + the remainder of
 number of windows / 2) * window price

Output
total owed

start

total owed = (number of
windows / 2 + the

remainder of number of
windows / 2) * window price

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

351

Passing Variables to a Function 	﻿

The third step in the problem-solving process is to desk-check the algorithm. You will desk-
check the algorithms twice. For the first desk-check, you will use 1, 11, and 300 as the pricing
option, number of windows, and window price, respectively. Using these values, the total owed
should be $3300.00, as shown earlier in Figure 10-18. For the second desk-check, you will use
2, 15, and 200 as the pricing option, number of windows, and window price, respectively; the
total owed should be $1600.00, as shown earlier in Figure 10-18. Figure 10-20 shows the
completed desk-check table.

Note: The names in black indicate items that belong to the function. The names in red
indicate items that belong to the function. The names in blue indicate items that
belong to the function.

pricing option
1
2

number of windows
11
15

window price
300.0
200.0

total owed
total owed
total owed

3300.0
1600.0

number of windows
11

window price
300.0

number of windows
15

window price
200.0

Figure 10-20   Completed desk-check table for Lab 10-2’s algorithms

The fourth step in the problem-solving process is to code the algorithm into a program. The IPO
chart information and C++ instructions for the program are shown in Figure 10-21.

Figure 10-19   IPO charts for the functions in the Lab10-2 program

 function
Input
none

Processing
Processing items: none

Algorithm:
1. display pricing options

Output
pricing options

stop

start

display pricing
options

stop

getRegular function
Input
number of windows
window price
address of a variable to
store the total owed

Processing
Processing items: none

Algorithm:
 1. calculate total owed = number
 of windows * window price

Output
total owed

start

total owed = number of
windows * window price

stop

 function
Input
number of windows
window price
address of a variable to
store the total owed

Processing
Processing items: none

Algorithm:
 1. calculate total owed = (number of
 windows / 2 + the remainder of
 number of windows / 2) * window price

Output
total owed

start

total owed = (number of
windows / 2 + the

remainder of number of
windows / 2) * window price

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

352

main function
IPO chart information
Input
 pricing option
 number of windows
 window price

Processing
 none

Output
 total owed

Algorithm
1. call the displayOptions function to display
 the pricing options
2. get the pricing option

3. if (the pricing option is either 1 or 2)

 get the number of windows and the
 window price

 if (the pricing option is 1)
 call the getRegular function to calculate
 the total owed; pass the number of windows
 and the window price, as well as the address
 of a variable to store the total owed

 else
 call the getBoGo function to calculate
 the total owed; pass the number of windows
 and the window price, as well as the address
 of a variable to store the total owed
 end if

 display the total owed

 else
 display “Invalid option” message
 end if

main function
C++ instructions

displayOptions function
IPO chart information
Input
 none

Processing
 none

Output
 pricing options

Algorithm
1. display pricing options

getRegular function
IPO chart information
Input
 number of windows (formal parameter)
 window price (formal parameter)

 address of a variable to store the
 total owed (formal parameter)

Processing
 none

Output
 total owed

Algorithm
1. calculate total owed = number of
 windows * window price

getBoGo function
IPO chart information
Input
 number of windows (formal parameter)
 window price (formal parameter)

 address of a variable to
 store the total owed (formal parameter)

Processing
 none

Output
 total owed

Algorithm
1. calculate total owed = (number of
 windows / 2 + the remainder of
 number of windows / 2) * window price

getRegular function
C++ instructions

stored in the total formal parameter

stored in the total formal parameter

getBoGo function
C++ instructions

displayOptions function
C++ instructions

Figure 10-21   IPO chart information and C++ instructions for Lab 10-2’s program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

353

Passing Variables to a Function 	﻿

(continued)

Figure 10-21   IPO chart information and C++ instructions for Lab 10-2’s program

displayOptions function
IPO chart information
Input
 none

Processing
 none

Output
 pricing options

Algorithm
1. display pricing options

getRegular function
IPO chart information
Input
 number of windows (formal parameter)
 window price (formal parameter)

 address of a variable to store the
 total owed (formal parameter)

Processing
 none

Output
 total owed

Algorithm
1. calculate total owed = number of
 windows * window price

getBoGo function
IPO chart information
Input
 number of windows (formal parameter)
 window price (formal parameter)

 address of a variable to
 store the total owed (formal parameter)

Processing
 none

Output
 total owed

Algorithm
1. calculate total owed = (number of
 windows / 2 + the remainder of
 number of windows / 2) * window price

getRegular function
C++ instructions

stored in the total formal parameter

stored in the total formal parameter

getBoGo function
C++ instructions

displayOptions function
C++ instructions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 0 Void Functions

354

The fifth step in the problem-solving process is to desk-check the program. Figure 10-22 shows
the entire program, and Figure 10-23 shows the completed desk-check table.

Figure 10-22   Lab 10-2’s program (continues)

 1 //Lab10-2.cpp - displays total owed
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 //function prototypes
 9 void displayOptions();
10 void getRegular(int windows, double price, double &total);
11 void getBoGo(int windows, double price, double &total);
12
13 int main()
14 {
15 int option = 0;
16 int numOrdered = 0;
17 double winPrice = 0.0;
18 double totalOwed = 0.0;
19
20 cout << fixed << setprecision(2);
21
22 displayOptions();
23 cout << "Pricing option? ";
24 cin >> option;
25
26 if (option == 1 || option == 2)
27 {
28 cout << "Number of windows: ";
29 cin >> numOrdered;
30 cout << "Price per window: ";
31 cin >> winPrice;
32
33 if (option == 1)
34 getRegular(numOrdered, winPrice, totalOwed);
35 else
36 getBoGo(numOrdered, winPrice, totalOwed);
37 //end if
38
39 cout << "Total owed-----> $" << totalOwed << endl << endl;
40 }
41 else
42 cout << "Invalid option" << endl;
43 //end if
44
45 return 0;
46 } //end of main function
47
48 //*****function definitions*****
49 void displayOptions()
50 {
51 cout << "Pricing options:" << endl;
52 cout << "1 Regular pricing" << endl;
53 cout << "2 BOGO pricing" << endl;
54 } //end displayOptions
55
56 void getRegular(int windows, double price, double &total)
57 {
58 total = windows * price;
59 } //end getRegular function
60
61 void getBoGo(int windows, double price, double &total)
62 {
63 total = (windows / 2 + windows % 2) * price;
64 } //end getBoGo function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

355

Passing Variables to a Function 	﻿

The final step in the problem-solving process is to evaluate the program by entering its instruc-
tions into the computer and then using the computer to run (execute) it. While the program is
running, you enter the same sample data used when desk-checking the program. If the program
is not working correctly, you modify it until it works as intended.

DIRECTIONS

Follow the instructions for starting your C++ development tool. Depending on the develop-
ment tool you are using, you may need to create a new project; if so, name the project Lab10-2
Project, and save it in the Cpp8\Chap10 folder. Enter the instructions shown in Figure 10-22 in a
source file named Lab10-2.cpp. (Do not enter the line numbers.) Save the file in either the
project folder or the Cpp8\Chap10 folder. Now, follow the appropriate instructions for running
the Lab10-2.cpp file. Test the program using the same data used to desk-check the program.
Also test it using your own sample data. If necessary, correct any bugs (errors) in the program.

Figure 10-23   Completed desk-check table for Lab 10-2’s program

Note: The names in black indicate variables that belong to the function. The names in red
indicate variables that belong to the function. The names in blue indicate variables that
belong to the function.

 option
 0
 1
 0
 2

numOrdered
 0
 11
 0
 15

winPrice
0.0

300.0
 0.0

200.0

total
total

totalOwed
0.0

3300.0
 0.0

1600.0

windows
11

windows
15

price
300.0

price
200.0

Figure 10-22   Lab 10-2’s program

(continued)

 1 //Lab10-2.cpp - displays total owed
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 //function prototypes
 9 void displayOptions();
10 void getRegular(int windows, double price, double &total);
11 void getBoGo(int windows, double price, double &total);
12
13 int main()
14 {
15 int option = 0;
16 int numOrdered = 0;
17 double winPrice = 0.0;
18 double totalOwed = 0.0;
19
20 cout << fixed << setprecision(2);
21
22 displayOptions();
23 cout << "Pricing option? ";
24 cin >> option;
25
26 if (option == 1 || option == 2)
27 {
28 cout << "Number of windows: ";
29 cin >> numOrdered;
30 cout << "Price per window: ";
31 cin >> winPrice;
32
33 if (option == 1)
34 getRegular(numOrdered, winPrice, totalOwed);
35 else
36 getBoGo(numOrdered, winPrice, totalOwed);
37 //end if
38
39 cout << "Total owed-----> $" << totalOwed << endl << endl;
40 }
41 else
42 cout << "Invalid option" << endl;
43 //end if
44
45 return 0;
46 } //end of main function
47
48 //*****function definitions*****
49 void displayOptions()
50 {
51 cout << "Pricing options:" << endl;
52 cout << "1 Regular pricing" << endl;
53 cout << "2 BOGO pricing" << endl;
54 } //end displayOptions
55
56 void getRegular(int windows, double price, double &total)
57 {
58 total = windows * price;
59 } //end getRegular function
60
61 void getBoGo(int windows, double price, double &total)
62 {
63 total = (windows / 2 + windows % 2) * price;
64 } //end getBoGo function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

356

C h a p t e r 1 0 Void Functions

Lab 10-3  Modify
If necessary, create a new project named Lab 10-3 Project, and save it in the
Cpp8\Chap10 folder. Enter (or copy) the Lab10-2.cpp instructions into a new source
file named Lab10-3.cpp. Change Lab10-2.cpp in the first comment to Lab10-3.cpp.
Change the getRegular and getBoGo functions to value-returning functions. Save
and then run the program. Test the program appropriately.

Lab 10-4  What’s Missing?
The program in this lab should display an employee’s raise and new salary, given his
or her current salary. Start your C++ development tool, and view the Lab10-4.cpp file,
which is contained in either the Cpp8\Chap10\Lab10-4 Project folder or the Cpp8
\Chap10 folder. (Depending on your C++ development tool, you may need to open

Lab10-4’s project/solution file first.) Put the C++ instructions in the proper order, and then
determine the one or more missing instructions. Test the program appropriately.

Lab 10-5  Desk-Check
Desk-check the program shown in Figure 10-24. What will the program display?

//Lab10-5.cpp - displays a sum
//Created/revised by <your name> on <current date>

#include <iostream>
#include <cmath>
using namespace std;

//function prototype
void getSquare(int num, int &sqAnswer);
void getCube(int num, int &cubeAnswer);

int main()
{
 int sum = 0;

 for (int number = 1; number < 4; number += 1)
 {
 getSquare(number, sum);
 getCube(number, sum);
 } //end for
 cout << "The sum is: " << sum << endl;
 return 0;
} //end of main function

//*****function definitions*****
void getSquare(int num, int &sqAnswer)
{
 sqAnswer += pow(num, 2);
} //end getSquare function

void getCube(int num, int &cubeAnswer)
{
 cubeAnswer += pow(num, 3);
} //end getCube function

Figure 10-24   Code for Lab 10-5 (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

357

Chapter Summary 	﻿

Lab 10-6  Debug
Follow the instructions for starting C++ and viewing the Lab10-6.cpp file, which is
contained in either the Cpp8\Chap10\Lab10-6 Project folder or the Cpp8\Chap10
folder. (Depending on your C++ development tool, you may need to open Lab10-6’s
project/solution file first.) Run the program. Enter the following scores: 93, 90, 85, and
100. The program should display 368 as the total points and A as the grade, but it is
not working correctly. Debug the program.

Chapter Summary

All functions fall into one of two categories: value-returning or void. A value-returning function
returns precisely one value to the statement that called the function. A void function, on the
other hand, does not return a value.

Like a value-returning function, a void function is composed of a function header and a function
body. However, unlike a value-returning function, the function header for a void function begins
with the keyword void rather than with a data type. Also unlike a value-returning function, the
function body for a void function does not contain a return statement.

You call a void function by including its name and actual arguments (if any) in a statement.

Unlike a call to a value-returning function, a call to a void function appears as a statement by
itself rather than as part of another statement. When the computer finishes processing a void
function’s code, it continues program execution with the statement immediately below the one
that called the function.

Variables can be passed to functions either by value (the default) or by reference.

When you pass a variable by value, only a copy of the value stored inside of the variable is passed
to the receiving function. The receiving function is not given access to a variable passed by value,
so it cannot change the variable’s contents.

Figure 10-24   Code for Lab 10-5

(continued)

//Lab10-5.cpp - displays a sum
//Created/revised by <your name> on <current date>

#include <iostream>
#include <cmath>
using namespace std;

//function prototype
void getSquare(int num, int &sqAnswer);
void getCube(int num, int &cubeAnswer);

int main()
{
 int sum = 0;

 for (int number = 1; number < 4; number += 1)
 {
 getSquare(number, sum);
 getCube(number, sum);
 } //end for
 cout << "The sum is: " << sum << endl;
 return 0;
} //end of main function

//*****function definitions*****
void getSquare(int num, int &sqAnswer)
{
 sqAnswer += pow(num, 2);
} //end getSquare function

void getCube(int num, int &cubeAnswer)
{
 cubeAnswer += pow(num, 3);
} //end getCube function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

358

C h a p t e r 1 0 Void Functions

When you pass a variable by value, the computer uses the data type and name of the
corresponding formal parameter to create a separate memory location in which to store a copy
of the value.

When you pass a variable by reference, the variable’s address in memory is passed to the
receiving function, allowing the receiving function to change the variable’s contents. Only
variables can be passed by reference.

When you pass a variable by reference, the computer locates the variable in memory and then
assigns the name of its corresponding formal parameter to the memory location. As a result, the
variable will have two names: one assigned by the calling function and the other assigned by the
receiving function.

To pass a variable by reference in a C++ program, you include the address-of operator (&)
before the name of the corresponding formal parameter in the function header. If the function
definition appears below the main function in the program, you must also include the
address-of operator in the function prototype. The address-of operator tells the computer to
pass the variable’s address rather than its contents.

Key Terms
&—the address-of operator

Address-of operator—the ampersand; tells the computer to pass a variable’s address in memory
rather than its contents

Passing by reference—refers to the process of passing a variable’s address to a function

Passing by value—refers to the process of passing a copy of a variable’s value to a function

Void functions—functions that do not return a value after completing their assigned task

Review Questions
1.	 Which of the following is false?

a.	 A void function does not contain a return statement.
b.	 A void function call typically appears as its own statement in a C++ program.
c.	 A void function cannot receive any items of information when it is called.
d.	 A void function header begins with the keyword void.

2.	 Which of the following correctly calls a void function named displayTotal, passing
it an int variable named total?

a.	 cout << displayTotal(int total);
b.	 cout << displayTotal(total);
c.	 displayTotal(int total);
d.	 displayTotal(total);

3.	 A void function named getEndBal is passed the values stored in two int variables.
Which of the following function prototypes is correct for this function?

a.	 void getEndBal(int, int);
b.	 void getEndBal(int, int)
c.	 void getEndBal(int &, int &);
d.	 int getEndBal(void);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

359

Review Questions 	

4.	 A void function named getInventory is passed four int variables named
beginInv, sales, purchases, and endInv. The function’s task is to
calculate the ending inventory, using the beginning inventory, sales, and purchase
amounts passed to the function. The function should store the result in the endInv
variable. Which of the following function headers is correct?

a.	 void getInventory(int b, int s, int p, int &e)
b.	 void getInventory(int b, int s, int p, int e)
c.	 void getInventory(int &b, int &s, int &p, int e)
d.	 void getInventory(&int b, &int s, &int p, &int e)

5.	 Which of the following statements calls the getInventory function described in
Review Question 4?

a.	 getInventory(int, int, int, int);
b.	 getInventory(beginInv, sales, purchases, &endInv);
c.	 getInventory(beginInv, sales, purchases, endInv);
d.	 getInventory(int beginInv, int sales, int purchases, int

&endInv);

6.	 To determine whether an item is being passed by value or by reference, you must
examine either the _________________________ or the _________________________.

a.	 function call, function header
b.	 function call, function prototype

c.	 function header, function prototype
d.	 function header, function body

7.	 Which of the following calls a void function named displayName, passing it no actual
arguments?

a.	 call displayName();
b.	 displayName;

c.	 displayName()
d.	 displayName();

8.	 Which of the following is a correct function prototype for a void function that requires
no formal parameters? The function’s name is displayName.

a.	 displayName();
b.	 void displayName;

c.	 void displayName();
d.	 void displayName(none);

9.	 If the function definitions section is located below the main function in a program, the
program will have one function prototype for each program-defined function.

a.	 True b.	 False

10.	 Which of the following is false?

a.	 When you pass a variable by reference, the receiving function can change the
variable’s contents.

b.	 When you pass a variable by value, the receiving function creates a local variable
that it uses to store the value.

c.	 Unless specified otherwise, all variables in C++ are passed by value.
d.	 To pass a variable by reference in C++, you place an ampersand (&) before the

variable’s name in the statement that calls the function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

360

C h a p t e r 1 0 Void Functions

11.	 A program contains a void function named getNewPrice. The function receives two
double variables named oldPrice and newPrice. The function multiplies the
contents of the oldPrice variable by 1.1 and then stores the result in the newPrice
variable. Which of the following is the appropriate function prototype for this function?

a.	 void getNewPrice(double, double);
b.	 void getNewPrice(double &, double);
c.	 void getNewPrice(double, double &);
d.	 void getNewPrice(double &, double &);

12.	 Which of the following can be used to call the getNewPrice function described in
Review Question 11?

a.	 getNewPrice(double oldPrice, double newPrice);
b.	 getNewPrice(&oldPrice, newPrice);
c.	 getNewPrice(oldPrice, &newPrice);
d.	 getNewPrice(oldPrice, newPrice);

13.	 Which of the following is false?

a.	 The names of the formal parameters in the function header must be identical to the
names of the actual arguments in the function call.

b.	 When listing the formal parameters in a function header, you include each
parameter’s data type and name.

c.	 The formal parameters should be the same data type as the actual arguments.
d.	 If a function call passes an int variable first and a char variable second, the

receiving function should receive an int variable followed by a char variable.

14.	 When a variable is passed by reference, the computer assigns the name of its
corresponding formal parameter to the variable’s location in memory.

a.	 True b.	 False

Exercises

Pencil and Paper

1.	 Write the C++ code for a function that receives an integer, a double number, and the
address of a double variable from the calling statement. The function should multiply
the integer by the double number and then store the result in the double variable.
Name the function getProduct. Name the formal parameters intNum, dblNum, and
answer. (The answers to TRY THIS Exercises are located at the end of the chapter.)

2.	 Write the function prototype for the getProduct function from Pencil and Paper
Exercise 1. Also write the statement to call the function. Name the actual arguments
firstNum, secondNum, and product. (The answers to TRY THIS Exercises are
located at the end of the chapter.)

3.	 Rewrite the code from Pencil and Paper Exercises 1 and 2 so that the getProduct
function receives two integers, a double number, and the address of a double
variable from the calling statement. The function should add both integers together,
multiply the sum by the double number, and store the result in the double variable.
Name the formal parameters intNum1, intNum2, dblNum, and answer. Name the
actual arguments firstNum, secondNum, thirdNum, and product.

TRY THIS

TRY THIS

MODIFY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

361

Exercises 	

4.	 Write the C++ code for a void function that receives three double variables: the first
two by value and the last one by reference. Name the formal parameters n1, n2, and
answer. The function should divide the n1 variable by the n2 variable and then store
the result in the answer variable. Name the function calcQuotient. Also write an
appropriate function prototype for the calcQuotient function. In addition, write a
statement that invokes the calcQuotient function, passing it the num1, num2, and
quotient variables.

5.	 Write the C++ code for a void function that receives four int variables: the first two
by value and the last two by reference. Name the formal parameters n1, n2, sum, and
diff. The function should calculate the sum of the two variables passed by value and
then store the result in the first variable passed by reference. It should also calculate the
difference between the two variables passed by value and then store the result in the
second variable passed by reference. When calculating the difference, always subtract
the smaller number from the larger number. Name the function calcSumAndDiff.
Also write an appropriate function prototype for the calcSumAndDiff function. In
addition, write a statement that invokes the calcSumAndDiff function, passing it the
num1, num2, numSum, and numDiff variables.

6.	 Write the C++ code for a function that receives four items of information: three by
value and one by reference. Each item has the double data type. Name the formal
parameters num1, num2, num3, and avg. The function should calculate the average of
the three numbers and then assign the result to the avg variable. Name the function
calcAverage. Also write an appropriate function prototype for the function. In
addition, write a statement that invokes the function, passing it the following actual
arguments: janAvg, febAvg, marAvg, and quarterAvg.

7.	 Desk-check the code shown in Figure 10-25. Show the desk-check table after the first
four statements in the main function are processed. Also show it after the statement
in the calcEnd function is processed. Finally, show the desk-check table after the
calcEnd function ends.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

void calcEnd(int beg, int pur, int sale, int &ending);

int main()
{
 int begVal = 950;
 int purchase = 400;
 int sale = 700;
 int endVal = 0;

 calcEnd(begVal, purchase, sale, endVal);

 cout << "Ending value: " << endVal << endl;
 return 0;
} //end of main function

void calcEnd(int beg, int pur, int sale, int &ending)
{
 ending = beg + pur – sale;
} //end of calcEnd function

Figure 10-25  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

362

C h a p t e r 1 0 Void Functions

8.	 A program’s main function declares three double variables named sales, taxRate,
and salesTax. It also contains the following function call: calcSalesTax (sales,
taxRate, salesTax);. The calcSalesTax function is responsible for calculating
the sales tax. Its function header looks like this: void calcSalesTax (double
sold, double rate, double tax). Correct the function header.

Computer

9.	 In this exercise, you will experiment with passing variables by value and by reference.
(The answers to TRY THIS Exercises are located at the end of the chapter.)

a.	 Follow the instructions for starting C++ and viewing the TryThis9.cpp file, which is
contained in either the Cpp8\Chap10\TryThis9 Project folder or the Cpp8\Chap10
folder. (Depending on your C++ development tool, you may need to open this
exercise’s project/solution file first.)

b.	 Notice that the main function passes the age variable by value to the getAge function.
Run the program. When prompted to enter your age, type your age and press Enter.
The message that appears should contain your age; however, it contains the number 0
instead. This is because the age variable is passed by value to the getAge function.

c.	 Modify the program so that it passes the age variable by reference to the getAge
function. Save and then run the program. When prompted to enter your age, type
your age and press Enter. This time, the message contains your age.

10.	 In this exercise, you will modify the program from Lab 9-1 in Chapter 9. Follow the
instructions for starting C++ and viewing the TryThis10.cpp file, which is contained
in either the Cpp8\Chap10\TryThis10 Project folder or the Cpp8\Chap10 folder.
(Depending on your C++ development tool, you may need to open this exercise’s
project/solution file first.) Modify the program to use void functions to calculate the
area and the diameter. Test the application appropriately. (The answers to TRY THIS
Exercises are located at the end of the chapter.)

11.	 If necessary, create a new project named TryThis11 Project, and save it in the
Cpp8\Chap10 folder. Code the IPO charts shown in Figure 10-26. Enter your C++
instructions into a source file named TryThis11.cpp. Also enter appropriate comments
and any additional instructions required by the compiler. Display the Celsius temperature
in fixed-point notation with no decimal places. Test the program appropriately.
(The answers to TRY THIS Exercises are located at the end of the chapter.)

SWAT THE BUGS

TRY THIS

TRY THIS

TRY THIS

Figure 10-26   (continues)

main function
Input Processing Output
Fahrenheit temperature Processing items: none Celsius temperature

 Algorithm:
 1. enter Fahrenheit temperature
 2. call calcCelsius to calculate the Celsius
 temperature; pass the Fahrenheit temperature
 and the address of a variable in which to
 store the Celsius temperature
 3. display the Celsius temperature

calcCelsius function
Input Processing Output
Fahrenheit temperature Processing items: none Celsius temperature

address of a variable in
which to store the Celsius
temperature
 Algorithm:
 1. Celsius temperature = 5.0 / 9.0 *
 (Fahrenheit temperature – 32.0)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

363

Exercises 	

12.	 In this exercise, you will modify the program from TRY THIS Exercise 11. If necessary,
create a new project named ModifyThis12 Project, and save it in the Cpp8\Chap10 folder.
Copy the instructions from the TryThis11.cpp file into a source file named ModifyThis12.cpp.
(Alternatively, you can enter the instructions shown later in Figure 10-32 into the
ModifyThis12.cpp file.) Change the filename in the first comment to ModifyThis12.cpp.
Add a void function named calcFahrenheit to the program. The program should now
allow the user to convert the temperature he or she entered to either Celsius or Fahrenheit.
Make the necessary modifications to the main function. Test the program appropriately.

13.	 In this exercise, you will modify the program from Lab 9-2 in Chapter 9. If necessary,
create a new project named ModifyThis13 Project, and save it in the Cpp8\Chap10
folder. Copy the instructions from the Lab9-2.cpp file (which is contained in either the
Cpp8\Chap09\Lab9-2 Project folder or the Cpp8\Chap09 folder) into a source
file named ModifyThis13.cpp. (Alternatively, you can enter the instructions from
Figure 9-34 into the ModifyThis13.cpp file.) Change the filename in the first comment
to ModifyThis13.cpp. Change the getPayment function to a void function. Test the
program appropriately.

14.	 In this exercise, you will modify the program from Lab10-1. Follow the instructions for
starting C++ and viewing the ModifyThis14.cpp file, which is contained in either the
Cpp8\Chap10\ModifyThis14 Project folder or the Cpp8\Chap10 folder. (Depending
on your C++ development tool, you may need to open this exercise’s project/solution
file first.) Modify the program to allow the user to display a circle’s circumference,
given its radius. Use a void function named getCircumference. Test the program
appropriately.

15.	 In this exercise, you will modify the guessing game program from Figure 9-11 in Chapter 9.
Follow the instructions for starting C++ and viewing the Introductory15.cpp file, which is
contained in either the Cpp8\Chap10\Introductory15 Project folder or the Cpp8\Chap10
folder. (Depending on your C++ development tool, you may need to open this exercise’s
project/solution file first.) Modify the program so that it uses a void function to determine
the random number. The program should ask the user for both the minimum and maxi-
mum random numbers that the void function should generate. The function call should
pass that information to the void function. Test the application appropriately.

16.	 In this exercise, you will create a program that displays the gross pay for one or more
employees. If necessary, create a new project named Introductory16 Project, and save it
in the Cpp8\Chap10 folder. The program should allow the user to enter the number of
hours the employee worked and his or her hourly pay rate. Use a negative sentinel value

MODIFY THIS

MODIFY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

Figure 10-26

main function
Input Processing Output
Fahrenheit temperature Processing items: none Celsius temperature

 Algorithm:
 1. enter Fahrenheit temperature
 2. call calcCelsius to calculate the Celsius
 temperature; pass the Fahrenheit temperature
 and the address of a variable in which to
 store the Celsius temperature
 3. display the Celsius temperature

calcCelsius function
Input Processing Output
Fahrenheit temperature Processing items: none Celsius temperature

address of a variable in
which to store the Celsius
temperature
 Algorithm:
 1. Celsius temperature = 5.0 / 9.0 *
 (Fahrenheit temperature – 32.0)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

364

C h a p t e r 1 0 Void Functions

Deposit: 1000
Minimum rate (in decimal form): 0.02
Maximum rate (in decimal form): 0.04
Rate 2%:
 Year 1: $1020.00
 Year 2: $1040.40
 Year 3: $1061.21
Rate 3%:
 Year 1: $1030.00
 Year 2: $1060.90
 Year 3: $1092.73
Rate 4%:
 Year 1: $1040.00
 Year 2: $1081.60
 Year 3: $1124.86

Figure 10-27  

to stop the program. Employees are paid at their regular pay rate for hours worked
from 1 through 37. They are paid time and a half for the hours worked from 38 through
50, and double-time for the hours worked over 50. Use a void function to calculate
and return the employee’s overtime pay, if applicable. Enter your C++ instructions into
a source file named Introductory16.cpp. Also enter appropriate comments and any
additional instructions required by the compiler. Test the application appropriately.
(Hint: If an employee earns $10 per hour and works 37 hours, the gross pay is $370.00.
If he or she works 38 hours, the gross pay is $385.00. If he or she works 51 hours, the
gross pay is $585.00.)

17.	 In this exercise, you will create a program that displays a measurement in either inches
or centimeters. If necessary, create a new project named Introductory17 Project, and
save it in the Cpp8\Chap10 folder. The program should allow the user the choice of
converting a measurement from inches to centimeters or vice versa. Use two void func-
tions: one for each different conversion type. Enter your C++ instructions into a source
file named Introductory17.cpp. Also enter appropriate comments and any additional
instructions required by the compiler. Test the application appropriately.

18.	 In this exercise, you will modify the program that you created in Chapter 6’s Lab 6-2. If
necessary, create a new project named Intermediate18 Project, and save it in the
Cpp8\Chap10 folder. Copy the instructions from the Lab6-2.cpp file (which is contained
in either the Cpp8\Chap06\Lab6-2 Project folder or the Cpp8\Chap06 folder) into a
source file named Intermediate18.cpp. (Alternatively, you can enter the instructions
from Figure 6-29 into the Intermediate18.cpp file.) Change the filename in the first
comment. Modify the program so that it uses two void functions: one to calculate the
price of a medium pizza and the other to calculate the price of a large pizza. In addition
to the $2 coupon on the purchase of a large pizza, Sophia is now e-mailing customers a
$1 coupon on the purchase of a medium pizza. Test the program appropriately.

19.	 In this exercise, you will modify the savings account program from Figure 9-18 in
Chapter 9. Follow the instructions for starting C++ and viewing the Intermediate19.cpp
file, which is contained in either the Cpp8\Chap10\Intermediate19 Project folder or
the Cpp8\Chap10 folder. (Depending on your C++ development tool, you may need
to open this exercise’s project/solution file first.) Modify the program to allow the user
to enter the minimum and maximum interest rates, as shown in Figure 10-27. Also
change the getBalance function to a void function. Test the program appropriately.

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

365

Exercises 	

22.	 An online retailer wants a program that displays the total amount a customer owes,
including shipping. The user will enter the total amount due before shipping. The amount
to charge for shipping is based on the customer’s membership status, which can be
either Standard or Premium. The appropriate shipping charges are shown in Figure 10-29.
The program should use two void functions: one to determine the shipping charge for a
Standard member and the other to determine the shipping charge for a Premium member. If
necessary, create a new project named Advanced22 Project, and save it in the Cpp8\Chap10
folder. Enter your C++ instructions into a source file named Advanced22.cpp. Also enter
appropriate comments and any additional instructions required by the compiler. Display the
total due in fixed-point notation with two decimal places. Test the program appropriately.

ADVANCED

20.	 In this exercise, you will modify the program from Lab10-2. If necessary, create a new
project named Intermediate20 Project, and save it in the Cpp8\Chap10 folder. Copy the
instructions from the Lab10-2.cpp file into a source file named Intermediate20.cpp.
(Alternatively, you can enter the instructions from Figure 10-22 into the Intermediate20.cpp
file.) Change the filename in the first comment to Intermediate20.cpp. Patterson Windows
is now offering another pricing option: BOGOHO (buy one, get one half-off). Modify the
program to allow for this new pricing option. Use a void function named getBoGoHo.
Test the program appropriately.

21.	 A local department store wants a program that displays the number of reward points a
customer earns each month. The reward points are based on the customer’s member-
ship type and total monthly purchase amount, as shown in Figure 10-28. The program
should use a separate void function for each membership type. If necessary, create a
new project named Advanced21 Project, and save it in the Cpp8\Chap10 folder. Enter
your C++ instructions into a source file named Advanced21.cpp. Also enter appropriate
comments and any additional instructions required by the compiler. Display the reward
points in fixed-point notation with no decimal places. Test the program appropriately.

INTERMEDIATE

ADVANCED

 Total monthly
Membership type purchase ($) Reward points
Standard Less than 75 5% of the total monthly purchase
 75–149.99 7.5% of the total monthly purchase
 150 and over 10% of the total monthly purchase

Plus Less than 150 6% of the total monthly purchase
 150 and over 13% of the total monthly purchase

Premium Less than 200 4% of the total monthly purchase
 200 and over 15% of the total monthly purchase

Figure 10-28  

 Total due before
Membership type shipping ($) Shipping ($)
Standard 0–100 12.99
 Over 100 4.99

Premium 0–49.99 4.99
 Over 49.99 0

Figure 10-29  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

366

C h a p t e r 1 0 Void Functions

Residential customers:
 Processing fee: $4.50
 Basic service fee: $30
 Premium channels: $5 per channel

Business customers:
 Processing fee: $16.50
 Basic service fee: $80 for the first 5 connections; $4 for each additional connection
 Premium channels: $50 per channel for any number of connections

Figure 10-30  

24.	 Follow the instructions for starting C++ and viewing the SwatTheBugs24.cpp file,
which is contained in either the Cpp8\Chap10\SwatTheBugs24 Project folder or the
Cpp8\Chap10 folder. (Depending on your C++ development tool, you may need to
open this exercise’s project/solution file first.) The program should calculate and
display a bonus amount, but it is not working correctly. Run the program. Enter 1000
and 0.1 as the sales and bonus rate, respectively. Debug the program.

25.	 Follow the instructions for starting C++ and viewing the SwatTheBugs25.cpp file,
which is contained in either the Cpp8\Chap10\SwatTheBugs25 Project folder or the
Cpp8\Chap10 folder. (Depending on your C++ development tool, you may need to
open this exercise’s project/solution file first.) The program should calculate and dis-
play the sum of two numbers, but it is not working correctly. Debug the program.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 void getProduct(int intNum, double dblNum, double &answer)

{

answer = intNum * dblNum;

} //end of getProduct function

2.	 Function prototype: void getProduct(int intNum, double
dblNum, double &answer); [or void getProduct(int, double,
double &);]

	 Function call: getProduct(firstNum, secondNum, product);

SWAT THE BUGS

SWAT THE BUGS

23.	 In this exercise, you will create a program that displays the amount of a cable bill. The
amount is based on the type of customer, as shown in Figure 10-30. For a residential cus-
tomer, the user will need to enter the number of premium channels only. For a business cus-
tomer, the user will need to enter the number of connections and the number of premium
channels. Use a separate void function for each customer type. If necessary, create a new
project named Advanced23 Project, and save it in the Cpp8\Chap10 folder. Enter your C++
instructions into a source file named Advanced23.cpp. Also enter appropriate comments
and any additional instructions required by the compiler. Test the program appropriately.

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

367

Exercises 	

Computer

9.	 To modify the program, change the function prototype to void getAge
(int &years); and change the function header to void getAge(int &years).

10.	 See Figure 10-31. The modifications to the program are shaded in the figure.

Figure 10-31   (continues)

//TryThis10.cpp - circle calculations
//Created/revised by <your name> on <current date>

#include <iostream>
#include <cmath>
using namespace std;

//function prototypes
void getArea(double rad, double &area);
void getDiameter(double rad, double &diameter);

int main()
{
 int choice = 0;
 double radius = 0.0;
 double answer = 0.0;

 cout << "1 Circle area" << endl;
 cout << "2 Circle diameter" << endl;
 cout << "Enter your choice (1 or 2): ";
 cin >> choice;

 if (choice < 1 || choice > 2)
 cout << "Invalid choice" << endl;
 else
 {
 cout << "Radius: ";
 cin >> radius;
 if (choice == 1)
 {
 getArea(radius, answer);
 cout << "Area: " << answer;
 }
 else
 {
 getDiameter(radius, answer);
 cout << "Diameter: " << answer;
 } //end if
 cout << endl;
 } //end if
 return 0;
} //end of main function

 //*****function definitions*****
void getArea(double rad, double &area)
{
 const double PI = 3.141593;
 area = PI * pow(rad, 2);
} //end getArea function

void getDiameter(double rad, double &diameter)
{
 diameter = 2 * rad;
} //end getDiameter function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

368

C h a p t e r 1 0 Void Functions

11.	 See Figure 10-32.

Figure 10-31  

//TryThis10.cpp - circle calculations
//Created/revised by <your name> on <current date>

#include <iostream>
#include <cmath>
using namespace std;

//function prototypes
void getArea(double rad, double &area);
void getDiameter(double rad, double &diameter);

int main()
{
 int choice = 0;
 double radius = 0.0;
 double answer = 0.0;

 cout << "1 Circle area" << endl;
 cout << "2 Circle diameter" << endl;
 cout << "Enter your choice (1 or 2): ";
 cin >> choice;

 if (choice < 1 || choice > 2)
 cout << "Invalid choice" << endl;
 else
 {
 cout << "Radius: ";
 cin >> radius;
 if (choice == 1)
 {
 getArea(radius, answer);
 cout << "Area: " << answer;
 }
 else
 {
 getDiameter(radius, answer);
 cout << "Diameter: " << answer;
 } //end if
 cout << endl;
 } //end if
 return 0;
} //end of main function

 //*****function definitions*****
void getArea(double rad, double &area)
{
 const double PI = 3.141593;
 area = PI * pow(rad, 2);
} //end getArea function

void getDiameter(double rad, double &diameter)
{
 diameter = 2 * rad;
} //end getDiameter function

//TryThis11.cpp - converts Fahrenheit to Celsius
//Created/revised by <your name> on <current date>

#include <iostream>
#include <iomanip>
using namespace std;

//function prototype
void calcCelsius(double tempF, double &tempC);

int main()
{
 double fahrenheit = 0.0;
 double celsius = 0.0;

 cout << "Enter Fahrenheit temperature: ";
 cin >> fahrenheit;
 calcCelsius(fahrenheit, celsius);

 cout << fixed << setprecision(0);
 cout << "Celsius temperature: " << celsius << endl;
 return 0;
} //end of main function

//*****function definitions*****
void calcCelsius(double tempF, double &tempC)
{
 tempC = 5.0 / 9.0 * (tempF - 32.0);
} //end of calcCelsius function

Figure 10-32  

the variable declaration
and return statements
were removed

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 11
One-Dimensional Arrays

After studying Chapter 11, you should be able to:

�� Declare and initialize a one-dimensional array

�� Enter data into a one-dimensional array

�� Display the contents of a one-dimensional array

�� Pass a one-dimensional array to a function

�� Calculate the total and average of the values in a one-dimensional array

�� Search a one-dimensional array

�� Access an individual element in a one-dimensional array

�� Find the highest value in a one-dimensional array

�� Use parallel one-dimensional arrays

�� Explain the bubble sort algorithm

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

370

Arrays
All of the variables you have used so far have been simple variables. A simple variable, also
called a scalar variable, is one that is unrelated to any other variable in memory. Some
programs, however, will require the use of variables that are related to each other. In those
cases, it is easier and more efficient to treat the related variables as a group.

You already are familiar with the concept of grouping. The clothes in your closet are probably
separated into groups, such as coats, sweaters, shirts, and so on. Grouping your clothes in this
manner allows you to easily locate your favorite sweater because you only need to look through
the sweater group rather than through the entire closet. You may also have the songs on your
MP3 player grouped by either music type or artist. If the songs are grouped by artist, it will take
only a few seconds to find all of your Katy Perry songs and, depending on the number of Katy
Perry songs you own, only a short time after that to locate a particular song.

When you group together related variables that have the same data type, the group is referred to
as an array of variables or, more simply, an array. You might use an array of 50 variables to store
the population of each U.S. state. Or, you might use an array of four variables to store the sales
made in each of your company’s four sales regions.

Storing data in an array increases the efficiency of a program because data can be both stored in
and retrieved from the computer’s internal memory much faster than it can be written to and
read from a file on a disk. In addition, after the data is entered into an array, which typically is
done at the beginning of a program, the program can use the data as many times as necessary
without having to enter the data again. Your company’s sales program, for example, can use the
sales amounts stored in an array to calculate the total company sales and the percentage that
each region contributed to the total sales. It can also use the sales amounts in the array either to
calculate the average sales amount or to simply display the sales made in a specific region.

As you will learn in this chapter, the variables in an array can be used just like any other variables.
You can assign values to them, use them in calculations, display their contents, and so on.

The most commonly used arrays in business applications are one-dimensional and two-
dimensional. You will learn about one-dimensional arrays in this chapter. Two-dimensional
arrays are covered in Chapter 12. Arrays having more than two dimensions are used mostly in
scientific and engineering programs and are beyond the scope of this book.

As is true of functions, which you learned about in Chapters 9 and 10, arrays are one of the
more challenging topics for beginning programmers. Therefore, it is important for you to read
and study each section in this chapter thoroughly before moving on to the next section. For
example, be sure you understand the concept of one-dimensional arrays before you continue to
the sections pertaining to parallel arrays and the bubble sort. If you still feel overwhelmed by the
end of the chapter, try reading the chapter again, paying particular attention to the examples and
programs shown in the figures.

One-Dimensional Arrays
The variables in an array are stored in consecutive locations in the computer’s internal memory.
Each variable in an array has the same name and data type. You distinguish one variable in a
one-dimensional array from another variable in the same array using a unique number. The
unique number, which is always an integer, is called a subscript. The subscript indicates the
variable’s position in the array and is assigned by the computer when the array is created in
internal memory. The first variable in a one-dimensional array is assigned a subscript of 0, the
second a subscript of 1, and so on.

It takes longer
for the com-
puter to access
the information
stored in a

disk file because the
computer must wait
for the disk drive to
first locate the needed
information and then
read the information
into internal memory.

A subscript is
also called an
index.

Ch11-Chapter Preview

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

371

One-Dimensional Arrays 	﻿

You refer to each variable in an array by the array’s name and the variable’s subscript, which
is specified in a set of square brackets immediately following the array name. Figure 11-1
illustrates a one-dimensional array named scientists. The array contains three variables that
store the names Marie Curie, Charles Darwin, and Albert Einstein. You use scientists[0]—
read “scientists sub zero”—to refer to the first variable in the array. You use scientists[1]
to refer to the second variable in the array, and you use scientists[2] to refer to the third
(and last) variable in the array. The last subscript in an array is always one number less than
the total number of variables in the array. This is because array subscripts in C++ (and in most
other programming languages) start at 0.

Declaring and Initializing a One-Dimensional Array
You must declare (create) the array before you can use it in a program. You should also initialize
each variable in the array to ensure it will not contain garbage when the program is run. As you
learned in Chapter 3, the garbage found in uninitialized variables is the remains of what was last
stored at the memory location that the variable now occupies.

Figure 11-2 shows the syntax for declaring and initializing a one-dimensional array and includes
examples of using the syntax. In the syntax, dataType is the type of data that each of the array
variables, referred to as elements, will store. ArrayName is the name of the array. You use the
same rules for naming an array as you do for naming a variable. NumberOfElements is an integer
that specifies the size of the array—in other words, the number of elements. To declare an array
that contains 10 elements, you enter the number 10 as the numberOfElements. Notice that the
numberOfElements is enclosed in square brackets ([]).

You can initialize the array elements at the same time you declare the array. You do this by
entering one or more values, separated by commas, in the initialValues section of the syntax.
You enclose the initialValues section in braces ({}), as shown in Figure 11-2. Assigning initial
values to an array is often referred to as populating the array. The values used to populate an
array should have the same data type as the array variables. If the data types are not the same,
the computer will either promote or demote the values to fit the array variables. However,

Figure 11-1   Illustration of the naming convention for the one-dimensional scientists array
Image by Diane Zak; created with Reallusion CrazyTalk Animator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

372

recall from Chapter 3 that the implicit demotion of values can adversely affect a program’s
output. Therefore, you should always be sure to populate an array using values that have the
appropriate data type.

The declaration statement in Example 1 in Figure 11-2 creates a three-element char array
named letters. It initializes the letters[0] element to A, the letters[1] element to B, and
the letters[2] element to C.

Example 2 shows two statements you can use to declare a four-element double array, initializ-
ing each element to the double number 0.0. The statement double sales[4] = {0.0, 0.0,
0.0, 0.0}; provides an initial value for each of the four array elements, whereas the
statement double sales[4] = {0.0}; provides only one value. When the array declaration
statement does not provide an initial value for each of the elements in a numeric array, many
C++ compilers initialize the uninitialized array elements to either 0.0 or 0 (depending on the
data type of the array). However, this is done only when you provide at least one value in the
initialValues section. If you omit the initialValues section from the declaration statement—for
example, if you use the statement double sales[4]; to declare the array—the compiler does
not automatically initialize the elements, so the array elements may contain garbage.

Example 3 in Figure 11-2 shows two statements you can use to declare a six-element int array
named numbers. The statement int numbers[6] = {12, 0, 0, 0, 0, 0}; initializes the

Many C++
compilers
initialize char,
string, and
bool array

elements to a space,
the empty string, and
the keyword false,
respectively.

Figure 11-2   How to declare and initialize a one-dimensional array

How To �Declare and Initialize a One-Dimensional Array

Syntax
dataType arrayName[numberOfElements] = {initialValues};

Example 1
char letters[3] = {'A', 'B', 'C'};
The statement declares and initializes a three-element char array named letters.

Example 2
double sales[4] = {0.0, 0.0, 0.0, 0.0};
 or
double sales[4] = {0.0};
Both statements declare and initialize a four-element double array named sales; each
element is initialized to 0.0.

Example 3
int numbers[6] = {12, 0, 0, 0, 0, 0};
 or
int numbers[6] = {12};
Both statements declare and initialize a six-element int array named numbers. The
�rst element is initialized to 12, and the other elements are initialized to 0.

Note: The = {initialValues} portion of the syntax is optional. Typically, optional items
are enclosed in square brackets when shown in the syntax. The square brackets were
omitted here so as not to confuse them with the square brackets that are required.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

373

One-Dimensional Arrays 	﻿

first array element to the integer 12 and initializes the remaining elements to the integer 0.
The same result can be accomplished using the int numbers[6] = {12}; statement shown
in the example.

If you inadvertently provide more values in the initialValues section than the number of array
elements, most C++ compilers will display the error message “too many initializers” when you
attempt to compile the program. However, not all C++ compilers display a message when this
error occurs. Rather, some compilers store the extra values in memory locations adjacent to but
not reserved for the array. Therefore, you should always be careful to provide no more than the
appropriate number of initialValues.

Entering Data into a One-Dimensional Array
You can use an assignment statement to enter data into an array element, as shown in the
syntax and examples in Figure 11-3. In the syntax, arrayName[subscript] is the name and
subscript of the array variable to which you want the expression (data) assigned. The expression
can include any combination of constants, variables, and operators. The data type of the
expression must match the data type of the array variable. If both data types do not match, the
computer will perform an implicit type conversion, which could result in incorrect output.

Figure 11-3   How to use an assignment statement to assign data to a one-dimensional array (continues)

How To �Use an Assignment Statement to Assign Data to a One-Dimensional Array

Syntax
arrayName[subscript] = expression;

Example 1
letters[1] = 'Y';
The assignment statement assigns the letter Y to the second element in the letters
array.

Example 2
int subscript = 0;
while (subscript < 4)
{
 sales[subscript] = 0.0;
 subscript += 1;
} //end while
The while loop assigns the double number 0.0 to each of the four elements in the
sales array. The loop provides another means of initializing the array.

Example 3
for (int x = 1; x <= 6; x += 1)
 numbers[x – 1] = pow(x, 2);
//end for
The for loop assigns the squares of the numbers from 1 through 6 to the six-element
numbers array.

Example 4
int increase = 0;
cout << "Enter increase amount: ";
cin >> increase;
for (int x = 0; x < 6; x += 1)
 numbers[x] += increase;
//end for
The for loop assigns a sum to each element in the six-element numbers array. Each
sum is calculated by adding the value stored in the current element to the value
stored in the increase variable.

The loops
in Examples
2 through
4 provide a
convenient way

to access each element
in a one-dimensional
array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

374

The examples included in Figure 11-3 show various ways of assigning data to the arrays declared
earlier in Figure 11-2. The assignment statement in Example 1 assigns the letter Y to the second
element in the letters array, replacing the letter B that was stored in the element when the
array was declared. The while loop in Example 2 assigns the double number 0.0 to each of the
four elements in the sales array and provides another means of initializing the array.

The for loop in Example 3 assigns the squares of the numbers from 1 through 6 to the six-element
numbers array, replacing the array’s initial values. The square of the number 1 is assigned to the
numbers[0] element. The square of the number 2 is assigned to the numbers[1] element, and so
on. Notice that the x variable keeps track of the six numbers to be squared. Also notice that in order
to assign the square of each number to its appropriate element in the numbers array, the number 1
must be subtracted from the value stored in the x variable. This is because the x variable’s values go
from 1 through 6, whereas the corresponding array subscripts go from 0 through 5.

The for loop shown in Example 4 in Figure 11-3 updates the contents of each element in the
numbers array. It does this by adding the value contained in the increase variable to the value
contained in the current array element and then assigning the sum to the element.

You can also use the extraction operator to store data in an array element, as shown in the
syntax and examples in Figure 11-4. (The arrays in Figure 11-4 were declared earlier in
Figure 11-2.) The cin statement in Example 1 stores the user’s entry in the first element
in the letters array, replacing the element’s existing data. Example 2 contains a for loop
that repeats its instructions four times: once for each element in the sales array. The loop
instructions prompt the user to enter a sales amount and then store the user’s response in
the current element. Example 3 contains a while loop that repeats its instructions for each
of the six elements in the numbers array. The loop instructions prompt the user to enter an
integer and then store the user’s response in the current element.

Figure 11-3   How to use an assignment statement to assign data to a one-dimensional array

Syntax
arrayName[subscript] = expression;

Example 1
letters[1] = 'Y';
The assignment statement assigns the letter Y to the second element in the letters
array.

Example 2
int subscript = 0;
while (subscript < 4)
{
 sales[subscript] = 0.0;
 subscript += 1;
} //end while
The while loop assigns the double number 0.0 to each of the four elements in the
sales array. The loop provides another means of initializing the array.

Example 3
for (int x = 1; x <= 6; x += 1)
 numbers[x – 1] = pow(x, 2);
//end for
The for loop assigns the squares of the numbers from 1 through 6 to the six-element
numbers array.

Example 4
int increase = 0;
cout << "Enter increase amount: ";
cin >> increase;
for (int x = 0; x < 6; x += 1)
 numbers[x] += increase;
//end for
The for loop assigns a sum to each element in the six-element numbers array. Each
sum is calculated by adding the value stored in the current element to the value
stored in the increase variable.

(continued)

Figure 11-4   How to use the extraction operator to store data in a one-dimensional array (continues)

How To �Use the Extraction Operator to Store Data in a One-Dimensional Array
Syntax
cin >> arrayName[subscript];

Example 1
cin >> letters[0];
The statement stores the user’s entry in the first element in the letters array.

Example 2
for (int sub = 0; sub < 4; sub += 1)
{
 cout << "Enter the sales for Region " << sub + 1 << ": ";
 cin >> sales[sub];
} //end for
The for loop stores the user’s entries in the four-element sales array.

Example 3
int x = 0;
while (x < 6)
{
 cout << "Enter an integer: ";
 cin >> numbers[x];
 x += 1;
} //end while
The while loop stores the user’s entries in the six-element numbers array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

375

One-Dimensional Arrays 	﻿

Displaying the Contents of a One-Dimensional Array
To display the contents of an array, you need to access each of its elements. You do this using
a loop along with a counter variable that keeps track of each subscript in the array. Figure 11-5
shows examples of loops you can use to display the contents of the arrays declared earlier in
Figure 11-2. Example 1 uses a while loop to display the contents of the letters array, which
contains three elements. Example 2 uses a for loop to display the contents of the four-element
sales array. Notice that the valid subscripts for the sales array are 0 through 3, whereas the
valid region numbers are 1 through 4. Example 3 uses a do while loop to display the contents
of the six-element numbers array.

(continued)

Figure 11-4   How to use the extraction operator to store data in a one-dimensional array

Figure 11-5   How to display the contents of a one-dimensional array (continues)

Syntax
cin >> arrayName[subscript];

Example 1
cin >> letters[0];
The statement stores the user’s entry in the first element in the letters array.

Example 2
for (int sub = 0; sub < 4; sub += 1)
{
 cout << "Enter the sales for Region " << sub + 1 << ": ";
 cin >> sales[sub];
} //end for
The for loop stores the user’s entries in the four-element sales array.

Example 3
int x = 0;
while (x < 6)
{
 cout << "Enter an integer: ";
 cin >> numbers[x];
 x += 1;
} //end while
The while loop stores the user’s entries in the six-element numbers array.

How To �Display the Contents of a One-Dimensional Array

Example 1
int x = 0;
while (x < 3)
{
 cout << letters [x] << endl;
 x += 1;
} //end while
The while loop displays the contents of the three-element letters array.

Example 2
for (int sub = 0; sub < 4; sub += 1)
{
 cout << "Sales for Region " << sub + 1 << ": $";
 cout << sales[sub] << endl;
} //end for
The for loop displays the contents of the four-element sales array.

Example 3
int x = 0;
do //begin loop
{
 cout << numbers[x] << endl;
 x += 1;
} while (x < 6);
The do while loop displays the contents of the six-element numbers array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

376

The Calories Program
Figure 11-6 shows the problem specification and IPO chart information for the calories program.
The program uses a five-element array to store the number of calories consumed for each of five
days. The daily calories are entered by the user and then displayed on the computer screen.

Figure 11-5   How to display the contents of a one-dimensional array

Figure 11-6   Problem specification and IPO chart for the calories program

Example 1
int x = 0;
while (x < 3)
{
 cout << letters [x] << endl;
 x += 1;
} //end while
The while loop displays the contents of the three-element letters array.

Example 2
for (int sub = 0; sub < 4; sub += 1)
{
 cout << "Sales for Region " << sub + 1 << ": $";
 cout << sales[sub] << endl;
} //end for
The for loop displays the contents of the four-element sales array.

Example 3
int x = 0;
do //begin loop
{
 cout << numbers[x] << endl;
 x += 1;
} while (x < 6);
The do while loop displays the contents of the six-element numbers array.

(continued)

Problem specification
Create a program that allows the user to enter the number of calories a person consumes for each
of five days. Store the daily calories in a five-element array named lorie . Then, display the
contents of the array on the computer screen.

Input
calories (for each
of 5 days)

Output
calories (for each
 of 5 days)

Processing
Processing items:
 array (5 elements)
 subscript (counter: 0 to 4)

Algorithm:
1. repeat for (subscript from 0 to 4)
 enter the calories into array[subscript]
 end repeat
2. repeat for (subscript from 0 to 4)
 display the calories stored in array[subscript]
 end repeat

stop

F

start

0

subscript

< 5

1

enter the calories
into

array[subscript]

display the
calories stored in
array[subscript]

0

subscript

< 5

1

F

T

T

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

377

The Calories Program 	﻿

Figure 11-7 shows the IPO chart information and the corresponding C++ instructions.
Figure 11-8 shows the entire program along with a sample run of the program.

Figure 11-7   IPO chart information and C++ instructions for the calories program

Figure 11-8   Calories program (continues)

IPO chart information
Input
 calories (for each of 5 days)

Processing
 array (5 elements)
 subscript (counter: 0 to 4)

Output
 calories (for each of 5 days)

Algorithm
1. repeat for (subscript from 0 to 4)
 enter the calories into array[subscript]
 end repeat

2. repeat for (subscript from 0 to 4)
 display the calories stored in
 array[subscript]
 end repeat

C++ instructions

the calories will be entered into the array

int calories[5] = {0};

declared and initialized in the for clause

displayed from the array by the for loop

for (int sub = 0; sub < 5; sub += 1)
{
 cout << "Calories for day "
 << sub + 1 << ": ";
 cin >> calories[sub];
} //end for

for (int sub = 0; sub < 5; sub += 1)
 cout << "Calories for day "
 << sub + 1 << ": "
 << calories[sub] << endl;
//end for

 1 //Calories.cpp - gets and displays daily calories
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int calories[5] = {0};
10
11 //store data in the array
12 for (int sub = 0; sub < 5; sub += 1)
13 {
14 cout << "Calories for day " << sub + 1 << ": ";
15 cin >> calories[sub];
16 } //end for
17
18 //display the contents of the array
19 cout << endl << "Array contents:" << endl;
20 for (int sub = 0; sub < 5; sub += 1)
21 cout << "Calories for day " << sub + 1
22 << ": " << calories[sub] << endl;
23 //end for
24
25 return 0;
26 } //end of main function

stores data
in the array

displays the contents
of the array

array declaration

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

378

Desk-checking the code in Figure 11-8 will help you understand how arrays operate in a
program. You will desk-check the code using the daily calorie amounts shown in the figure.
First, the declaration statement on Line 9 declares and initializes a five-element int array named
calories. Figure 11-9 shows the desk-check table after the declaration statement is processed.

The for clause on Line 12 is processed next. The clause’s initialization argument declares an
int variable named sub and initializes it to the number 0. The sub variable is a counter variable
that will keep track of the five array subscripts: 0, 1, 2, 3, and 4. As you learned in Chapter 7, a
variable declared in a for clause is local to the for loop and can be used only by the statements
within the loop. In this case, the sub variable is local to the for loop on Lines 12 through 16.
The sub variable will remain in memory until the for loop ends. Figure 11-10 shows the
desk-check table after the initialization argument on Line 12 has been processed.

The for clause’s condition argument checks whether the value stored in the sub variable is
less than 5. It is, so the statements in the body of the for loop are processed. The cout state-
ment on Line 14 prompts the user to enter the calories for the current day—in this case, day 1.
Notice that the current day is determined by adding the number 1 to the value stored in the
sub variable (0). This is because unlike the array subscripts, which go from 0 through 4, the day
numbers go from 1 through 5. The day number is always one number more than the subscript
of its corresponding element in the array. In other words, day 1’s calories will be stored in the

(continued)

Figure 11-8   Calories program

 1 //Calories.cpp - gets and displays daily calories
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int calories[5] = {0};
10
11 //store data in the array
12 for (int sub = 0; sub < 5; sub += 1)
13 {
14 cout << "Calories for day " << sub + 1 << ": ";
15 cin >> calories[sub];
16 } //end for
17
18 //display the contents of the array
19 cout << endl << "Array contents:" << endl;
20 for (int sub = 0; sub < 5; sub += 1)
21 cout << "Calories for day " << sub + 1
22 << ": " << calories[sub] << endl;
23 //end for
24
25 return 0;
26 } //end of main function

Figure 11-9   Desk-check table after the array declaration statement is processed

Figure 11-10   Desk-check table after the initialization argument on Line 12 is processed

calories[0] calories[1] calories[2] calories[3] calories[4]
 0 0 0 0 0

calories[0] calories[1] calories[2] calories[3] calories[4] sub
 0 0 0 0 0 0

local to the for loop on
Lines 12 through 16

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

379

The Calories Program 	﻿

element whose subscript is 0. Likewise, day 2’s calories will be stored in the element whose
subscript is 1, and so on. The cin statement on Line 15 gets day 1’s calories from the user
and then stores the amount in the first array element (calories[0]). Figure 11-11 shows the
calories for day 1 (1650) entered in the array.

The for clause’s update argument adds the number 1 to the contents of the sub variable,
giving 1. The condition argument then checks whether the sub variable’s value is less than 5.
It is, so the statements in the body of the for loop are processed again. The cout statement
prompts the user to enter the calories for day 2, and the cin statement stores the user’s
response in the second array element (calories[1]). Figure 11-12 shows the calories for day 2
(1700) entered in the array.

Next, the for clause’s update argument adds the number 1 to the contents of the sub variable,
giving 2. The condition argument then checks whether the sub variable’s value is less than 5. It is,
so the statements in the body of the for loop prompt the user to enter the calories for day 3 and
then store the user’s response in the third array element (calories[2]). Figure 11-13 shows the
calories for day 3 (1500) entered in the array.

Once again, the for clause’s update argument adds the number 1 to the contents of the sub
variable; the result is 3. The condition argument then checks whether the sub variable’s value
is less than 5. It is, so the statements in the body of the for loop prompt the user to enter day
4’s calories and then store the user’s response in the fourth array element (calories[3]).
Figure 11-14 shows the calories for day 4 (2000) entered in the array.

Figure 11-11   Desk-check table after day 1’s calories are entered in the array

Figure 11-12   Desk-check table after day 2’s calories are entered in the array

Figure 11-13   Desk-check table after day 3’s calories are entered in the array

Figure 11-14   Desk-check table after day 4’s calories are entered in the array

calories[0]
0

 1650

calories[1]
0

calories[2]
0

calories[3]
0

calories[4]
0

sub
0

calories[0]
0

 1650

calories[1]
0

1700

calories[2]
0

calories[3]
0

calories[4]
0

sub
0
1

calories[0] calories[1] calories[2] calories[3] calories[4] sub
 0 0 0 0 0 0
 1650 1700 1500 1
 2

calories[0] calories[1] calories[2] calories[3] calories[4] sub
 0 0 0 0 0 0
 1650 1700 1500 2000 1
 2
 3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

380

Next, the for clause’s update argument increases the value in the sub variable by 1, giving 4.
The condition argument then checks whether the sub variable’s value is less than 5. It is, so the
statements in the body of the for loop prompt the user to enter day 5’s calories and then store
the user’s response in the fifth (and last) array element (calories[4]). Figure 11-15 shows the
calories for day 5 (1545) entered in the array.

Once again, the for clause’s update argument increases the sub variable’s value by 1; this time,
the result is 5. The condition argument then checks whether the sub variable’s value is less
than 5. It’s not, so the for loop on Lines 12 through 16 ends and the computer removes the
loop’s local sub variable from internal memory. Figure 11-16 shows the current status of the
desk-check table.

The cout statement on Line 19 is processed next and displays the “Array contents:” message
on the computer screen. Then, the computer processes the for clause on Line 20. The clause’s
initialization argument declares and initializes an int variable named sub. Although the
variable’s name is the same as the one in the first for clause (on Line 12), it is not the same
variable. This sub variable is local to the for loop on Lines 20 through 23. The sub variable
created by the for clause on Line 12 was local to the for loop on Lines 12 through 16 and was
removed from memory when that loop ended. Figure 11-17 shows the desk-check table after
the initialization argument on Line 20 is processed.

Figure 11-15   Desk-check table after day 5’s calories are entered in the array

Figure 11-16   Desk-check table after the for loop on Lines 12 through 16 ends

calories[0] calories[1] calories[2] calories[3] calories[4] sub
 0 0 0 0 0 0
 1650 1700 1500 2000 1545 1
 2
 3
 4

calories[0]
0

1650

calories[1]
0

1700

calories[2]
0

1500

calories[3]
0

2000

calories[4]
0

1545

 sub
0
1
2
3
4
5

removed from memory
after the for loop on
Lines 12 through 16 ends

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

381

The Calories Program 	﻿

The condition argument in the for clause on Line 20 checks whether the value in the sub
variable is less than 5. It is, so the for loop displays day 1’s calories, which are stored in the
calories[0] element, on the computer screen. Notice that the day number is one number
more than the subscript.

Next, the for clause’s update argument adds the number 1 to the contents of the sub variable,
giving 1. The condition argument then checks whether the value in the sub variable is less than
5. It is, so the for loop displays day 2’s calories from the calories[1] element.

Here again, the for clause’s update argument increases the sub variable’s value by 1; the result is
2. The condition argument then checks whether the value in the sub variable is less than 5. It is,
so the for loop displays day 3’s calories from the calories[2] element.

The for clause’s update argument again adds the number 1 to the contents of the sub variable,
giving 3. The condition argument then checks whether the value in the sub variable is less
than 5. It is, so the statements in the body of the for loop display day 4’s calories from the
calories[3] element.

Next, the for clause’s update argument increases the sub variable’s value by 1; the result is 4. The
condition argument then checks whether the value in the sub variable is less than 5. It is, so the
statements in the body of the for loop display day 5’s calories from the calories[4] element.

Once again, the for clause’s update argument increases the value in the sub variable by 1; this
time, the result is 5. The condition argument then checks whether the sub variable’s value is less
than 5. It’s not, so the for loop ends and the computer removes the loop’s local sub variable
from internal memory. Figure 11-18 shows the desk-check table after the for loop on Lines 20
through 23 ends.

Figure 11-17   Desk-check table after the initialization argument on Line 20 is processed

calories[0] calories[1] calories[2] calories[3] calories[4] sub sub
 0 0 0 0 0 0 0
 1650 1700 1500 2000 1545 1
 2
 3
 4
 5

local to the for
loop on Lines 20
through 23

removed from memory
after the for loop on
Lines 12 through 16 ends

Figure 11-18   Desk-check table after the for loop on Lines 20 through 23 ends

calories[0]
0

1650

calories[1]
0

1700

calories[2]
0

1500

calories[3]
0

2000

calories[4]
0

1545

sub
0
1
2
3
4
5

sub
0
1
2
3
4
5

removed from memory
after the for loop on
Lines 20 through 23 ends

removed from memory
after the for loop on
Lines 12 through 16 ends

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

382

Finally, the computer processes the return 0; statement on Line 25. When the program ends,
the computer removes the calories array from its internal memory.

Passing a One-Dimensional Array to a Function
Figure 11-19 shows a modified version of the calories program. In this version, the main
function passes the calories array to a program-defined void function named displayArray,
whose task is to display the contents of the array. The changes made to the original code
(shown earlier in Figure 11-8) are shaded in Figure 11-19.

The function call, which appears on Line 22, passes two items of information to the
displayArray function: the calories array and the number of elements in the array. Unlike
scalar (simple) variables, which you learned about in the previous chapters, arrays in C++
are passed automatically by reference rather than by value. This is because it is more efficient
to pass arrays in that manner. Since many arrays are large, passing an array by value would
consume a great deal of the computer’s memory and time because the computer would need

Figure 11-19   Modified calories program

only the name
is optional

the name
is optional

function prototype

function call

function header

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

383

Passing a One-Dimensional Array to a Function 	﻿

to duplicate the array in the receiving function’s formal parameter. Passing an array by reference
allows the computer to pass the address of only the first array element. Because array elements
are stored in contiguous locations in memory, the computer can use the address to locate the
remaining elements in the array.

Given that arrays are passed automatically by reference, you do not include the address-of
(&) operator before the name of an array’s formal parameter in the function header, as you do
when passing scalar variables by reference. You also do not include the address-of operator
in the function prototype. Instead, you indicate that you are passing an array to a function
by entering the formal parameter’s data type and name, followed by an empty set of square
brackets, in the receiving function’s header and in its prototype, as shown in Figure 11-19.
However, recall that the formal parameter’s name is optional in a function’s prototype.
Therefore, you could also write the function prototype on Line 8 in Figure 11-19 as void
displayArray(int [], int);.

Figure 11-20 shows the completed desk-check table for the modified calories program. Recall
from Chapter 10 that when you pass a variable by reference to a function, the computer locates the
variable and then assigns the name of the corresponding formal parameter to the variable. The
same process occurs with array variables and explains why each array variable in Figure 11-20
has two names: one assigned by the main function, and the other assigned by the displayArray
function. Although both functions can access the memory locations where the array variables
reside, each function uses a different name to do so. The main function uses the name calories,
whereas the displayArray function uses the name cals.

Figure 11-20   Completed desk-check table for the modified calories program

Note: The names in black indicate variables that belong to the function. The names in red
indicate variables that belong to the function.

cals[0]
calories[0]

 0
1650

cals[1]
calories[1]

 0
1700

cals[2]
calories[2]

 0
1500

cals[3]
calories[3]

 0
2000

cals[4]
calories[4]

 0
1545

sub

 0
1
2
3
4
5

numElements
 5

sub
0
1
2
3
4
5

the names are removed
after the displayArray
function ends

removed from
memory after the
displayArray
function ends

removed from memory
after the for loop in
the displayArray
function ends

removed from memory
after the for loop in
the main function ends

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

384

Mini-Quiz 11-1
1.	 Which of the following declares a one-dimensional int array named quantities and

initializes each of its 20 elements to the number 0?

a.	 int quantities[20] = {0};

b.	 int quantities(20) = {0};

c.	 int quantities{20} = 0;

d.	 none of the above

2.	 What is the name of the first element in the quantities array from Question 1?

3.	 What is the name of the last element in the quantities array from Question 1?

4.	 Write a C++ statement that assigns the number 7 to the fourth element in the
quantities array from Question 1.

5.	 Which of the following calls the value-returning getTotal function, passing it the
quantities array from Question 1 and the number of array elements?

a.	 total = getTotal(quantities[], 20);

b.	 total = getTotal(quantities[20]);

c.	 total = getTotal(quantities, 20);

d.	 none of the above

Calculating a Total and an Average
In this section, we will add another program-defined function to the calories program. The
additional function will be a value-returning function named getAverage. The function will
calculate the average number of calories consumed for the five days and then return the result
to the main function. Figure 11-21 shows the getAverage function’s code. It also includes the
function call added to the main function, as well as a sample run of the program. (The average
variable is a double variable declared in the main function.)

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Figure 11-21   Function call, getAverage function, and a sample run (continues)

Function call added to the function

 function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

385

The Social Media Program—Searching an Array 	﻿

The average = getAverage(calories, 5); statement in the main function invokes the
getAverage function, passing it the calories array and the number of array elements.
(Recall that when an array is passed to a function, the computer passes only the address of
the first array element.) The computer temporarily leaves the main function to process the
getAverage function’s code, beginning with the function header.

When processing the getAverage function’s header, the computer locates the calories array
in memory and assigns the formal parameter’s name—in this case, cals—to each element. As a
result, each array element has two names. The first element is called calories[0] in the main
function but cals[0] in the getAverage function.

After processing the getAverage function’s header, the computer processes the statements
within its function body. The first statement in the function body declares and initializes a
double variable named total. The function then uses a for loop and the total variable to
accumulate (add together) the value stored in each array element. The sum of those values
(8395) represents the total number of calories consumed during the five days. The for loop ends
when its sub variable contains the integer 5 because that is the first integer that is not less than 5.
When the for loop ends, its sub variable is removed from memory.

The getAverage function’s return statement is processed next. The statement calculates the
average number of calories by dividing the total calories (8395) by the number of array elements
(5). It then returns the average (1679) to the assignment statement that invoked the getAverage
function. That statement, which appears in the main function, assigns the return value to the
average variable.

When the getAverage function ends, the computer removes the cals name from the array
elements. It also removes the numElements and total variables from internal memory.

The Social Media Program—Searching an Array
Figure 11-22 shows the problem specification, IPO chart information, and C++ instructions for
the social media program. The program uses an array to store the results of a poll of 25 people
who were asked to estimate the average number of minutes they spend on Facebook each day.
The program allows the user to determine the number of people spending more than a specific

Figure 11-21   Function call, getAverage function, and a sample run

Function call added to the function

 function

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

386

number of minutes—which is entered by the user—on Facebook. To accomplish this task, the
program uses a loop to search the pollResults array. The loop contains a selection structure
that compares the value in the current array element with the number of minutes entered by the
user. If the array element’s value is greater than the user’s entry, the program adds the number 1
to the numOver counter variable. After searching each array element, the program displays the
contents of the numOver variable on the screen.

Note: In most programs, the array values are either entered by the user at the keyboard or
read from a file. However, for convenience, many of the programs in this chapter fill the array
with values in its declaration statement.

Problem specification
Create a program that uses an array to store the results from a poll of 25 people. Each person was
asked to estimate the amount of time, in minutes, that he or she spends on Facebook each day.
The program should allow the user to enter a specific number of minutes and then display the
number of people spending more than that length of time.

IPO chart information
Input
 array (25 elements)

 search for minutes

Processing
 subscript (counter: 0 to 24)

Output
number spending more than the search
for minutes (counter)

Algorithm
1. enter the search for minutes
2. repeat for (subscript from 0 to 24)
 if (the array[subscript]value is
 greater than the search for minutes)
 add 1 to the number spending
 more than the search for minutes
 end if
 end repeat
3. display the number spending
 more than the search for minutes

C++ instructions

declared and initialized in the for clause

T

start

stop

TF

F

0

subscript

< 25

1

enter search for
minutes

add 1 to the number
spending more than

the search for
minutes

array[subscript]
value > search

for minutes

display number
spending more
than the search

for minutes

Figure 11-22   Problem specification, IPO chart information, and C++ instructions for the social media
program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

387

The Social Media Program—Searching an Array 	﻿

Figure 11-23 shows the entire social media program along with a sample run of the program.
The declaration statement on Lines 10 through 14 creates and initializes the 25-element
pollResults array. The statements on Lines 15 and 16 declare two int variables named
minutes and numOver. The cout statement on Line 18 prompts the user to enter the number
of minutes to search for, and the cin statement on Line 19 stores the user’s response in the
minutes variable. The for loop in the program accesses each element in the pollResults
array, beginning with the element whose subscript is 0 and ending with the element whose
subscript is 24. The selection structure in the loop compares the value stored in the current
array element with the value stored in the minutes variable. If the array element’s value is
greater than the variable’s value, the selection structure’s true path adds the number 1 to the
contents of the numOver variable. When the for loop ends, which is when the sub variable
contains the number 25, the cout statements on Lines 28 through 30 display the number of
people whose Facebook time exceeds the number of minutes entered by the user.

Problem specification
Create a program that uses an array to store the results from a poll of 25 people. Each person was
asked to estimate the amount of time, in minutes, that he or she spends on Facebook each day.
The program should allow the user to enter a specific number of minutes and then display the
number of people spending more than that length of time.

IPO chart information
Input
 array (25 elements)

 search for minutes

Processing
 subscript (counter: 0 to 24)

Output
number spending more than the search
for minutes (counter)

Algorithm
1. enter the search for minutes
2. repeat for (subscript from 0 to 24)
 if (the array[subscript]value is
 greater than the search for minutes)
 add 1 to the number spending
 more than the search for minutes
 end if
 end repeat
3. display the number spending
 more than the search for minutes

C++ instructions

declared and initialized in the for clause

T

start

stop

TF

F

0

subscript

< 25

1

enter search for
minutes

add 1 to the number
spending more than

the search for
minutes

array[subscript]
value > search

for minutes

display number
spending more
than the search

for minutes

Figure 11-22   Problem specification, IPO chart information, and C++ instructions for the social media
program

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

388

Figure 11-23   Social media program

The Currency Converter Program—Accessing an
Individual Element
Figure 11-24 shows the problem specification, IPO chart information, and C++ instructions
for the currency converter program. The program converts the number of American dollars
entered by the user into the equivalent number of Euros, British pounds, German marks, or
Swiss francs, depending on the user’s selection from a menu. It then displays the name of the
selected foreign currency and the converted result on the computer screen. The program uses a
four-element array to store the foreign exchange rates.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

389

The Currency Converter Program—Accessing an Individual Element 	﻿

Figure 11-24   Problem specification, IPO chart information, and C++ instructions for the currency
converter program (continues)

The flowchart
for the currency
converter
program is
contained in

the Currency.pdf file.

Problem specification
Create a program that converts the number of American dollars entered by the user into one of the
following foreign currencies: euro, British pound, German mark, or Swiss franc. Allow the user to
select the foreign currency from a menu. Store the exchange rates in a four-element array
named . The array is illustrated below and includes the exchange rates the program should use.
Notice that the menu choice is always one number more than the subscript of its corresponding rate.
For example, menu choice 1’s rate is stored in the array element whose subscript is 0.

0.92 1.81 0.98 0.67

IPO chart information
Input
 menu choice
 dollars

Processing
 array (4 elements)

Output
 converted result

Algorithm
1. display menu

2. enter the menu choice

3. if (the menu choice is greater than
 0 and less than 5)
 enter dollars

 if (menu choice is 1)
 display “Euros: ”
 else if (menu choice is 2)
 display “British pounds: ”
 else if (menu choice is 3)
 display “German marks: ”
 else
 display “Swiss francs: ”;
 end if

 converted result = dollars *
 rates[menu choice – 1]
 display converted result

 else
 display “Invalid menu choice”
 end if

C++ instructions

choice 2’s rate choice 3’s rate choice 4’s ratechoice 1’s rate

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

390

Figure 11-24   Problem specification, IPO chart information, and C++ instructions for the currency
converter program

Problem specification
Create a program that converts the number of American dollars entered by the user into one of the
following foreign currencies: euro, British pound, German mark, or Swiss franc. Allow the user to
select the foreign currency from a menu. Store the exchange rates in a four-element array
named . The array is illustrated below and includes the exchange rates the program should use.
Notice that the menu choice is always one number more than the subscript of its corresponding rate.
For example, menu choice 1’s rate is stored in the array element whose subscript is 0.

0.92 1.81 0.98 0.67

IPO chart information
Input
 menu choice
 dollars

Processing
 array (4 elements)

Output
 converted result

Algorithm
1. display menu

2. enter the menu choice

3. if (the menu choice is greater than
 0 and less than 5)
 enter dollars

 if (menu choice is 1)
 display “Euros: ”
 else if (menu choice is 2)
 display “British pounds: ”
 else if (menu choice is 3)
 display “German marks: ”
 else
 display “Swiss francs: ”;
 end if

 converted result = dollars *
 rates[menu choice – 1]
 display converted result

 else
 display “Invalid menu choice”
 end if

C++ instructions

(continued)

Figure 11-25 shows the entire currency converter program and includes a sample run of the
program. The statements on Lines 10 through 13 create and initialize the four-element rates
array and the program’s three variables. The statements on Lines 15 through 20 display the
currency menu and then prompt the user to enter his or her choice. The statement on Line 21
stores the user’s response in the choice variable. Next, the outer selection structure, which
begins on Line 23, determines whether the user’s choice is valid. If it isn’t valid, the structure’s
false path displays the “Invalid menu choice” message. If it is valid, on the other hand, the
instructions in the structure’s true path are processed.

The instructions in the outer selection structure’s true path in Figure 11-25 prompt the
user to enter the number of American dollars and then store the user’s response in the
dollars variable. The nested selection structure on Lines 28 through 36 uses the value in
the choice variable to display the name of the selected foreign currency. The statement on
Line 38 converts the number of American dollars to the selected currency and then stores
the result in the result variable. Notice that the statement uses the choice variable to
access the appropriate element in the rates array. The number 1 must be subtracted from
the variable’s value because it is always one number more than the subscript of its associated
exchange rate in the array. The statement on Line 39 displays the contents of the result
variable on the computer screen. Finally, the return 0; statement on Line 44 is processed
before the program ends.

Before access-
ing an array
element, you
should always
verify that the

subscript is valid for the
array. If the compiler
encounters an invalid
subscript, it will display
an error message and
the program will end
abruptly.

Figure 11-25   Currency converter program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

391

The Highest Number Program—Finding the Highest Value 	﻿

The Highest Number Program—Finding the Highest Value
Figure 11-26 shows the problem specification, IPO chart information, and C++ instructions
for the highest number program, which displays the highest number stored in a four-element
array. The program uses a program-defined value-returning function to determine the
highest number.

Figure 11-25   Currency converter program

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

392

Figure 11-26   Problem specification, IPO chart information, and C++ instructions for the highest
number program

Problem specification
Create a program that displays the highest number stored in a four-element array. The array contains
the following numbers: 13, 2, 40, and 25. Use a program-defined value-returning function to
determine the highest number.

 function
IPO chart information
Input
 none

Processing
 array (4 elements)

Output
 highest number

Algorithm
1. call the getHighest function to determine
 the highest number; pass the array and
 the number of elements
2. display the highest number

 function
IPO chart information
Input
 array (4 elements) (formal parameter)
 number of elements (formal parameter)

Processing
 subscript (counter: 1 to one less than
 the number of elements)

Output
 highest number

Algorithm
1. assign the first array element’s value as
 the highest number
2. repeat for (subscripts from 1 to one less
 than the number of elements)
 if (the array[subscript] value is
 greater than the highest number)
 assign the array[subscript]
 value as the highest number
 end if
 end repeat
3. return the highest number

C++ instructions

returned by the getHighest function and
displayed by the cout statement

C++ instructions

declared and initialized in the for clause

assigned in the high variable’s declaration
statement

�The flowchart
for the highest
number
program is
contained in the
Highest.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

393

The Highest Number Program—Finding the Highest Value 	﻿

Figure 11-27 shows the entire highest number program and includes a sample run of the program.

Desk-checking the program will help you understand how the highest number is determined.
First, the statement on Line 12 in the main function declares and initializes a four-element
array named numbers. The cout statement on Lines 14 and 15 is processed next. The
getHighest(numbers, 4) part of the statement invokes the getHighest function, passing it
the numbers array and the number of array elements. At this point, the computer temporarily
leaves the main function to process the getHighest function’s code, beginning with the
function header on Line 20.

When processing the getHighest function’s header, the computer locates the numbers array in
memory and assigns the name of the first formal parameter (numArray) to each array element.
It also creates the second formal parameter—an int variable named numElements—and stores
the number 4 in it. The code in the function’s body is processed next. The first statement (on
Line 23) creates and initializes an int variable named high. The function uses the high variable

Figure 11-27   Highest number program

The loop in the
getHighest
function
searches the
second through

the last elements in
the numArray array.
It doesn’t need to
search the first element
because that element’s
value is already stored in
the high variable by the
statement on Line 23.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

394

to keep track of the highest value stored in the array. Notice that the variable is initialized to the
value stored in the first array element (13). When searching for the highest (or lowest) value in
an array, it is a common programming practice to use the first array element to initialize the
variable. Figure 11-28 shows the desk-check table after the declaration statement is processed.

Note: The names in black indicate variables that belong to the function. The names in red
indicate variables that belong to the function.

numArray[0]
numbers[0]

13
numElements

4
high
13

numArray[1]
numbers[1]

2

numArray[2]
numbers[2]

40

numArray[3]
numbers[3]

25

Note: The names in black indicate variables that belong to the function. The names in red
indicate variables that belong to the function.

numArray[0]
numbers[0]

13
numElements

4
high
13
40

sub
1
2

numArray[1]
numbers[1]

2

numArray[2]
numbers[2]

40

numArray[3]
numbers[3]

25

Figure 11-28   Desk-check table after the declaration statement on Line 23 is processed

Figure 11-29   Desk-check table showing the third element’s value assigned to the high variable

The for clause on Line 26 creates an int variable named sub and initializes it to 1. The clause’s
condition argument then checks whether the value in the sub variable is less than the value in
the numElements variable (4). It is, so the if statement’s condition compares the value stored
in the numArray[1] element, which is the second element in the array, with the value stored in
the high variable. (Recall that at this point, the high variable contains the same value as the first
array element.) The value in the numArray[1] element (2) is not greater than the value in the
high variable (13), so the if statement ends.

Next, the for clause’s update argument increases the sub variable’s value by 1, giving 2. Its
condition argument then checks whether the variable’s value is less than number of array
elements. It is, so the if statement’s condition compares the value stored in the numArray[2]
element with the value stored in the high variable. In this case, the array element’s value (40) is
greater than the number stored in the high variable (13), so the instruction in the if statement’s
true path assigns the element’s value to the high variable, as shown in Figure 11-29, and then
the if statement ends.

After the if statement ends, the for clause’s update argument increases the sub variable’s
value by 1, giving 3. Its condition argument then checks whether the variable’s value is less than
number of array elements. It is, so the if statement’s condition compares the value stored in the
numArray[3] element with the value stored in the high variable. The array element’s value (25)
is not greater than the high variable’s value (40), so the if statement ends.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

395

The Highest Number Program—Finding the Highest Value 	﻿

Once again, the for clause’s update argument adds 1 to the value stored in the sub variable; the
result is 4. Its condition argument then checks whether the variable’s value is less than number of
array elements. It’s not, so the for loop ends and the computer processes the return statement
on Line 31. The statement returns the value stored in the high variable to the statement that
called the getHighest function. That statement is the cout statement on Lines 14 and 15 in the
main function. When the getHighest function ends, the computer removes the numElements
and high variables from memory. It also removes the numArray name from the appropriate
locations in memory. See Figure 11-30.

Note: The names in black indicate variables that belong to the function. The names in red
indicate variables that belong to the function.

numArray[0]
numbers[0]

13

numArray[1]
numbers[1]

2

numArray[2]
numbers[2]

40

numArray[3]
numbers[3]

25

high
13
40

sub
1
2
3
4

numElements
4

Figure 11-30   Desk-check table after the getHighest function ends

When the cout statement on Lines 14 and 15 receives the return value from the getHighest
function, it displays the value on the computer screen. Finally, the computer processes the
return 0; statement on Line 16. When the program ends, the computer removes the numbers
array from memory.

Mini-Quiz 11-2
1.	 Which of the following adds the contents of the third element in the orders array to

the total variable?

a.	 orders[2] += total;

b.	 orders[3] += total;

c.	 total += orders[2];

d.	 total += orders[3];

2.	 Which of the following determines whether the value stored in the fourth element in
the orders array is greater than 25?

a.	 if (orders(3) > 25)

b.	 if (orders{4} > 25)

c.	 if (orders[3] > 25)

d.	 if (orders[4] > 25)

3.	 Write a C++ statement that multiplies the contents of the first element in the sales
array by 0.15 and then stores the result in the bonus variable. Both the array and the
variable have the double data type.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

396

4.	 Which of the following determines whether the sub variable contains a valid subscript
for the 10-element scores array?

a.	 if (sub > 0 && sub < 10)

b.	 if (sub >= 0 && sub <= 10)

c.	 if (sub >= 0 && sub < 10)

d.	 if (sub > 0 && sub <= 10)

5.	 Which of the following tells the computer to process the loop instructions for each of
the 20 elements in the inventory array? The program uses an int variable named x to
keep track of the array subscripts. The x variable is initialized to 0.

a.	 while (x < 20)

b.	 while (x <= 20)

c.	 while (x > 0)

d.	 while (x >= 0)

Parallel One-Dimensional Arrays
Figure 11-31 shows the problem specification, IPO chart information, and C++ instructions for
the motorcycle club program, which displays the annual fee associated with the membership
type entered by the user. The program uses two one-dimensional arrays: a char array named
types and an int array named fees. The types array stores the five membership types, and
the fees array stores the annual fees associated with those types. The first element in each array
pertains to the first membership type (A and 100); the second element pertains to the second
membership type (B and 110), and so on. The two arrays are referred to as parallel arrays
because their elements are related by their position (subscript) in the arrays. Each element in
the types array corresponds to the element located in the same position in the fees array. To
determine the annual fee, you simply locate the membership type in the types array and then
view its corresponding element in the fees array.

Problem specification
The members of a local motorcycle club are required to pay an annual fee based on their membership
type. Create a program that displays a member’s annual fee and membership type. The membership
types and associated fees are shown here. Use a one-dimensional array named to
store the membership types. Use a one-dimensional array named to store the annual fees.

Type
A
B
C
D
E

Annual fee
100
110
125
150
200

types[0]
 A

types[1]
 B

types[2]
 C

types[3]
 D

types[4]
 E

fees[0]
100

fees[1]
110

fees[2]
125

fees[3]
150

fees[4]
200

IPO chart information
Input
 membership type (A, B, C, D, or E)

Processing
 types array (5 elements)
 fees array (5 elements)
 subscript (counter: 0 to 4)

Output
 fee
 membership type

Algorithm
1. enter the membership type

2. repeat while (the subscript is less than
 5 and the membership type has not
 been located in the types array)
 add 1 to the subscript
 end repeat
3. if (the subscript is less than 5)
 display types[subscript] and
 fees[subscript]
 else
 display “Invalid membership
 type”
 end if

C++ instructions

from the fees array
from the types array

Figure 11-31   IPO chart information and C++ instructions for the motorcycle club program (continues)

The flowchart
for the motor-
cycle club
program is
contained in the

Motorcycle.pdf file.

parallel
arrays

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

397

Parallel One-Dimensional Arrays 	﻿

Figure 11-32 shows the code for the entire motorcycle club program and includes a sample run
of the program.

Figure 11-31   IPO chart information and C++ instructions for the motorcycle club program

Figure 11-32   Motorcycle Club program (continues)

Problem specification
The members of a local motorcycle club are required to pay an annual fee based on their membership
type. Create a program that displays a member’s annual fee and membership type. The membership
types and associated fees are shown here. Use a one-dimensional array named to
store the membership types. Use a one-dimensional array named to store the annual fees.

Type
A
B
C
D
E

Annual fee
100
110
125
150
200

types[0]
 A

types[1]
 B

types[2]
 C

types[3]
 D

types[4]
 E

fees[0]
100

fees[1]
110

fees[2]
125

fees[3]
150

fees[4]
200

IPO chart information
Input
 membership type (A, B, C, D, or E)

Processing
 types array (5 elements)
 fees array (5 elements)
 subscript (counter: 0 to 4)

Output
 fee
 membership type

Algorithm
1. enter the membership type

2. repeat while (the subscript is less than
 5 and the membership type has not
 been located in the types array)
 add 1 to the subscript
 end repeat
3. if (the subscript is less than 5)
 display types[subscript] and
 fees[subscript]
 else
 display “Invalid membership
 type”
 end if

C++ instructions

from the fees array
from the types array

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

398

The program declares and initializes two parallel arrays (types and fees) and two variables
(memberType and sub). The memberType variable will store the membership type entered
by the user, and the sub variable will keep track of the array subscripts. The statements on
Lines 15 through 17 prompt the user to enter a membership type, store the user’s response
in the memberType variable, and then convert the contents of the memberType variable
to uppercase. The while loop that begins on Line 21 will continue to increment the sub
variable’s value by 1 as long as the value is less than 5 and (at the same time) the membership
type has not been located in the types array. The loop will stop when either of the following
conditions is true: the sub variable contains the number 5 (which indicates that the loop
reached the end of the array without finding the membership type) or the membership type
is located in the array.

After the loop completes its processing, the if statement that begins on Line 28 compares the
number stored in the sub variable with the number 5. If the sub variable contains a number
that is less than 5, it indicates that the loop stopped processing because the membership type
was located in the types array. In that case, the cout statement on Lines 29 and 30 displays
both the membership type from the types array and the corresponding annual fee from the
fees array. However, if the sub variable contains a number that is not less than 5, it indicates
that the loop stopped processing because it reached the end of the types array without
finding the membership type. In that case, the cout statement on Line 32 displays the message
“Invalid membership type”.

Figure 11-32   Motorcycle Club program

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

399

Sorting the Data Stored in a One-Dimensional Array 	﻿

Sorting the Data Stored in a One-Dimensional Array
In some programs, you might need to arrange the contents of a one-dimensional array in either
ascending or descending order. Arranging data in a specific order is called sorting. When a
one-dimensional array is sorted in ascending order, the first element in the array contains
the smallest value and the last element contains the largest value. The reverse is true when a
one-dimensional array is sorted in descending order.

Over the years, many different sorting algorithms have been developed; one such algorithm is
called the bubble sort. The bubble sort provides a quick and easy way to sort the items stored in
an array, as long as the number of items is relatively small—for example, fewer than 50. The
bubble sort algorithm works by comparing adjacent array elements and interchanging
(swapping) the ones that are out of order. The algorithm continues comparing and swapping
until the data in the array is sorted.

To demonstrate the logic of a bubble sort, you will manually sort the contents of a three-element
array named nums in ascending order. The array contains the following numbers: 9, 8, and 7.
Figure 11-33 shows the array values before, during, and after the bubble sort.

You can learn
about another
sorting algo-
rithm in the
Selection

Sort section in the
Ch11WantMore.pdf file.

Pass 1: First Comparison
9
8
7

Second Comparison
8
9
7

Result
8
7
9

Pass 2: First Comparison
8
7
9

 Result
7
8
9

Figure 11-33   Array values before, during, and after the bubble sort

compare and swap

compare and swap

compare and swap

The bubble sort begins by comparing the array’s first value with its second value. If the first
value is less than or equal to the second value, then no swap is made. However, if the first value
is greater than the second value, then both values are interchanged. In this case, the first value
(9) is greater than the second value (8), so the values are swapped as shown in the Second
Comparison column in Figure 11-33.

After comparing the first value with the second value, the bubble sort compares the second
value with the third value. In this case, 9 is greater than 7, so the two values are swapped as
shown in the Result column in Figure 11-33. At this point, the bubble sort has completed its first
time through the entire array—referred to as a pass. Notice that at the end of the first pass, the
largest value (9) is stored in the last element in the array. The bubble sort gets its name from the
fact that as the larger values drop to the bottom of the array, the smaller values rise (like bubbles)
to the top.

The bubble sort begins its second pass through the array by comparing the array’s first value
with its second value. In this case, 8 is greater than 7, so the two values are interchanged as
shown in the Result column in Figure 11-33. Notice that at this point, the data in the array
is sorted.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

400

The program shown in Figure 11-34 uses the bubble sort to sort the contents of a four-element
int array in ascending order. It then displays the contents of the sorted array on the screen.

Figure 11-34   Bubble sort program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

401

Sorting the Data Stored in a One-Dimensional Array 	﻿

To help you understand the bubble sort, you will desk-check the program shown in Figure 11-34.
(If you already understand the bubble sort program’s code, you can skip the remainder of this
section.) The statements on Lines 10 through 15 create and initialize the numbers array and five
variables. Figure 11-35 shows the desk-check table after these statements are processed.

Ch11-Bubble Sort
Desk-Check

Figure 11-35   Desk-check table after the declaration statements on Lines 10 through 15 are processed

Figure 11-36   Desk-check table after the nested loop is processed the first time

numbers[0]
23

numbers[1]
46

numbers[2]
12

numbers[3]
35

sub
0

temp
 0

maxSub
3

lastSwap
0

swap
 Y

The condition in the while clause on Line 18 compares the contents of the swap variable with
the letter Y. The condition evaluates to true; therefore, the computer processes the instructions
in the body of the loop. The first two instructions assign the letter N to the swap variable and
assign the number 0 to the sub variable. The while clause on Line 27 begins a nested loop
that repeats its instructions as long as the value in the sub variable is less than the value in the
maxSub variable. At this point, the sub variable contains the number 0, and the maxSub variable
contains the number 3; therefore, the computer processes the instructions in the nested loop.

The first instruction in the nested loop is an if statement. The statement’s condition, which
appears on Line 29, determines whether the value stored in the numbers[0] variable (23) is
greater than the value stored in the numbers[1] variable (46). The condition evaluates to false,
so the instructions in the if statement’s true path are skipped over and processing continues
with the sub += 1; statement on Line 38. The statement increases the value in the sub variable
by 1; the result is 1. Figure 11-36 shows the desk-check table after the nested loop instructions
are processed the first time. The new values entered in the table are shaded in the figure.

numbers[0]
23

numbers[1]
46

numbers[2]
12

numbers[3]
35

temp
 0

maxSub
3

lastSwap
0

swap
Y
N

sub
0
0
1

The condition in the while (sub < maxSub) clause on Line 27 is evaluated next. The condition
evaluates to true because the sub variable’s value (1) is less than the maxSub variable’s value (3).
As a result, the nested loop instructions are processed again.

The if statement’s condition in the nested loop determines whether the value stored in the
numbers[1] variable (46) is greater than the value stored in the numbers[2] variable (12).
The condition evaluates to true, so the instructions in the statement’s true path are processed;
the instructions appear on Lines 32 through 36. The first three instructions swap the values
stored in the numbers[1] and numbers[2] variables. The fourth instruction assigns the letter
Y to the swap variable to indicate that a swap was made. The last instruction in the true path

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

402

assigns the value stored in the sub variable—in this case, the number 1—to the lastSwap
variable, which keeps track of the position of the last swap in the array. After the if statement
ends, the sub += 1; statement on Line 38 increases the sub variable’s value by 1, giving 2.
Figure 11-37 shows the desk-check table after the nested loop instructions are processed the
second time. The new values entered in the table are shaded in the figure.

Figure 11-37   Desk-check table after the nested loop is processed the second time

Figure 11-38   Desk-check table after the nested loop is processed the third time

numbers[0]
23

numbers[1]
46
12

numbers[2]
12
46

numbers[3]
35

temp
0

46

maxSub
3

lastSwap
0
1

swap
Y
N
Y

sub
0
0
1
2

numbers[0]
23

numbers[1]
46
12

numbers[2]
12
46
35

numbers[3]
35
46

temp
0

46
46

maxSub
3

lastSwap
0
1
2

swap
Y
N
Y
Y

sub
0
0
1
2
3

Next, the computer evaluates the condition in the while (sub < maxSub) clause on Line 27. The
condition evaluates to true because the sub variable’s value (2) is less than the maxSub variable’s
value (3). Therefore, the computer once again processes the instructions in the nested loop.

The if statement’s condition in the nested loop determines whether the value stored in the
numbers[2] variable (46) is greater than the value stored in the numbers[3] variable (35).
The condition evaluates to true, so the instructions in the statement’s true path are processed.
The first three instructions swap the values stored in the numbers[2] and numbers[3]
variables. The fourth instruction assigns the letter Y to the swap variable to indicate that a swap
was made. The last instruction in the true path assigns the value stored in the sub variable (2)
to the lastSwap variable. When the if statement ends, the sub += 1; statement on Line 38
increases the sub variable’s value by 1, giving 3. Figure 11-38 shows the desk-check table after
the nested loop instructions are processed the third time. The new values entered in the table
are shaded in the figure.

The computer evaluates the condition in the while (sub < maxSub) clause on Line 27 next.
The condition evaluates to false because the sub variable’s value (3) is not less than the maxSub
variable’s value (3). As a result, the nested loop instructions are skipped over and processing
continues with the maxSub = lastSwap; statement on Line 41. The statement assigns

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

403

Sorting the Data Stored in a One-Dimensional Array 	﻿

the number 2 to the maxSub variable, and then this iteration of the outer loop ends. Figure 11-39
shows the desk-check table after the outer loop instructions are processed the first time.
The new value entered in the table is shaded in the figure.

Figure 11-39   Desk-check table after the outer loop is processed the first time

Figure 11-40   Desk-check table after the instructions on Lines 20 and 22 are processed

numbers[0]
23

numbers[1]
46
12

numbers[2]
12
46
35

numbers[3]
35
46

temp
0

46
46

maxSub
3
2

lastSwap
0
1
2

swap
Y
N
Y
Y

sub
0
0
1
2
3

numbers[0]
23

numbers[1]
46
12

numbers[2]
12
46
35

numbers[3]
35
46

temp
0

46
46

maxSub
3
2

lastSwap
0
1
2

swap
Y
N
Y
Y
N

sub
0
0
1
2
3
0

The condition in the outer loop’s while (swap == 'Y') clause on Line 18 is processed next. The
condition evaluates to true, so the computer processes the outer loop’s instructions again. The
first two instructions assign the letter N to the swap variable and assign the number 0 to the sub
variable, as shown in Figure 11-40. The new values entered in the table are shaded in the figure.

Next, the computer evaluates the condition in the nested loop’s while (sub < maxSub) clause
on Line 27. The condition evaluates to true, so the computer processes the instructions in the
nested loop.

The if statement’s condition in the nested loop determines whether the value stored in the
numbers[0] variable (23) is greater than the value stored in the numbers[1] variable (12).
The condition evaluates to true, so the instructions in the statement’s true path are processed.
The first three instructions swap the values stored in the numbers[0] and numbers[1]
variables. The fourth instruction assigns the letter Y to the swap variable to indicate that a swap
was made. The last instruction in the true path assigns the value stored in the sub variable (0)
to the lastSwap variable. When the if statement ends, the sub += 1; statement on Line 38
increases the sub variable’s value by 1, giving 1. Figure 11-41 shows the desk-check table after
the instructions in the nested loop are processed. The new values entered in the table are
shaded in the figure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

404

Figure 11-41   Desk-check table after the instructions in the nested loop are processed

Figure 11-42   Desk-check table after the instructions in the nested loop are processed again

numbers[0]
23
12

numbers[1]
46
12
23

numbers[2]
12
46
35

numbers[3]
35
46

temp
0

46
46
23

maxSub
3
2

lastSwap
0
1
2
0

swap
Y
N
Y
Y
N
Y

sub
0
0
1
2
3
0
1

lastSwap
0
1
2
0

numbers[0]
23
12

numbers[1]
46
12
23

numbers[2]
12
46
35

numbers[3]
35
46

temp
0

46
46
23

maxSub
3
2
0

swap
Y
N
Y
Y
N
Y

sub
0
0
1
2
3
0
1
2

The computer evaluates the condition in the while (sub < maxSub) clause on Line 27 next.
The condition evaluates to true because the sub variable’s value (1) is less than the maxSub
variable’s value (2). Therefore, the computer processes the nested loop instructions once again.

The if statement’s condition in the nested loop determines whether the value stored in the
numbers[1] variable (23) is greater than the value stored in the numbers[2] variable (35). The
condition evaluates to false, so the computer skips over the instructions in the if statement’s
true path. Processing continues with the sub += 1; statement on Line 38. The statement
increments the sub variable’s value by 1; the result is 2.

The condition in the while (sub < maxSub) clause on Line 27 is processed next. The condition
evaluates to false because the sub variable’s value (2) is not less than the maxSub variable’s value
(2). Because of this, the computer skips over the instructions in the nested loop. Processing
continues with the maxSub = lastSwap; statement on Line 41. The statement assigns the
number 0 to the maxSub variable. Figure 11-42 shows the current status of the desk-check table.
The new values entered in the table are shaded in the figure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

405

Sorting the Data Stored in a One-Dimensional Array 	﻿

Figure 11-43   Current status of the desk-check table

Figure 11-44   Result of running the bubble sort program

lastSwap
0
1
2
0

numbers[0]
23
12

numbers[1]
46
12
23

numbers[2]
12
46
35

numbers[3]
35
46

temp
0

46
46
23

maxSub
3
2
0
0

swap
Y
N
Y
Y
N
Y
N

sub
0
0
1
2
3
0
1
2
0

The computer evaluates the condition in the outer loop’s while (swap == 'Y') clause on
Line 18 next. The condition evaluates to true, so the computer processes the outer loop’s
instructions again. The first two instructions assign the letter N to the swap variable and assign
the number 0 to the sub variable. Next, the computer evaluates the condition in the nested
loop’s while (sub < maxSub) clause on Line 27. The condition evaluates to false because the
sub variable’s value (0) is not less than the maxSub variable’s value (0). As a result, the computer
skips over the instructions in the nested loop and continues processing with the maxSub =
lastSwap; statement on Line 41. The statement assigns the number 0 to the maxSub variable.
Figure 11-43 shows the current status of the desk-check table. The new values entered in the
table are shaded in the figure.

The condition in the outer loop’s while (swap == 'Y') clause on Line 18 is processed next
and evaluates to false. Because of this, the computer skips over the instructions in the outer
loop. Processing continues with the for clause on Line 45. The clause tells the computer to
repeat the cout << numbers[x] << endl; statement four times: once for each element in the
array. Figure 11-44 shows the result of running the bubble sort program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

406

Mini-Quiz 11-3
1.	 Write a C++ if clause that determines whether the value stored in the prices[x]

variable is less than the value stored in the lowest variable. The array and variable have
the double data type.

2.	 The process of arranging data in alphabetical or numerical order is called
________________________.

3.	 Write a for loop that subtracts the number 3 from each of the 10 elements in an int
array named orders. Use a variable named x to keep track of the array subscripts.
Initialize the x variable to 0.

LAB 11-1  Stop and Analyze
Study the program shown in Figure 11-45, and then answer the questions. The
domestic array contains the amounts the company sold domestically during the
months of January through June. The international array contains the amounts
the company sold internationally during the same period.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

The answers
to the labs are
contained in the
Answers.pdf file.

Figure 11-45   Code for Lab 11-1

QUESTIONS

1.	 What relationship exists between the domestic and international arrays?

2.	 What value is stored in the domestic[1] element?

3.	 How can you calculate the total company sales made in February?

4.	 What is the highest subscript in the international array?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

407

Sorting the Data Stored in a One-Dimensional Array 	﻿

5.	 If you change the for clause in Line 15 to for (int x = 1; x <= 6; x += 1), how
will the change affect the assignment statement in the for loop?

6.	 Follow the instructions for starting C++ and viewing the Lab11-1.cpp file, which is
contained in either the Cpp8\Chap11\Lab11-1 Project folder or the Cpp8\Chap11
folder. (Depending on your C++ development tool, you may need to open Lab11-1’s
project/solution file first.) Run the program. The total company sales are $643900.

7.	 Modify the program so that it displays the total domestic sales, total international sales,
and total company sales. Save and then run the program.

8.	 Now modify the program so that it also displays the total sales made in each month. Use
month numbers from 1 through 6. Save and then run the program.

LAB 11-2  Plan and Create
In this lab, you will plan and create an algorithm for the problem specification shown
in Figure 11-46.

Problem specification
Chris Kaplan runs five 5K races each year. Create a program that allows him to enter his finish time
for each race. The program should then display both his average and lowest times. Store the five
times in a one-dimensional array named . Use two value-returning functions named

 and . Pass the array and the number of elements to each function.
Display the average and lowest times with one decimal place.

Figure 11-46   Problem specification for Lab 11-2

Figure 11-47 shows the IPO chart information and corresponding C++ instructions. According
to the figure, the main function will get the five finish times, storing each in an array element.
It will then call the getAverage function to calculate and return the average time, which it
will store in the avgTime variable. Next, the main function will call the getLowest function to
determine the lowest time, and it will store the return value in the lowestTime variable. Finally,
the main function will display the average and lowest times on the computer screen.

Figure 11-47   IPO chart information and C++ instructions for Lab 11-2 (continues)

 function
IPO chart information
Input
 finish time (5 of them)

Processing
 subscript (counter: 0 to 4)

Output
 average finish time
 lowest finish time

Algorithm
1. repeat for (subscript from 0 to 4)
 enter finish time
 end repeat

2. call the getAverage function to calculate
 the average finish time; pass the
 array and the number of elements
3. call the getLowest function to determine
 the lowest finish time; pass the
 array and the number of elements
4. display the average finish time and
 the lowest finish time

 function
IPO chart information
Input
 array (formal parameter)
 number of elements (formal parameter)

Processing
 total time
 subscript (counter: 0 to one less than
 the number of elements)

Output
 average finish time

Algorithm
1. repeat for (subscript from 0 to one less
 than the number of elements)
 add array[subscript] time to
 the total time
 end repeat
2. return total time / number of elements

 function
IPO chart information
Input
 array (formal parameter)
 number of elements (formal parameter)

Processing
 subscript (counter: 0 to one less than
 the number of elements)

Output
 lowest finish time

Algorithm
1. repeat for (subscript from 1 to one less
 than the number of elements)
 if (array[subscript] time is less than
 lowest finish time)
 assign the array[subscript] time
 as the lowest finish time
 end if
 end repeat
2. return lowest finish time

 function
C++ instructions

declared and initialized in the for clause

 function
C++ instructions

declared and initialized in the for clause

calculated in the return statement

 function
C++ instructions

declared and initialized in the for clause

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

408

Figure 11-47   IPO chart information and C++ instructions for Lab 11-2 (continues)

 function
IPO chart information
Input
 finish time (5 of them)

Processing
 subscript (counter: 0 to 4)

Output
 average finish time
 lowest finish time

Algorithm
1. repeat for (subscript from 0 to 4)
 enter finish time
 end repeat

2. call the getAverage function to calculate
 the average finish time; pass the
 array and the number of elements
3. call the getLowest function to determine
 the lowest finish time; pass the
 array and the number of elements
4. display the average finish time and
 the lowest finish time

 function
IPO chart information
Input
 array (formal parameter)
 number of elements (formal parameter)

Processing
 total time
 subscript (counter: 0 to one less than
 the number of elements)

Output
 average finish time

Algorithm
1. repeat for (subscript from 0 to one less
 than the number of elements)
 add array[subscript] time to
 the total time
 end repeat
2. return total time / number of elements

 function
IPO chart information
Input
 array (formal parameter)
 number of elements (formal parameter)

Processing
 subscript (counter: 0 to one less than
 the number of elements)

Output
 lowest finish time

Algorithm
1. repeat for (subscript from 1 to one less
 than the number of elements)
 if (array[subscript] time is less than
 lowest finish time)
 assign the array[subscript] time
 as the lowest finish time
 end if
 end repeat
2. return lowest finish time

 function
C++ instructions

declared and initialized in the for clause

 function
C++ instructions

declared and initialized in the for clause

calculated in the return statement

 function
C++ instructions

declared and initialized in the for clause

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

409

Sorting the Data Stored in a One-Dimensional Array 	﻿

Figure 11-48 shows the code for the entire 5K race program, and Figure 11-49 shows the
completed desk-check table for the program, assuming the user enters the following five finish
times: 14.5, 15.7, 15.3, 13.1, and 14.2.

Figure 11-47   IPO chart information and C++ instructions for Lab 11-2

Figure 11-48   5K race program (continues)

 function
IPO chart information
Input
 finish time (5 of them)

Processing
 subscript (counter: 0 to 4)

Output
 average finish time
 lowest finish time

Algorithm
1. repeat for (subscript from 0 to 4)
 enter finish time
 end repeat

2. call the getAverage function to calculate
 the average finish time; pass the
 array and the number of elements
3. call the getLowest function to determine
 the lowest finish time; pass the
 array and the number of elements
4. display the average finish time and
 the lowest finish time

 function
IPO chart information
Input
 array (formal parameter)
 number of elements (formal parameter)

Processing
 total time
 subscript (counter: 0 to one less than
 the number of elements)

Output
 average finish time

Algorithm
1. repeat for (subscript from 0 to one less
 than the number of elements)
 add array[subscript] time to
 the total time
 end repeat
2. return total time / number of elements

 function
IPO chart information
Input
 array (formal parameter)
 number of elements (formal parameter)

Processing
 subscript (counter: 0 to one less than
 the number of elements)

Output
 lowest finish time

Algorithm
1. repeat for (subscript from 1 to one less
 than the number of elements)
 if (array[subscript] time is less than
 lowest finish time)
 assign the array[subscript] time
 as the lowest finish time
 end if
 end repeat
2. return lowest finish time

 function
C++ instructions

declared and initialized in the for clause

 function
C++ instructions

declared and initialized in the for clause

calculated in the return statement

 function
C++ instructions

declared and initialized in the for clause

(continued)

 1 //Lab11-2.cpp - stores finish times in an array
 2 //and displays the average and lowest times
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <iomanip>
 7 using namespace std;
 8
 9 //function prototypes
10 double getAverage(double times[], int numElements);
11 double getLowest(double times[], int numElements);
12
13 int main()
14 {
15 double finishTimes[5] = {0.0};
16 double avgTime = 0.0;
17 double lowestTime = 0.0;
18
19 //enter finish times
20 for (int x = 0; x < 5; x += 1)
21 {
22 cout << "Time for race " << x + 1 << ": ";
23 cin >> finishTimes[x];
24 } //end for
25
26 avgTime = getAverage(finishTimes, 5);
27 lowestTime = getLowest(finishTimes, 5);
28
29 cout << fixed << setprecision(1) << endl;
30 cout << "Average 5K finish time: " << avgTime << endl;
31 cout << "Lowest 5K finish time: " << lowestTime << endl;
32 return 0;
33 } //end of main function
34
35 //*****function definitions*****
36 double getAverage(double times[], int numElements)
37 {
38 double total = 0.0;
39
40 for (int x = 0; x < numElements; x += 1)
41 total += times[x];
42 //end for
43 return total / numElements;
44 } //end of getAverage function
45
46 double getLowest(double times[], int numElements)
47 {
48 double lowest = times[0];
49 for (int x = 1; x < numElements; x += 1)
50 if (times[x] < lowest)
51 lowest = times[x];
52 //end if
53 //end for
54 return lowest;
55 } //end of getLowest function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

410

Figure 11-49   Completed desk-check table for the 5K race program

times[3]
times[3]

finishTimes[3]
 0.0
 13.1

times[2]
times[2]

finishTimes[2]
 0.0
 15.3

times[1]
times[1]

finishTimes[1]
 0.0
 15.7

times[0]
times[0]

finishTimes[0]
 0.0
 14.5

Note: The names in black indicate variables that belong to the main function. The names in red
indicate variables that belong to the getAverage function. The names in blue indicate variables
that belong to the getLowest function.

times[4]
times[4]

finishTimes[4]
 0.0
 14.2

avgTime
 0.0
 14.6

lowestTime
 0.0
 13.1

x
1
2
3
4
5

x
0
1
2
3
4
5

x
0
1
2
3
4
5

total
 0.0
14.5
30.2
45.5
58.6
72.8

numElements
 5

lowest
 14.5
 13.1

numElements
 5

(continued)

Figure 11-48   5K race program

 1 //Lab11-2.cpp - stores finish times in an array
 2 //and displays the average and lowest times
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <iomanip>
 7 using namespace std;
 8
 9 //function prototypes
10 double getAverage(double times[], int numElements);
11 double getLowest(double times[], int numElements);
12
13 int main()
14 {
15 double finishTimes[5] = {0.0};
16 double avgTime = 0.0;
17 double lowestTime = 0.0;
18
19 //enter finish times
20 for (int x = 0; x < 5; x += 1)
21 {
22 cout << "Time for race " << x + 1 << ": ";
23 cin >> finishTimes[x];
24 } //end for
25
26 avgTime = getAverage(finishTimes, 5);
27 lowestTime = getLowest(finishTimes, 5);
28
29 cout << fixed << setprecision(1) << endl;
30 cout << "Average 5K finish time: " << avgTime << endl;
31 cout << "Lowest 5K finish time: " << lowestTime << endl;
32 return 0;
33 } //end of main function
34
35 //*****function definitions*****
36 double getAverage(double times[], int numElements)
37 {
38 double total = 0.0;
39
40 for (int x = 0; x < numElements; x += 1)
41 total += times[x];
42 //end for
43 return total / numElements;
44 } //end of getAverage function
45
46 double getLowest(double times[], int numElements)
47 {
48 double lowest = times[0];
49 for (int x = 1; x < numElements; x += 1)
50 if (times[x] < lowest)
51 lowest = times[x];
52 //end if
53 //end for
54 return lowest;
55 } //end of getLowest function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

411

Sorting the Data Stored in a One-Dimensional Array 	﻿

The final step in the problem-solving process is to evaluate and modify (if necessary) the
program. Recall that you evaluate a program by entering its instructions into the computer
and then using the computer to run (execute) it. While the program is running, you enter the
same sample data used when desk-checking the program.

DIRECTIONS

Follow the instructions for starting your C++ development tool. Depending on the development
tool you are using, you may need to create a new project; if so, name the project Lab11-2 Project
and save it in the Cpp8\Chap11 folder. Enter the instructions shown in Figure 11-48 in a source file
named Lab11-2.cpp. (Do not enter the line numbers.) Save the file in either the project folder or the
Cpp8\Chap11 folder. Now follow the appropriate instructions for running the Lab11-2.cpp file. Test
the program using the same data you used to desk-check the program. (The average and lowest
times should be 14.6 and 13.1, respectively.) If necessary, correct any bugs (errors) in the program.

LAB 11-3  Modify
If necessary, create a new project named Lab11-3 Project and save it in the
Cpp8\Chap11 folder. Enter (or copy) the Lab11-2.cpp instructions into a new source
file named Lab11-3.cpp. Change Lab11-2.cpp in the first comment to Lab11-3.cpp.
Change the getAverage and getLowest functions to void functions. Save and then

run the program. Test the program appropriately.

LAB 11-4  What’s Missing?
The program in this lab should display the average stock price. Start your C++
development tool, and view the Lab11-4.cpp file, which is contained in either the
Cpp8\Chap11\Lab11-4 Project folder or the Cpp8\Chap11 folder. (Depending on
your C++ development tool, you may need to open Lab11-4’s project/solution

file first.) Put the C++ instructions in the proper order, and then determine the one or more
missing instructions. Test the program appropriately.

LAB 11-5  Desk-Check
Desk-check the code in Figure 11-50 using the data shown below. What will the for
loop on Lines 31 through 34 display on the screen?

	 Student	 Midterm	 Final
	 1	 90	 100
	 2	 88	 68
	 3	 77	 75
	 4	 85	 85
	 5	 45	 32

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

412

LAB 11-6  Debug
Follow the instructions for starting C++ and viewing the Lab11-6.cpp file, which is
contained in either the Cpp8\Chap11\Lab11-6 Project folder or the Cpp8\Chap11
folder. (Depending on your C++ development tool, you may need to open Lab11-6’s
project/solution file first.) Debug the program.

Figure 11-50   Code for Lab 11-5

 1 //Lab11-5.cpp
 2 //Stores averages in a one-dimensional array
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 //declare arrays
11 double midterms[5] = {0.0};
12 double finals[5] = {0.0};
13 double averages[5] = {0.0};
14
15 //get exam scores
16 for (int x = 0; x < 5; x += 1)
17 {
18 cout << "Midterm exam score for student "
19 << x + 1 << ": ";
20 cin >> midterms[x];
21 cout << "Final exam score for student "
22 << x + 1 << ": ";
23 cin >> finals[x];
24 cout << endl;
25 //calculate and assign average
26 averages[x] = (midterms[x] + finals[x]) / 2;
27 } //end for
28
29 //display contents of array
30 cout << endl;
31 for (int y = 0; y < 5; y += 1)
32 cout << "Student " << y + 1 << " average: "
33 << averages[y] << endl;
34 //end for
35 return 0;
36 } //end of main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

413

Key Terms 	

Chapter Summary

•• An array is a group of variables that have the same name and data type and are related in
some way. The most commonly used arrays in programs are one-dimensional arrays and
two-dimensional arrays.

•• Programmers use arrays to temporarily store related data in the internal memory of the
computer. By doing so, a programmer can increase the efficiency of a program because
data can be both stored in and retrieved from internal memory much faster than it can be
written to and read from a file on a disk. In addition, after the data is entered into an array, the
program can use the data as many times as it is needed.

•• You must declare an array before you can use it. After declaring an array, you can use an
assignment statement or the extraction operator to enter data into the array.

•• Each of the array elements in a one-dimensional array is assigned a unique number, called
a subscript. The first element is assigned a subscript of 0. The second element is assigned
a subscript of 1, and so on. Because the first array subscript is 0, the last subscript in a
one-dimensional array is always one number less than the number of elements.

•• You refer to each element in a one-dimensional array by the array’s name and the element’s
subscript, which is specified in square brackets immediately following the name.

•• When searching for either the highest or the lowest element in an array, it is a common
practice to assign the first array element’s value to the variable that will be used to keep track
of the highest or lowest value.

•• Parallel arrays are two or more arrays whose elements are related by their corresponding
subscript (or position) in the arrays.

•• You can use the bubble sort algorithm to sort a small amount of data stored in an array.

Key Terms
Array—a group of related variables that have the same name and data type

Bubble sort—one of many sorting algorithms used to sort small arrays; works by comparing
adjacent array elements and swapping the ones that are out of order

Elements—the variables in an array

One-dimensional array—an array whose elements are identified by a unique subscript

Parallel arrays—two or more arrays whose elements are related by their corresponding position
(subscript) in the arrays

Populating the array—the process of initializing the elements in an array

Scalar variable—another term for a simple variable

Simple variable—a variable that is unrelated to any other variable in the computer’s internal
memory; also called a scalar variable

Sorting—the process of arranging data in a specific order

Subscript—a unique number that identifies the position of an element in an array

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

414

Review Questions
1.	 Which of the following is false?

a.	 The elements in an array are related in some way.
b.	 All of the elements in an array have the same data type.
c.	 All of the elements in a one-dimensional array have the same subscript.
d.	 The first element in a one-dimensional array has a subscript of 0 (zero).

2.	 Which of the following statements declares a five-element array named population?

a.	 int population[4] = {0};
b.	 int population[5] = {0};

c.	 int population[4] = 0
d.	 int population[5] = {0}

	 Use the sales array to answer Review Questions 3 through 7. The array was declared
using the int sales[5] = {10000, 12000, 900, 500, 20000}; statement.

3.	 The sales[3] += 10; statement will replace the number _____________________.

a.	 500 with 10
b.	 500 with 510

c.	 900 with 10
d.	 900 with 910

4.	 The sales[4] = sales[4 – 2]; statement will replace the number
_____________________.

a.	 20000 with 900
b.	 20000 with 19998

c.	 500 with 12000
d.	 500 with 498

5.	 The cout << sales[0] + sales[1] << endl; statement will
_____________________.

a.	 display 22000
b.	 display 10000 + 12000

c.	 display sales[0] + sales[1]
d.	 result in an error

6.	 Which of the following if clauses verifies that the array subscript stored in the
x variable is valid for the sales array?

a.	 if (sales[x] >= 0 && sales[x] < 4)
b.	 if (sales[x] >= 0 && sales[x] <= 4)
c.	 if (x >= 0 && x < 4)
d.	 if (x >= 0 && x <= 4)

7.	 Which of the following will correctly add the number 100 to each variable in the sales
array? The x variable was declared using the int x = 0; statement.

a.	 while (x <= 4)
	    x += 100;
	 //end while
b.	 while (x <= 4)
	 {
	    sales = sales + 100;
	    x += 1;
	 } //end while

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

415

Review Questions 	

c.	 while (sales < 5)
	 {
	    sales[x] += 100;
	 } //end while
d.	 while (x <= 4)
	 {
	    sales[x] += 100;
	    x += 1;
	 } //end while

	 Use the nums array to answer Review Questions 8 through 12. The array was declared
using the int nums[4] = {10, 5, 7, 2}; statement. The x and total variables
are int variables and are initialized to 0. The avg variable is a double variable and is
initialized to 0.0.

8.	 Which of the following will correctly calculate the average of the elements included in
the nums array?

a.	 while (x < 4)
	 {
	 nums[x] = total + total;
	 x += 1;
	 } //end while
	 avg = static_cast<double>(total) /
	 static_cast<double>(x);
b.	 while (x < 4)
	 {
	 total += nums[x];
	 x += 1;
	 } //end while
	 avg = static_cast<double>(total) /
	 static_cast<double>(x);
c.	 while (x < 4)
	 {
	 total += nums[x];
	 x += 1;
	 } //end while
	 avg = static_cast<double>(total) /
	 static_cast<double>(x) – 1;
d.	 while (x < 4)
	 {
	 total += nums[x];
	 x += 1;
	 } //end while
	 avg = static_cast<double>(total) /
	 static_cast<double>(x - 1);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

416

9.	 What does the code in Review Question 8’s answer a assign to the avg variable?

a.	 0.0
b.	 5.0

c.	 6.0
d.	 8.0

10.	 What does the code in Review Question 8’s answer b assign to the avg variable?

a.	 0.0
b.	 5.0

c.	 6.0
d.	 8.0

11.	 What does the code in Review Question 8’s answer c assign to the avg variable?

a.	 0.0
b.	 5.0

c.	 6.0
d.	 8.0

12.	 What does the code in Review Question 8’s answer d assign to the avg variable?

a.	 0.0
b.	 5.0

c.	 6.0
d.	 8.0

13.	 If the cities and zips arrays are parallel arrays, which of the following statements
will display the city name associated with the zip code stored in the zips[8] variable?

a.	 cout << cities[zips[8]] << endl;
b.	 cout << cities(zips[8]) << endl;
c.	 cout << cities[8] << endl;
d.	 cout << cities(8) << endl;

Exercises

Pencil and Paper

1.	 Write the statement to declare and initialize a one-dimensional int array named
scores that has 10 elements. Then write the statement to store the number 12 in the
third element in the array. (The answers to TRY THIS Exercises are located at the end
of the chapter.)

2.	 Write the code to display the contents of the scores array from Pencil and Paper
Exercise 1. Use the for statement with a counter variable named x. (The answers to
TRY THIS Exercises are located at the end of the chapter.)

3.	 Rewrite the code from Pencil and Paper Exercise 2 using the while statement.

4.	 Write the statement to declare and initialize a one-dimensional double array named
rates that has five elements. Use the following numbers to initialize the array: 6.5, 8.3,
4.0, 2.0, and 10.5.

5.	 Write the code to display the contents of the rates array from Pencil and Paper
Exercise 4. Use the for statement.

6.	 Rewrite the code from Pencil and Paper Exercise 5 using the do while statement.

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

417

Exercises 	

7.	 Write the statement to assign the C++ keyword true to the variable located in the
third element in a one-dimensional bool array named answers.

8.	 A program declares and initializes a one-dimensional int array named nums. Write
the code to multiply the first element’s value by 2, storing the result in the numDoubled
variable.

9.	 A program declares and initializes a one-dimensional int array named nums. Write the
code to add together the numbers stored in the first and second array elements. Display
the sum on the computer screen.

10.	 Write the code to subtract the number 1 from each element in a one-dimensional int
array named quantities. The array has 10 elements. Use the while statement.

11.	 Rewrite the code from Pencil and Paper Exercise 10 using the for statement.

12.	 Write the code to find the square root of the number stored in the second element
in a one-dimensional double array named mathNumbers. Display the result on the
computer screen.

13.	 Write the code to display the smallest number stored in a one-dimensional int array
named orders. The array has five elements. Use the while statement.

14.	 Rewrite the code from Pencil and Paper Exercise 13 using the for statement.

15.	 Draw a flowchart for the bubble sort program shown in Figure 11-34.

16.	 The numbers array is a five-element one-dimensional int array. The following
statement should display the result of raising the first array element to the second
power: cout << pow(nums[0], 2);. Correct the statement.

Computer

17.	 If necessary, create a new project named TryThis17 Project and save it in the
Cpp8\Chap11 folder. Enter the C++ instructions shown earlier in Figure 11-19
into a source file named TryThis17.cpp. Change the filename in the first comment
to TryThis17.cpp. Insert a blank line below the first comment, and then enter the
following comment: //Also displays the average number of calories
consumed. Save and then run the program. Test the program using the following calorie
amounts: 1650, 1700, 1500, 2000, and 1545. Now, modify the program to include the
function call and getAverage function shown in Figure 11-21. Display the average as
a whole number. Save and then run the program. Test the program using the same data
shown here. (The answers to TRY THIS Exercises are located at the end of the chapter.)

18.	 If necessary, create a new project named TryThis18 Project and save it in the
Cpp8\Chap11 folder. Enter the C++ instructions shown earlier in Figure 11-23 into
a source file named TryThis18.cpp. Change the filename in the first comment to
TryThis18.cpp. Save, run, and test the program using the number 40. Now, modify the
program to include a void function named getSearchResults. The function will
determine the number of people whose Facebook time exceeds the number of minutes
entered by the user. Replace the code on Lines 21 through 26 in the main function with
a call to the getSearchResults function. (The answers to TRY THIS Exercises are
located at the end of the chapter.)

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

ADVANCED

SWAT THE BUGS

TRY THIS

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

418

19.	 In this exercise, you will modify the currency converter program from the chapter.
If necessary, create a new project named ModifyThis19 Project and save it in the
Cpp8\Chap11 folder. Enter the C++ instructions shown earlier in Figure 11-25 into
a source file named ModifyThis19.cpp. Change the filename in the first comment to
ModifyThis19.cpp. Modify the program to allow the user to convert American dollars
to Mexican pesos. Use 15.24 as the conversion rate. Save and then run the program.
Test the program appropriately.

20.	 In this exercise, you modify the highest number program from the chapter. If
necessary, create a new project named ModifyThis20 Project and save it in the
Cpp8\Chap11 folder. Enter the C++ instructions shown earlier in Figure 11-27
into a new source file named ModifyThis20.cpp. Change the filename in the first
comment to ModifyThis20.cpp. Modify the program to also display the lowest
number in the array. Use a value-returning function named getLowest. Save and
then run the program. Test the program appropriately.

21.	 Follow the instructions for starting C++ and viewing the Introductory21.cpp file,
which is contained in either the Cpp8\Chap11\Introductory21 Project folder or the
Cpp8\Chap11 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) The program should calculate the average stock
price stored in the prices array. It then should display the average price on the screen.
Complete the program using the for statement. Save and then run the program.

22.	 Follow the instructions for starting C++ and viewing the Introductory22.cpp file,
which is contained in either the Cpp8\Chap11\Introductory22 Project folder or the
Cpp8\Chap11 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) The program should display the average number of
pounds of coffee ordered. The numbers of pounds ordered are stored in the pounds
array. Complete the program using the while statement. Save and then run the
program.

23.	 Follow the instructions for starting C++ and viewing the Intermediate23.cpp file,
which is contained in either the Cpp8\Chap11\Intermediate23 Project folder or the
Cpp8\Chap11 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) The program uses an array to store the amount of
money a game show contestant won in each of five days. The program should display
the total amount won and the average daily amount won. It should also display the
day number (1 through 5) corresponding to the highest amount won. Complete the
program. Save and then run the program.

24.	 If necessary, create a new project named Intermediate24 Project and save it in the
Cpp8\Chap11 folder. Enter the instructions shown earlier in Figure 11-23 into a
source file named Intermediate24.cpp. Change the filename in the first comment
to Intermediate24.cpp. Currently, the program displays the number of people
whose Facebook time exceeds the number of minutes entered by the user. Modify
the program to also display the average number of minutes these people spend on
Facebook. Display the average with one decimal place. (Hint: Three people spend
more than 95 minutes on Facebook. The average for these people is 113.3 minutes.)
Save and then run the program. Test the program appropriately.

25.	 Follow the instructions for starting C++ and viewing the Intermediate25.cpp file,
which is contained in either the Cpp8\Chap11\Intermediate25 Project folder or the
Cpp8\Chap11 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) Code the program so that it asks the user for a
percentage amount by which each price should be increased. The program should

MODIFY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

419

Exercises 	

increase each price in the array by that amount. For example, when the user enters
the number 15, the program should increase each element’s value by 15%. After
increasing each price, the program should display the contents of the array. Save and
then run the program. Test the program by increasing each price by 5%.

26.	 If necessary, create a new project named Advanced26 Project and save it in the
Cpp8\Chap11 folder. Also create a new source file named Advanced26.cpp. Declare
a 12-element int array named days. Assign the number of days in each month to
the array, using 28 for February. Code the program so that it displays the number of
days corresponding to the month number entered by the user. For example, when the
user enters the number 7, the program should display the number 31. However, if the
user enters the number 2, the program should ask the user for the year. The rules for
determining whether a year is a leap year are shown in Figure 11-51. If the year is a leap
year, the program will need to add 1 to the number of days before displaying the number
of days on the screen. The program should also display an appropriate message when the
user enters an invalid month number. Use a sentinel value to end the program. Save and
then run the program. Test the program using the number 1, and then test it using the
numbers 3 through 12. Test it using the number 2 and the year 2015. Then, test it using
the number 2 and the year 2016. Also test it using an invalid number, such as 20.

1. If the year number is not evenly divisible by 4, it is not a leap year.
2. If the year number is evenly divisible by 4 and is not evenly divisible by 100,
 then it is a leap year.
3. If the year number is evenly divisible by both 4 and 100 and is also evenly
 divisible by 400, then it is a leap year; otherwise, it is not a leap year.

Figure 11-51

27.	 Follow the instructions for starting C++ and viewing the Advanced27.cpp file, which is
contained in either the Cpp8\Chap11\Advanced27 Project folder or the Cpp8\Chap11
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) Modify the program to include a menu containing the following
three options: Highest Domestic Sales, Highest International Sales, and Highest Total
Monthly Sales. Also include three program-defined functions named getDomestic,
getInternational, and getMonthly in the program. The functions can be either
value-returning or void. The getDomestic function should determine the highest sales
amount in the domestic array. The getInternational function should determine
the highest sales amount in the international array. The getMonthly function
should determine the highest monthly sales, as well as the month in which those sales
were made. Depending on the user’s menu selection, the program will display the highest
domestic sales amount, the highest international sales amount, or the highest monthly
total. When displaying the highest monthly total, also display the month (January through
June) in which those sales were made. Save and run the program. Test the program
appropriately. (Hint: The highest monthly sales are the March sales of $131800.)

28.	 If necessary, create a new project named Advanced28 Project and save it in the
Cpp8\Chap11 folder. Also create a new source file named Advanced28.cpp.
The program should declare a 20-element, one-dimensional int array named
commission. Assign the following 20 numbers to the array: 300, 500, 200, 150,
600, 750, 900, 150, 100, 200, 250, 650, 300, 750, 800, 350, 250, 150, 100, and 300. The
program should prompt the user to enter a commission amount from 0 through 1000.

ADVANCED

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

420

It then should display the number of salespeople who earned that commission. Use a
sentinel value to end the program. Use the application to answer the following questions:

a.	 How many salespeople earned a commission of 100?
b.	 How many salespeople earned a commission of 300?
c.	 How many salespeople earned a commission of 50?
d.	 How many salespeople earned a commission of 900?

29.	 In this exercise, you modify the program from Computer Exercise 28. If necessary,
create a new project named Advanced29 Project and save it in the Cpp8\Chap11 folder.
Also create a new source file named Advanced29.cpp. Copy the C++ instructions from
the Advanced28.cpp file into the Advanced29.cpp file. Change the filename in the
first comment to Advanced29.cpp. Modify the program so that it prompts the user to
enter a minimum commission amount and a maximum commission amount. Swap the
amounts if the minimum amount is greater than the maximum amount. The program
should display the number of salespeople who earned a commission within that range.
Use a sentinel value to end the program. Save and then run the program. Use the
program to answer the following questions.

a.	 How many salespeople earned a commission from 100 through 300?
b.	 How many salespeople earned a commission from 700 through 800?
c.	 How many salespeople earned a commission from 0 through 200?

30.	 In this exercise, you create a program that generates and displays six unique random
integers for a lottery game. Each lottery number can range from 1 through 54 only. If
necessary, create a new project named Advanced30 Project and save it in the
Cpp8\Chap11 folder. Also create a new source file named Advanced30.cpp. Create
a program that generates six unique random integers from 1 through 54 and then
displays the integers on the screen. Save and then run the program.

31.	 In this exercise, you create a program that uses two parallel one-dimensional arrays.
Ms. Jenkins uses the grade table shown in Figure 11-52 for her Introduction to
Programming course. She wants a program that displays the grade after she enters the
total points earned. If necessary, create a new project named Advanced31 Project and
save it in the Cpp8\Chap11 folder. Also create a new source file named Advanced31.cpp.
Store the minimum points in a one-dimensional int array. Store the grades in a
one-dimensional char array. Use a sentinel value to stop the program. Save and then
run the program. Test the program using the following amounts: 455, 210, 400, and 349.

Minimum points
0
300
350
400
450

Maximum points
299
349
399
449
500

Grade
F
D
C
B
A

Figure 11-52

32.	 In this exercise, you modify the program from Computer Exercise 31. The modified
program will allow the user to change the grading scale while the program is running.
If necessary, create a new project named Advanced32 Project and save it in the
Cpp8\Chap11 folder. Also create a new source file named Advanced32.cpp. Copy the
instructions from the Advanced31.cpp file into the Advanced32.cpp file. Change the

ADVANCED

ADVANCED

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

421

Exercises 	

filename in the first comment. Modify the program so that it allows the user to enter the
total number of possible points—in other words, the total number of points a student can
earn in the course—when the program is run. Also modify the program so that it uses the
grading scale shown in Figure 11-53. For example, when the user enters the number 500
as the total number of possible points, the program should use 450 (which is 90% of 500)
as the minimum number of points for an A. When the user enters the number 300 as the
total number of possible points, the program should use 270 (which is 90% of 300) as the
minimum number of points for an A. Save and then run the program. Test the program
using 300 as the total number of possible points and 185 as the number of points earned.
The program should display D as the grade. Close the Command Prompt window. Test
the program using 500 and 363 as the total number of possible points and the total points
earned, respectively. The program should display C as the grade.

Minimum points
0
60% of the possible points
70% of the possible points
80% of the possible points
90% of the possible points

Grade
F
D
C
B
A

Figure 11-53

33.	 In this exercise, you create a program that uses two parallel one-dimensional arrays.
The program displays a shipping charge that is based on the number of items ordered
by a customer. The shipping charge scale is shown in Figure 11-54. If necessary, create
a new project named Advanced33 Project and save it in the Cpp8\Chap11 folder. Also
create a new source file named Advanced33.cpp. Store the maximum order amounts
in a one-dimensional int array. Store the shipping charge amounts in a parallel one-
dimensional int array. The program should allow the user to enter the number of
items a customer ordered. It then should display the appropriate shipping charge. Use
a sentinel value to stop the program. Save and then run the program. Test the program
appropriately.

Minimum order
1
11
51
101

Maximum order
10
50
100
99999

Shipping charge
15
10
 5
 0

Figure 11-54

34.	 In this exercise, you code a program that uses three parallel numeric arrays. The pro-
gram searches one of the arrays and then displays the corresponding values from the
other two arrays. Follow the instructions for starting C++ and viewing the Advanced34.cpp
file, which is contained in either the Cpp8\Chap11\Advanced34 Project folder or the
Cpp8\Chap11 folder. (Depending on your C++ development tool, you may need to open
the project/solution file first.) The program should prompt the user to enter a product
ID. It then should search for the product ID in the ids array and display the correspond-
ing price and quantity from the prices and quantities arrays. Allow the user to dis-
play the price and quantity for as many product IDs as desired without having to execute
the program again. Save and then run the program. Test the program appropriately.

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

422

35.	 In this exercise, you will create a program that allows the user to enter an unknown
number of sales amounts for each of three car dealerships: Dealership 1, Dealership 2,
and Dealership 3. Use a three-element double array to accumulate each dealership’s
sales amounts. The program should calculate the total sales and the percentage that
each dealership contributed to the total sales. Display the total sales with a dollar sign and
two decimal places. Display each percentage with one decimal place and a percent sign. If
necessary, create a new project named Advanced35 Project and save it in the Cpp8\Chap11
folder. Enter your C++ instructions in a new source file named Advanced35.cpp. Also
enter appropriate comments and any additional instructions required by the compiler.
Save and then run the program. Use the following sales amount for Dealership 1: 23000
and 15000. Use the following sales amounts for Dealership 2: 12000, 16000, 34000, and
10000. Use the following sales amounts for Dealership 3: 64000, 12000, and 70000. (Due
to rounding, the percentages may not add up to exactly 100%.)

36.	 Follow the instructions for starting C++ and viewing the SwatTheBugs36.cpp file,
which is contained in either the Cpp8\Chap11\SwatTheBugs36 Project folder or the
Cpp8\Chap11 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) Run the program. The program should display the
total amount in inventory, but it is not working correctly. Debug the program.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 int scores[10] = {0};
	 scores[2] = 12;

2.	 for (int x = 0; x < 10; x += 1)
	 cout << scores[x] << endl;
	 //end for

Computer

17.	 See Figure 11-55. The changes are shaded in the figure.

//TryThis17.cpp - gets and displays daily calories
//Also displays the average number of calories consumed
//Created/revised by <your name> on <current date>

#include <iostream>
#include <iomanip>
using namespace std;

//function prototypes
void displayArray(int cals[], int numElements);
double getAverage(int cals[], int numElements);

int main()
{
 int calories[5] = {0};
 double average = 0.0;

 //store data in the array
 for (int sub = 0; sub < 5; sub += 1)
 {
 cout << "Calories for day " << sub + 1 << ": ";
 cin >> calories[sub];
 } //end for

 //display the contents of the array
 displayArray(calories, 5);

 //get and display the average
 average = getAverage(calories, 5);
 cout << fixed << setprecision(0);
 cout << endl << "Average number of calories consumed: "
 << average << endl;

 return 0;
} //end of main function

//*****function definitions*****
void displayArray(int cals[], int numElements)
{
 cout << endl << "Array contents:" << endl;
 for (int sub = 0; sub < 5; sub += 1)
 cout << "Calories for day " << sub + 1
 << ": " << cals[sub] << endl;
 //end for
} //end of displayArray function

double getAverage(int cals[], int numElements)
{
 double total = 0.0; //accumulator

 //accumulate array values
 for (int sub = 0; sub < numElements; sub += 1)
 total += cals[sub];
 //end for

 //calculate and return average
 return static_cast<double>(total) / numElements;
} //end of getAverage function

Figure 11-55   (continues)

ADVANCED

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

423

Exercises 	

//TryThis17.cpp - gets and displays daily calories
//Also displays the average number of calories consumed
//Created/revised by <your name> on <current date>

#include <iostream>
#include <iomanip>
using namespace std;

//function prototypes
void displayArray(int cals[], int numElements);
double getAverage(int cals[], int numElements);

int main()
{
 int calories[5] = {0};
 double average = 0.0;

 //store data in the array
 for (int sub = 0; sub < 5; sub += 1)
 {
 cout << "Calories for day " << sub + 1 << ": ";
 cin >> calories[sub];
 } //end for

 //display the contents of the array
 displayArray(calories, 5);

 //get and display the average
 average = getAverage(calories, 5);
 cout << fixed << setprecision(0);
 cout << endl << "Average number of calories consumed: "
 << average << endl;

 return 0;
} //end of main function

//*****function definitions*****
void displayArray(int cals[], int numElements)
{
 cout << endl << "Array contents:" << endl;
 for (int sub = 0; sub < 5; sub += 1)
 cout << "Calories for day " << sub + 1
 << ": " << cals[sub] << endl;
 //end for
} //end of displayArray function

double getAverage(int cals[], int numElements)
{
 double total = 0.0; //accumulator

 //accumulate array values
 for (int sub = 0; sub < numElements; sub += 1)
 total += cals[sub];
 //end for

 //calculate and return average
 return static_cast<double>(total) / numElements;
} //end of getAverage function

Figure 11-55  

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 1 One-Dimensional Arrays

424

18.	 See Figure 11-56. The changes are shaded in the figure.

//TryThis18.cpp - displays the number of people whose
//Facebook time exceeds a specific number of minutes
//Created/revised by <your name> on <current date>

#include <iostream>
using namespace std;

//function prototype
void getSearchResults(int results[], int numElements,
 int mins, int &over);

int main()
{
 int pollResults[25] = {35, 120, 75, 60, 20,
 25, 15, 90, 85, 35,
 60, 15, 10, 25, 60,
 100, 90, 10, 120, 5,
 40, 70, 30, 25, 5};
 int minutes = 0;
 int numOver = 0;

 cout << "Search for minutes over: ";
 cin >> minutes;

 //search the array
 getSearchResults(pollResults, 25, minutes, numOver);

 cout << endl << "Number who spend more than " << minutes
 << " minutes" << endl;
 cout << "per day on Facebook: " << numOver << endl;
 return 0;
} //end of main function

//*****function definitions*****
void getSearchResults(int results[], int numElements,
 int mins, int &over)
{
 for (int sub = 0; sub < numElements; sub += 1)
 if (results[sub] > mins)
 over += 1;
 //end if
 //end for
} //end of getSearchResults function

Figure 11-56

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 12
Two-Dimensional Arrays

After studying Chapter 12, you should be able to:

�� Declare and initialize a two-dimensional array

�� Enter data into a two-dimensional array

�� Display the contents of a two-dimensional array

�� Sum the values in a two-dimensional array

�� Search a two-dimensional array

�� Pass a two-dimensional array to a function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

426

Using Two-Dimensional Arrays
As you learned in Chapter 11, the most commonly used arrays in business applications are
one-dimensional and two-dimensional. You can visualize a one-dimensional array as a column
of variables in memory. A two-dimensional array, on the other hand, resembles a table in that
the variables (elements) are in rows and columns, similar to a spreadsheet or a golf scorecard.
See Figure 12-1.

Ch12-Chapter Preview

Each element in a two-dimensional array is identified by a unique combination of two subscripts
that the computer assigns to the element when the array is created. The subscripts specify
the element’s row and column positions in the array. Elements located in the first row in a
two-dimensional array are assigned a row subscript of 0, elements in the second row are
assigned a row subscript of 1, and so on. Similarly, elements located in the first column in a
two-dimensional array are assigned a column subscript of 0, elements in the second column
are assigned a column subscript of 1, and so on.

You refer to each element in a two-dimensional array by the array’s name and the element’s row
and column subscripts, with the row subscript listed first and the column subscript listed second.
The row subscript is enclosed in a set of square brackets ([]) and so is the column subscript.
For example, to refer to the element located in the first row, first column in a two-dimensional
array named orders, you use orders[0][0]—read “orders sub zero zero.” Similarly, to refer
to the element located in the second row, third column, you use orders[1][2]. Notice that the
subscripts are one number less than the row and column in which the element is located. This is
because the row and column subscripts start at 0 rather than at 1.

Recall that a
subscript is
also called an
index.

Spreadsheet—cells are in rows and columns

Scorecard—scores are in rows and columns

Figure 12-1   Examples of items that use the two-dimensional array concept

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

427

Using Two-Dimensional Arrays 	﻿

Because the subscripts start at 0, the last row subscript in a two-dimensional array will always
be one number less than the number of rows in the array. Likewise, the last column subscript
will always be one number less than the number of columns in the array. You can determine
the number of elements in a two-dimensional array by multiplying the number of its rows
by the number of its columns. An array that has four rows and three columns, for example,
contains 12 elements (variables).

Declaring and Initializing a Two-Dimensional Array
You must declare (create) the two-dimensional array before you can use it in a program. You
should also initialize the array elements to ensure they will not contain garbage when the
program is run. Recall that assigning initial values to an array is often referred to as populating
the array. You should populate an array using values that have the same data type as the array.

Figure 12-2 shows the syntax for declaring and initializing a two-dimensional array and includes
examples of using the syntax. In the syntax, arrayName is the name of the array, and dataType
is the type of data the array elements will store. Recall that each of the elements in an array has
the same data type. The numberOfRows and numberOfColumns items, each of which is enclosed
in its own set of square brackets, are integers that specify the number of rows and columns,
respectively, in the array.

You can initialize the elements in a two-dimensional array by entering a separate initialValues
section, enclosed in braces, for each row in the array. If the array has two rows, then the
statement that declares and initializes the array can have a maximum of two initialValues
sections. If the array has five rows, then the declaration statement can have a maximum of
five initialValues sections. Within the individual initialValues sections, you enter one or more
values separated by commas. The maximum number of values you enter corresponds to the
number of columns in the array. If the array contains 10 columns, then you can include up to
10 values in each initialValues section. In addition to the set of braces that surrounds each
individual initialValues section, notice in the syntax that a set of braces also surrounds all of
the initialValues sections.

Figure 12-2   How to declare and initialize a two-dimensional array (continues)

How To �Declare and Initialize a Two-Dimensional Array

Syntax
dataType arrayName[numberOfRows][numberOfColumns] =
 {{initialValues}, {initialValues}, ... {initialValues}};

Example 1
char grades[3][2] = {{'C', 'A'}, {'B', 'C'}, {'D', 'B'}};
declares and initializes a three-row, two-column char array named grades

Example 2
int orders[4][3] = {0};
 or
int orders[4][3] = {{0}, {0}, {0}, {0}};
 or
int orders[4][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
declares and initializes a four-row, three-column int array named orders; each
element is initialized to 0

Example 3
double prices[6][5] = {2.0};
declares and initializes a six-row, five-column double array named prices; the
prices[0][0] is initialized to 2.0; the other elements are initialized to 0.0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

428

(continued)

The declaration statement in Example 1 in Figure 12-2 creates a two-dimensional char array
named grades. The grades array contains three rows and two columns. The statement
initializes the elements in the first row to the grades C and A, the elements in the second row
to the grades B and C, and the elements in the third row to the grades D and B, as illustrated in
the figure.

You can use any of the three statements shown in Example 2 to declare the two-dimensional
orders array and initialize the elements in its four rows and three columns to the number 0.
When you don’t provide an initial value for each of the elements in an int array, many C++
compilers initialize the uninitialized elements to the integer 0.

The statement shown in Example 3 declares a two-dimensional double array named prices;
the array contains six rows and five columns. The statement initializes the element located
in the first row, first column of the array to 2.0. The remaining elements will be initialized to
the double number 0.0 by many C++ compilers.

Keep in mind that if you inadvertently provide more initialValues sections than the number
of rows in the array, or if you provide more values in an initialValues section than the number
of columns in the array, most C++ compilers will display the error message “too many
initializers” when you attempt to compile the program. However, not all C++ compilers display
a message when this error occurs. Rather, some compilers store the extra values in memory
locations adjacent to, but not reserved for, the array. Therefore, you must be careful to provide
the appropriate number of initialValues sections and the appropriate number of values in
each section.

Entering Data into a Two-Dimensional Array
You can use an assignment statement to enter data into the elements in a two-dimensional array,
as shown in the syntax and examples in Figure 12-3. The arrayName[rowSubscript]
[columnSubscript] section in the syntax represents the name and subscripts of the element to
which you want the expression (data) assigned. The expression can include any combination of
constants, variables, and operators. The data type of the expression must match the data type of
the array. If both data types do not match, the computer will perform an implicit type
conversion, which could result in incorrect output.

If you use an
invalid row or
column sub-
script when
referring to

an element in a two-
dimensional array, a
runtime error will occur
and the program will
end abruptly.

Figure 12-2   How to declare and initialize a two-dimensional array

Syntax
dataType arrayName[numberOfRows][numberOfColumns] =
 {{initialValues}, {initialValues}, ... {initialValues}};

Example 1
char grades[3][2] = {{'C', 'A'}, {'B', 'C'}, {'D', 'B'}};
declares and initializes a three-row, two-column char array named grades

Example 2
int orders[4][3] = {0};
 or
int orders[4][3] = {{0}, {0}, {0}, {0}};
 or
int orders[4][3] = {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}, {0, 0, 0}};
declares and initializes a four-row, three-column int array named orders; each
element is initialized to 0

Example 3
double prices[6][5] = {2.0};
declares and initializes a six-row, five-column double array named prices; the
prices[0][0] is initialized to 2.0; the other elements are initialized to 0.0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

429

Using Two-Dimensional Arrays 	﻿

How To �Use an Assignment Statement to Assign Data to a Two-Dimensional Array

Syntax
arrayName[rowSubscript] [columnSubscript] = expression;

Example 1
grades[1][0] = 'F';
assigns the letter F to the element located in the second row, first column in the
grades array

Example 2
for (int row = 0; row < 4; row += 1)
 for (int column = 0; column < 3; column += 1)
 orders[row][column] = 0;
 //end for
//end for
assigns the integer 0 to each element in the four-row, three-column orders array,
row by row; provides another means of initializing the array

Example 3
int row = 0;
int column = 0;
double oldPrice = 0.0;
const double INCREASE = 1.15;
while (column < 5)
{
 while (row < 6)
 {
 cout << "Price: ";
 cin >> oldPrice;
 prices[row][column] = oldPrice * INCREASE;
 row += 1;
 } //end while
 column += 1;
 row = 0;
} //end while
assigns the new price to each element in the six-row, five-column prices array,
column by column; the new price is calculated by multiplying the old price by the
value stored in the INCREASE named constant

You can also
use the C++
increment
operator (++)
to add 1 to a

variable. For instance,
you can use row++
and column++ in
Example 2’s for
clauses, and use
row++; and column++;
in Example 3.

The examples included in Figure 12-3 show various ways of assigning data to the arrays declared
earlier in Figure 12-2. The assignment statement in Example 1 assigns the letter F to the element
located in the second row, first column in the grades array, replacing the letter B that was stored
in the element when the array was declared.

The code in Example 2 assigns the integer 0 to each of the 12 elements in the orders array
and provides another means of initializing the array. Notice that the code uses two loops to
access each element in the array. One of the loops keeps track of the row subscript, while the
other loop keeps track of the column subscript. The code assigns the integer 0 to the array, row
by row. In other words, it assigns 0 to each element in the first row before assigning 0 to each
element in the second row, and so on.

Figure 12-3   How to use an assignment statement to assign data to a two-dimensional array

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

430

The code in Example 3 assigns a new price to each of the elements in the prices array. The
new price is calculated by the assignment statement within the nested loop. The statement
multiplies the old price by the contents of the INCREASE named constant and then assigns the
result to the current array element. Like the code in Example 2, the code in Example 3 uses two
loops to access each element in the array. However, unlike the code in Example 2, the code in
Example 3 assigns values to the array, column by column, rather than row by row. This means
that the code will assign values to each element in the first column before assigning values to
each element in the second column, and so on.

You can also use the extraction operator to store data in the elements in a two-dimensional
array. Figure 12-4 shows the syntax and examples of doing this using the arrays declared earlier
in Figure 12-2.

Figure 12-4   How to use the extraction operator to store data in a two-dimensional array

How To �Use the Extraction Operator to Store Data in a Two-Dimensional Array

Syntax
cin >> arrayName[subscript] [subscript];

Example 1
cin >> grades[2][1];
stores the user’s entry in the element located in the third row, second column in the
grades array

Example 2
for (int region = 0; region < 4; region += 1)
 for (int month = 0; month < 3; month += 1)
 {
 cout << "Number of orders for Region "
 << region + 1 << ", Month "
 << month + 1 << ": ";
 cin >> orders[region][month];
 } //end for
//end for
stores the user’s entries in the four-row, three-column orders array, region (row) by
region (row)

Example 3
int column = 0;
while (column < 5)
{
 for (int row = 0; row < 6; row += 1)
 {
 cout << "Price: ";
 cin >> prices[row][column];
 } //end for
 column += 1;
} //end while
stores the user’s entries in the six-row, five-column prices array, column by column

In Example 2’s
for clauses,
you can use
region++ and
month++. In

Example 3, you can use
row++ in the for clause
and use column++; in
the while loop.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

431

Using Two-Dimensional Arrays 	﻿

The cin statement in Example 1 in Figure 12-4 stores the user’s entry in the element located
in the third row, second column in the grades array, replacing the element’s existing data.
The code in Example 2 contains two for loops. The instructions in the outer loop will be
repeated once for each of the four regions, while the instructions in the nested loop will
be repeated once for each of the three months within each region. The cout statement in
the nested loop prompts the user to enter the number of orders for the current region and
month. The cin statement stores the user’s response in the current element in the orders
array. The responses will be stored, region (row) by region (row), in the array. In other words,
the three monthly sales for Region (row) 1 will be stored before the three monthly sales for
Region (row) 2, and so on.

Example 3 contains an outer while loop and a nested for loop. The while loop repeats its
instructions for each of the five columns in the array, and the for loop repeats its instructions for
each of the six rows in the array. The cout statement in the for loop prompts the user to enter a
price, and the cin statement stores the user’s response in the current element in the prices array.
The responses will be stored, column by column, in the array. In other words, the six rows in the
first column will be filled with prices before the six rows in the second column are filled, and so on.

Displaying the Contents of a Two-Dimensional Array
To display the contents of a two-dimensional array, you need to access each of its elements. You
do this using two counter-controlled loops: one to keep track of the row subscript and one to
keep track of the column subscript. Figure 12-5 shows examples of loops you can use to display
the contents of the arrays declared earlier in Figure 12-2. Example 1 uses two while loops to
display the contents of the grades array, column by column. The grades array contains three
rows and two columns. Example 2 uses two for loops to display the contents of the four-row,
three-column orders array, region (row) by region (row). Example 3 uses both a do while loop
and a for loop to display the contents of the six-row, five-column prices array, row by row.

How To �Display the Contents of a Two-Dimensional Array

Example 1
int row = 0;
int column = 0;
while (column < 2)
{
 while (row < 3)
 {
 cout << grades[row][column] << endl;
 row += 1;
 } //end while
 column += 1;
 row = 0;
} //end while
displays the contents of the three-row, two column grades array, column by column

Example 2
for (int region = 0; region < 4; region += 1)
 for (int month = 0; month < 3; month += 1)
 cout << orders[region][month] << endl;
 //end for
//end for
displays the contents of the four-row, three column orders array, region (row) by
region (row)

Example 3
int row = 0;
do //begin loop
{
 for (int column = 0; column < 5; column += 1)
 cout << prices[row][column] << endl;
 //end for
 row += 1;
} while (row < 6);
displays the contents of the six-row, five-column prices array, row by row

You use
one loop to
access each
element in a
one-dimensional

array, but two loops to
access each element in
a two-dimensional array.

Figure 12-5   How to display the contents of a two-dimensional array (continues)

You can use
row++; and
column++;
in Example 1,
region++ and

month++ in Example 2,
and column++ and
row++; in Example 3.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

432

(continued)

Figure 12-5   How to display the contents of a two-dimensional array

Example 1
int row = 0;
int column = 0;
while (column < 2)
{
 while (row < 3)
 {
 cout << grades[row][column] << endl;
 row += 1;
 } //end while
 column += 1;
 row = 0;
} //end while
displays the contents of the three-row, two column grades array, column by column

Example 2
for (int region = 0; region < 4; region += 1)
 for (int month = 0; month < 3; month += 1)
 cout << orders[region][month] << endl;
 //end for
//end for
displays the contents of the four-row, three column orders array, region (row) by
region (row)

Example 3
int row = 0;
do //begin loop
{
 for (int column = 0; column < 5; column += 1)
 cout << prices[row][column] << endl;
 //end for
 row += 1;
} while (row < 6);
displays the contents of the six-row, five-column prices array, row by row

The Chapton Company Program
Figure 12-6 shows the problem specification and C++ code for the Chapton Company program.
The program uses a 12-element, two-dimensional array to store the 12 order amounts entered
by the user. It then displays the order amounts by month within each of the company’s four
regions. The figure also shows a sample run of the program.

Figure 12-6   Chapton Company problem specification and program (continues)

Problem specification
Create a program for the Chapton Company. The program should allow the company’s sales
manager to enter the number of orders received from each of the company’s four sales regions
during the first three months of the year. Store the order amounts in a two-dimensional int array
that contains four rows and three columns. Each row in the array represents a region, and each
column represents a month. After the sales manager enters the 12 order amounts, the program
should display the amounts on the computer screen. The order amounts for Region 1 should be
displayed first, followed by Region 2’s order amounts, and so on.

 1 //Chapton Company.cpp - gets and displays order amounts
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int orders[4][3] = {0};
10

array declaration

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

433

Using Two-Dimensional Arrays 	﻿

(continued)

11 //store data in the array
12 for (int region = 0; region < 4; region += 1)
13 for (int month = 0; month < 3; month += 1)
14 {
15 cout << "Region " << region + 1
16 << ", Month " << month + 1
17 << " orders: ";
18 cin >> orders[region][month];
19 } //end for
20 //end for
21
22 //display the contents of the array
23 cout << endl << "Array contents:" << endl;
24 for (int region = 0; region < 4; region += 1)
25 {
26 cout << "Region " << region + 1
27 << ": " << endl;
28 for (int month = 0; month < 3; month += 1)
29 cout << " Month " << month + 1
30 << ": " << orders[region][month]
31 << endl;
32 //end for
33 } //end for
34 return 0;
35 } //end of main function

stores data in
the array

displays the contents
of the array

Figure 12-6   Chapton Company problem specification and program

the array elements are
displayed region (row) by
region (row)

You can use
region++ in
Lines 12 and
24, and use
month++ in

Lines 13 and 28.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

434

Mini-Quiz 12-1

1.	 Which of the following declares a six-row, three-column int array named quantities
and initializes each of its elements to the number 0?

a.	 int quantities[6][3] = {0};

b.	 int quantities[3][6] = {0};

c.	 int quantities{3}{6} = [0];

d.	 int quantities{6}{3} = [0];

2.	 How many elements are contained in the quantities array from Question 1?

3.	 What are the name and subscripts of the first element in the quantities array from
Question 1?

4.	 What are the name and subscripts of the last element in the quantities array from
Question 1?

5.	 Write a C++ statement that assigns the number 20 to the element located in the first
column, second row in the quantities array from Question 1.

Accumulating the Values Stored in a
Two-Dimensional Array
Figure 12-7 shows the problem specification, IPO chart information, and C++ instructions
for the Jenko Booksellers program. The program’s flowchart is also shown in the figure. The
program uses a two-dimensional array to store the sales made in each of the company’s three
bookstores. The array contains three rows and two columns. The first column in the array
contains the sales amounts for paperback books sold in each of the three stores. The second
column contains the sales amounts for hardcover books. The program calculates the total
sales by accumulating the amounts stored in the array. It then displays the total sales on the
computer screen. Figure 12-8 shows the code for the entire program and includes the result of
running the program.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Figure 12-7   Problem specification, IPO chart information (including flowchart), and C++ instructions
for the Jenko Booksellers program (continues)

Problem specification
Jenko Booksellers wants a program that calculates and displays the total of its previous month’s
sales. The program should store the sales amounts, which are shown here, in a two-dimensional
double array named sales. The array should have three rows (one row for each of the three
stores) and two columns. The first column should contain the sales amounts for paperback
books sold in each of the three stores. The second column should contain the sales amounts
for hardcover books sold in each of the three stores.

Paperback sales ($) Hardcover sales ($)
Store 1
Store 2
Store 3

3567.85
3239.67
1530.50

2589.99
2785.55
1445.80

IPO chart information
Input
 store sales (made in each of 3 stores
 for 2 types of books)

Processing
 array (3 store rows, 2 book
 columns)

 store subscript (counter: 0 to 2)
 book subscript (counter: 0 to 1)

Output
 total sales (accumulator)

Algorithm
1. repeat for (store subscript
 from 0 to 2)
 repeat for (book subscript
 from 0 to 1)
 add the sales stored in
 array[store subscript]
 [book subscript] to the
 total sales
 end repeat
 end repeat
2. display the total sales

C++ instructions

the sales are stored in the array

double sales[3][2] = {{3567.85, 2589.99},
 {3239.67, 2785.55},
 {1530.50, 1445.80}};

declared and initialized in the for clause
declared and initialized in the for clause

double total = 0.0;

for (int store = 0; store < 3;
store += 1)
 for (int book = 0; book < 2;
 book += 1)

 total += sales[store][book];

 //end for
//end for
cout << "Total sales: $" << total
<< endl;

store
subscript

book
subscript

display the
total sales

add the sales stored in
array[store subscript]

[book subscript]
to the total sales

F

F

T

T

start

stop

< 30

1

< 20

1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

435

Accumulating the Values Stored in a Two-Dimensional Array 	﻿

(continued)

Problem specification
Jenko Booksellers wants a program that calculates and displays the total of its previous month’s
sales. The program should store the sales amounts, which are shown here, in a two-dimensional
double array named sales. The array should have three rows (one row for each of the three
stores) and two columns. The first column should contain the sales amounts for paperback
books sold in each of the three stores. The second column should contain the sales amounts
for hardcover books sold in each of the three stores.

Paperback sales ($) Hardcover sales ($)
Store 1
Store 2
Store 3

3567.85
3239.67
1530.50

2589.99
2785.55
1445.80

IPO chart information
Input
 store sales (made in each of 3 stores
 for 2 types of books)

Processing
 array (3 store rows, 2 book
 columns)

 store subscript (counter: 0 to 2)
 book subscript (counter: 0 to 1)

Output
 total sales (accumulator)

Algorithm
1. repeat for (store subscript
 from 0 to 2)
 repeat for (book subscript
 from 0 to 1)
 add the sales stored in
 array[store subscript]
 [book subscript] to the
 total sales
 end repeat
 end repeat
2. display the total sales

C++ instructions

the sales are stored in the array

double sales[3][2] = {{3567.85, 2589.99},
 {3239.67, 2785.55},
 {1530.50, 1445.80}};

declared and initialized in the for clause
declared and initialized in the for clause

double total = 0.0;

for (int store = 0; store < 3;
store += 1)
 for (int book = 0; book < 2;
 book += 1)

 total += sales[store][book];

 //end for
//end for
cout << "Total sales: $" << total
<< endl;

store
subscript

book
subscript

display the
total sales

add the sales stored in
array[store subscript]

[book subscript]
to the total sales

F

F

T

T

start

stop

< 30

1

< 20

1

Figure 12-7   Problem specification, IPO chart information (including flowchart), and C++ instructions
for the Jenko Booksellers program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

436

 1 //Jenko Booksellers.cpp - displays the total sales
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 using namespace std;
 7
 8 int main()
 9 {
10 double sales[3][2] = {{3567.85, 2589.99},
11 {3239.67, 2785.55},
12 {1530.50, 1445.80}};
13 double total = 0.0; //accumulator
14
15 //accumulate sales
16 for (int store = 0; store < 3; store += 1)
17 for (int book = 0; book < 2; book += 1)
18 total += sales[store][book];
19 //end for
20 //end for
21
22 cout << fixed << setprecision(2);
23 cout << "Total sales: $" << total << endl;
24 return 0;
25 } //end of main function

Figure 12-8   Jenko Booksellers program

array declaration

accumulates the sales
stored in the array

You can use
store++ in
Line 16 and
use book++ in
Line 17.

Searching a Two-Dimensional Array
Figure 12-9 shows the problem specification, IPO chart information, and C++ instructions
for the Wilson Company program. The program’s flowchart is also shown in the figure. The
program uses a four-row, two-column array to store the company’s four pay codes and their
corresponding pay rates. The pay codes are stored in the first column of each row in the array.
The pay rate associated with each code is stored in the same row as its pay code but in the
second column. The program gets a pay code from the user and then searches for the pay code
in the array’s first column. If it finds the pay code, the program displays the corresponding pay
rate from the array’s second column; otherwise, it displays the “Invalid pay code” message.

Figure 12-9   Problem specification, IPO chart information, and C++ instructions for the Wilson
Company program (continues)

Problem specification
Wilson Company wants a program that displays the pay rate corresponding to the pay code
entered by the user. The program should store the pay codes and rates, which are listed here,
in a two-dimensional int array named codesAndRates. The array should have four rows (one
row for each of the four pay codes) and two columns. The first column should contain the four
pay codes, and the second column should contain each code’s corresponding rate.

Pay rate
 8
14
18
20

Pay code
3
6
7
9

IPO chart information
Input
 4 pay codes and their pay rates

 pay code to search for

Processing
 array (4 rows, 2 columns)

 row subscript (counter: 0 to 3)

Output
 pay rate

Algorithm
1. enter the pay code to search for

2. repeat while (the pay code to search for
 is greater than or equal to 0)
 assign 0 as the row subscript to begin
 searching the array with the first row

 repeat while (the row subscript is
 less than or equal to 3 and the
 pay code stored in array[row
 subscript][0] is not the pay code to
 search for)
 add 1 to the row subscript to
 continue the search with the
 next row
 end repeat
 if (the row subscript is less than or
 equal to 3)
 display the pay code and
 the pay rate stored in
 array[row subscript][1]

 else
 display “Invalid pay code”
 end if

 enter the pay code to search for

 end while

C++ instructions

the pay codes and pay rates are stored
in the array
int payCode = 0;

int codesAndRates[4][2] = {{3, 8},

{6, 14}, {7, 18}, {9, 20}};

int row = 0;

displayed from the array

cout << "Pay code (3, 6, 7, or 9).
" << endl;
cout << "Enter a negative number
to end: ";
cin >> payCode;
while (payCode >= 0)
{

 row = 0;

 while (row <= 3 &&
 codesAndRates[row][0]
 != payCode)

 row += 1;

 //end while
 if (row <= 3)

 cout << "Pay rate for pay
 code "
 << payCode << ": $"
 << codesAndRates[row][1]
 << endl << endl;
 else
 cout << "Invalid pay code"
 << endl << endl;
 //end if
 cout << "Pay code (3, 6, 7,
 or 9). " << endl;
 cout << "Enter a negative
 number to end: ";
 cin >> payCode;

 } //end while

T

start

pay code to
search for

>= 0

F

TF

stop

row subscript = 0

row subscript = 0

row subscript <= 3
and pay code in

array[row subscript][0]
is not pay code to

search for

add 1 to row
subscript

get pay code
to search for

row
subscript

<= 3

display
“Invalid pay

code”

get pay code
 to search for

display pay
code and pay

 rate from
array[row

subscript][1]

TF

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

437

Searching a Two-Dimensional Array 	﻿
Problem specification
Wilson Company wants a program that displays the pay rate corresponding to the pay code
entered by the user. The program should store the pay codes and rates, which are listed here,
in a two-dimensional int array named codesAndRates. The array should have four rows (one
row for each of the four pay codes) and two columns. The first column should contain the four
pay codes, and the second column should contain each code’s corresponding rate.

Pay rate
 8
14
18
20

Pay code
3
6
7
9

IPO chart information
Input
 4 pay codes and their pay rates

 pay code to search for

Processing
 array (4 rows, 2 columns)

 row subscript (counter: 0 to 3)

Output
 pay rate

Algorithm
1. enter the pay code to search for

2. repeat while (the pay code to search for
 is greater than or equal to 0)
 assign 0 as the row subscript to begin
 searching the array with the first row

 repeat while (the row subscript is
 less than or equal to 3 and the
 pay code stored in array[row
 subscript][0] is not the pay code to
 search for)
 add 1 to the row subscript to
 continue the search with the
 next row
 end repeat
 if (the row subscript is less than or
 equal to 3)
 display the pay code and
 the pay rate stored in
 array[row subscript][1]

 else
 display “Invalid pay code”
 end if

 enter the pay code to search for

 end while

C++ instructions

the pay codes and pay rates are stored
in the array
int payCode = 0;

int codesAndRates[4][2] = {{3, 8},

{6, 14}, {7, 18}, {9, 20}};

int row = 0;

displayed from the array

cout << "Pay code (3, 6, 7, or 9).
" << endl;
cout << "Enter a negative number
to end: ";
cin >> payCode;
while (payCode >= 0)
{

 row = 0;

 while (row <= 3 &&
 codesAndRates[row][0]
 != payCode)

 row += 1;

 //end while
 if (row <= 3)

 cout << "Pay rate for pay
 code "
 << payCode << ": $"
 << codesAndRates[row][1]
 << endl << endl;
 else
 cout << "Invalid pay code"
 << endl << endl;
 //end if
 cout << "Pay code (3, 6, 7,
 or 9). " << endl;
 cout << "Enter a negative
 number to end: ";
 cin >> payCode;

 } //end while

T

start

pay code to
search for

>= 0

F

TF

stop

row subscript = 0

row subscript = 0

row subscript <= 3
and pay code in

array[row subscript][0]
is not pay code to

search for

add 1 to row
subscript

get pay code
to search for

row
subscript

<= 3

display
“Invalid pay

code”

get pay code
 to search for

display pay
code and pay

 rate from
array[row

subscript][1]

TF

(continued)

Figure 12-9   Problem specification, IPO chart information, and C++ instructions for the Wilson
Company program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

438

(continued)

Problem specification
Wilson Company wants a program that displays the pay rate corresponding to the pay code
entered by the user. The program should store the pay codes and rates, which are listed here,
in a two-dimensional int array named codesAndRates. The array should have four rows (one
row for each of the four pay codes) and two columns. The first column should contain the four
pay codes, and the second column should contain each code’s corresponding rate.

Pay rate
 8
14
18
20

Pay code
3
6
7
9

IPO chart information
Input
 4 pay codes and their pay rates

 pay code to search for

Processing
 array (4 rows, 2 columns)

 row subscript (counter: 0 to 3)

Output
 pay rate

Algorithm
1. enter the pay code to search for

2. repeat while (the pay code to search for
 is greater than or equal to 0)
 assign 0 as the row subscript to begin
 searching the array with the first row

 repeat while (the row subscript is
 less than or equal to 3 and the
 pay code stored in array[row
 subscript][0] is not the pay code to
 search for)
 add 1 to the row subscript to
 continue the search with the
 next row
 end repeat
 if (the row subscript is less than or
 equal to 3)
 display the pay code and
 the pay rate stored in
 array[row subscript][1]

 else
 display “Invalid pay code”
 end if

 enter the pay code to search for

 end while

C++ instructions

the pay codes and pay rates are stored
in the array
int payCode = 0;

int codesAndRates[4][2] = {{3, 8},

{6, 14}, {7, 18}, {9, 20}};

int row = 0;

displayed from the array

cout << "Pay code (3, 6, 7, or 9).
" << endl;
cout << "Enter a negative number
to end: ";
cin >> payCode;
while (payCode >= 0)
{

 row = 0;

 while (row <= 3 &&
 codesAndRates[row][0]
 != payCode)

 row += 1;

 //end while
 if (row <= 3)

 cout << "Pay rate for pay
 code "
 << payCode << ": $"
 << codesAndRates[row][1]
 << endl << endl;
 else
 cout << "Invalid pay code"
 << endl << endl;
 //end if
 cout << "Pay code (3, 6, 7,
 or 9). " << endl;
 cout << "Enter a negative
 number to end: ";
 cin >> payCode;

 } //end while

T

start

pay code to
search for

>= 0

F

TF

stop

row subscript = 0

row subscript = 0

row subscript <= 3
and pay code in

array[row subscript][0]
is not pay code to

search for

add 1 to row
subscript

get pay code
to search for

row
subscript

<= 3

display
“Invalid pay

code”

get pay code
 to search for

display pay
code and pay

 rate from
array[row

subscript][1]

TF

Figure 12-9   Problem specification, IPO chart information, and C++ instructions for the Wilson Company program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

439

Searching a Two-Dimensional Array 	﻿

Figure 12-9   Problem specification, IPO chart information, and C++ instructions for the Wilson Company program

Figure 12-10 shows the code for the entire Wilson Company program and includes the result
of running the program. As the figure shows, the program displays $14 as the pay rate when
the user enters the number 6 as the pay code. This is because the number 6 is contained in
the codesAndRates[1][0] element, and its corresponding pay rate (14) is contained in the
codesAndRates[1][1] element. Notice that the pay code and its associated pay rate are
contained in the same row but in different columns. As the figure also shows, the program
displays the “Invalid pay code” message when the user enters the number 5 as the pay code.
This is because the number 5 does not appear in the first column in the array.

 1 //Wilson Company.cpp - displays the pay rate
 2 //corresponding to the pay code entered by the user
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 using namespace std;
 7
 8 int main()
 9 {
10 //declare array and variables
11 int codesAndRates[4][2] = {{3, 8},
12 {6, 14},
13 {7, 18},
14 {9, 20}};
15 int payCode = 0;
16 int row = 0;
17
18 //get pay code
19 cout << "Pay code (3, 6, 7, or 9). " << endl;
20 cout << "Enter a negative number to end: ";
21 cin >> payCode;
22
23 while (payCode >= 0)
24 {
25 //search each row in the array, looking
26 //for the pay code in the first column
27 //continue the search while there are
28 //array elements to search and the pay
29 //code has not been found
30 row = 0;
31 while (row <= 3
32 && codesAndRates[row][0] != payCode)
33 row += 1;
34 //end while
35
36 //if the pay code was found, display the
37 //pay code and the pay rate stored in the
38 //same row as the pay code but in the
39 //second column of the array
40 if (row <= 3)
41 cout << "Pay rate for pay code "
42 << payCode << ": $"
43 << codesAndRates[row][1]
44 << endl << endl;

Figure 12-10   Wilson Company program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

440

You will desk-check the program shown in Figure 12-10 to observe how it searches the array.
The declaration statements on Lines 11 through 16 create and initialize the two-dimensional
array and two variables. The statements on Lines 19 through 21 prompt the user to enter a pay
code and then store the user’s response in the payCode variable. Figure 12-11 shows the desk-
check table after the statements on Lines 11 through 21 are processed, assuming the user enters
the number 6 as the pay code.

Ch12-Wilson
Desk-Check

(continued)

45 else
46 cout << "Invalid pay code" << endl << endl;
47 //end if
48
49 //get pay code
50 cout << "Pay code (3, 6, 7, or 9). " << endl;
51 cout << "Enter a negative number to end: ";
52 cin >> payCode;
53 } //end while
54 return 0;
55 } //end of main function

Figure 12-10   Wilson Company program

pay rate from
codesAndRates[1][1]

invalid pay code and
message

codesAndRates[0][0]
 3

codesAndRates[0][1]
 8

codesAndRates[1][0]
 6

codesAndRates[1][1]
 14

codesAndRates[2][0]
 7

codesAndRates[2][1]
 18

codesAndRates[3][0]
 9

codesAndRates[3][1]
 20

payCode
 0
 6

row
 0

Figure 12-11   Desk-check table after the statements on Lines 11 through 21 are processed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

441

Searching a Two-Dimensional Array 	﻿

The while clause in the program’s outer loop (on Line 23) is processed next. The clause’s
condition evaluates to true because the value in the payCode variable is greater than or equal to
the number 0. Therefore, the computer processes the outer loop’s instructions.

The instructions on Lines 30 through 34 in the outer loop search for the pay code in the first
column of the array; study these instructions closely. The instruction on Line 30 assigns the
number 0 to the row variable to ensure that the search will begin in the first row. The while
clause on Lines 31 and 32 marks the beginning of a nested loop. The clause’s compound
condition evaluates to true because both of its subconditions evaluate to true. The first
subcondition evaluates to true because the value in the row variable (0) is less than or equal
to 3 (the highest row subscript in the array). The second subcondition evaluates to true because
the value in the codesAndRates[0][0] element (3) is not equal to the value in the payCode
variable (6). As a result, the row += 1; statement on Line 33 adds the number 1 to the contents
of the row variable, giving 1. Incrementing the row variable by 1 allows the computer to search
the next row in the array. Figure 12-12 shows the desk-check table after the nested loop is
processed the first time.

codesAndRates[0][0]
 3

codesAndRates[0][1]
 8

codesAndRates[1][0]
 6

codesAndRates[1][1]
 14

codesAndRates[2][0]
 7

codesAndRates[2][1]
 18

codesAndRates[3][0]
 9

codesAndRates[3][1]
 20

payCode
 0
 6

row
 0
 0
 1

Figure 12-12   Desk-check table after the nested loop is processed the first time

The compound condition in the nested loop’s while clause (on Lines 31 and 32) is evaluated
again. This time, the compound condition evaluates to false because the value in the
codesAndRates[1][0] element (6) is equal to the value in the payCode variable (6). At this
point, the nested loop ends and processing continues with the if clause on Line 40.

The if clause’s condition evaluates to true because the value in the row variable (1) is less
than or equal to 3 (the highest row subscript in the array). Therefore, the computer processes
the cout statement that appears on Lines 41 through 44. The statement displays a message
containing the pay code stored in the payCode variable (6) and the pay rate stored in the
codesAndRates[1][1] element (14), as shown earlier in Figure 12-10. After the message is
displayed, the if statement ends.

The statements on Lines 50 through 52 prompt the user to enter another pay code and then
store the user’s response in the payCode variable. This time, the user enters the number 5.
The computer evaluates the condition in the outer loop’s while clause (on Line 23) next. The
condition evaluates to true because the value in the payCode variable (5) is greater than or equal
to the number 0. Therefore, the computer processes the outer loop’s instructions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

442

The instruction on Line 30 in the outer loop assigns the number 0 to the row variable to
ensure that this new search will begin in the first row. The nested while clause on Lines 31
and 32 tells the computer to process the row += 1; statement as long as the value in the row
variable is less than or equal to 3 (the highest row subscript in the array) and the current array
element does not contain the pay code stored in the payCode variable (5). The nested loop
will stop when either of the following occurs: the row variable contains the number 4 (which
indicates that the nested loop reached the end of the array without finding the pay code) or the
pay code is located in the array’s first column.

Figure 12-13 shows the desk-check table after the nested loop ends. Unlike the nested loop in
the previous search, which stopped when the pay code of 6 was located, the nested loop in this
search stops when the row variable contains the number 4.

codesAndRates[0][0]
 3

codesAndRates[0][1]
 8

codesAndRates[1][0]
 6

codesAndRates[1][1]
 14

codesAndRates[2][0]
 7

codesAndRates[2][1]
 18

codesAndRates[3][0]
 9

codesAndRates[3][1]
 20

payCode
 0
 6
 5

row
 0
 0
 1
 0
 1
 2
 3
 4

Figure 12-13   Desk-check table after the nested loop ends and the pay code is not located

When the nested loop ends, processing continues with the if clause on Line 40. The if clause’s
condition evaluates to false because the value in the row variable (4) is not less than or equal
to 3. This indicates that the nested loop stopped processing because it reached the end of the
array’s first column without finding the pay code. Therefore, the cout statement on Line 46
displays the “Invalid pay code” message, as shown earlier in Figure 12-10, and then the if
statement ends.

Next, the statements on Lines 50 through 52 prompt the user to enter another pay code and
then store the user’s response in the payCode variable. This time the user enters the number
–1. The computer evaluates the condition in the outer loop’s while clause (on Line 23) next.
The condition evaluates to false because the value in the payCode variable (–1) is not greater
than or equal to the number 0. As a result, the outer loop ends and the computer processes the
return 0; statement on Line 54. After the return statement is processed, the program ends
and the computer removes the array and the two scalar (simple) variables from internal memory.

For more
examples
of two-
dimensional
arrays,

see the Two-Dimensional
Arrays section in the
Ch12WantMore.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

443

Passing a Two-Dimensional Array to a Function 	﻿

Passing a Two-Dimensional Array to a Function
Figure 12-14 shows a modified version of the Chapton Company program, which you viewed
earlier in Figure 12-6. In the modified version, the main function passes the orders array to a
program-defined void function named displayArray.

When passing a
two-dimensional
array, the first
set of square
brackets in its

corresponding formal
parameter can be
empty, like this: []. This
concept is covered in
Computer Exercise 17
at the end of the
chapter.

 1 //Modified Chapton Company.cpp - gets and displays order amounts
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 using namespace std;
 6
 7 //function prototype
 8 void displayArray(int nums[4][3]);
 9
10 int main()
11 {
12 int orders[4][3] = {0};
13
14 //store data in the array
15 for (int region = 0; region < 4; region += 1)
16 for (int month = 0; month < 3; month += 1)
17 {
18 cout << "Region " << region + 1
19 << ", Month " << month + 1
20 << " orders: ";
21 cin >> orders[region][month];
22 } //end for
23 //end for
24
25 //display the contents of the array
26 displayArray(orders);
27 return 0;
28 } //end of main function
29
30 //*****function definitions*****
31 void displayArray(int nums[4][3])
32 {
33 cout << endl << "Array contents:" << endl;
34 for (int region = 0; region < 4; region += 1)
35 {
36 cout << "Region " << region + 1
37 << ": " << endl;
38 for (int month = 0; month < 3; month += 1)
39 cout << " Month " << month + 1
40 << ": " << nums[region][month]
41 << endl;
42 //end for
43 } //end for
44 } //end of displayArray function

Figure 12-14   Modified Chapton Company program

You can use
region++ in
Lines 15 and
34, and use
month++ in

Lines 16 and 38.

Study closely the displayArray function prototype, function call, and function header; each is
shaded in Figure 12-14. The function call appears on Line 26 and passes one actual argument to
the displayArray function: the orders array. Like one-dimensional arrays, two-dimensional

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

444

arrays are passed automatically by reference. The displayArray function prototype and
function header appear on Lines 8 and 31, respectively; both contain one formal parameter:
nums[4][3]. The first set of square brackets that follows the formal parameter’s name contains
the number of rows in the array; the second set contains the number of columns. Recall that the
formal parameter’s name is optional in the prototype. Therefore, you could also write the formal
parameter in the function prototype as int [4][3].

Mini-Quiz 12-2

1.	 Which of the following increases the total variable by the contents of the element
located in the third row, second column of the purchases array?

a.	 purchases[2][1] += total;

b.	 purchases[1][2] += total;

c.	 total += purchases[2][1];

d.	 total += purchases[1][0];

2.	 Which of the following if clauses determines whether the value stored in the third
column, second row in the scores array is greater than 25?

a.	 if (scores[1, 3] > 25)

b.	 if (scores[2, 1] > 25)

c.	 if (scores[1][2] > 25)

d.	 if (scores[2][3] > 25)

3.	 Write a C++ statement that multiplies the contents of the element located in the first
row, second column in the sales array by 0.15 and then stores the result in the bonus
variable. The sales array and bonus variable have the double data type.

4.	 Which of the following determines whether the row variable contains a valid subscript
for an array that has 10 rows and 20 columns.

a.	 if (row >= 0 && row < 10)

b.	 if (row >= 0 && row <= 10)

c.	 if (row >= 0 && row < 9)

d.	 if (row > 0 && row <= 10)

LAB 12-1  Stop and Analyze
�Study the program shown in Figure 12-15, and then answer the questions. The
company array contains the amounts the company sold both domestically and
internationally during the months of January through June. The first row contains the
domestic sales for the six months. The second row contains the international sales
during the same period.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

The answers
to the labs are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

445

Passing a Two-Dimensional Array to a Function 	﻿

QUESTIONS

1.	 What value is stored in the company[1][5] element?

2.	 How can you calculate the total company sales made in February?

3.	 What is the highest row subscript in the company array? What is the highest column
subscript in the array?

4.	 If the January domestic sales are stored in the company[0][0] element, where are the
January international sales stored?

5.	 If you change the for clause in Line 16 to for (int month = 1; month <= 6;
month += 1), how will the change affect the assignment statement in the for loop?

6.	 Follow the instructions for starting C++ and viewing the Lab12-1.cpp file, which is
contained in either the Cpp8\Chap12\Lab12-1 Project folder or the Cpp8\Chap12 folder.
(Depending on your C++ development tool, you may need to open Lab12-1’s
project/solution file first.) Run the program. The total company sales are $643900.

7.	 Modify the program so that it displays the total domestic sales, total international sales,
and total company sales. Save and then run the program. (The total domestic sales are
$345500.)

8.	 Next, modify the program so that it also displays the total sales made in each month.
Save and then run the program. (The total January sales are $115000.)

 1 //Lab12-1.cpp - calculates the total company sales
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 using namespace std;
 6
 7 int main()
 8 {
 9 int company[2][6] = {{75000, 30200, 67800,
10 45000, 60000, 67500},
11 {40000, 75000, 64000,
12 32600, 47800, 39000}};
13 int companySales = 0;
14
15 for (int location = 0; location < 2; location += 1)
16 for (int month = 0; month < 6; month += 1)
17 companySales += company[location][month];
18 //end for
19 //end for
20 cout << "Company sales: $" << companySales << endl;
21 return 0;
22 } //end of main function

Figure 12-15   Code for Lab 12-1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

446

LAB 12-2  Plan and Create
In this lab, you will plan and create an algorithm for Falcon Incorporated. The
problem specification, IPO chart information, and C++ instructions are shown in
Figure 12-16. The program displays a shipping charge based on the number of items
ordered, which is entered by the user. The problem specification shows the three

shipping charges along with their associated minimum and maximum orders. Notice that the
maximum order amounts are stored in the first column of the two-dimensional shipCharges
array, while their corresponding shipping charges are stored in the second column. To find
the appropriate shipping charge, you search the first column for the number of items ordered,
beginning with the first row. You continue searching the first column in each row as long as
there are rows left to search and the number of items ordered is greater than the value in the
first column. You stop searching either when there are no more rows to search or when the
number of items ordered is less than or equal to the value in the first column. For example,
if the number of items ordered is 75, the first value you would look at in the array is 50. The
number of items ordered (75) is greater than 50, so you continue searching with the value in the
second row (100). The number 100 is greater than the number of items ordered (75), so you stop
searching. The appropriate shipping charge is located in the same row—in this case, the second
row—but in the second column. The appropriate shipping charge is $10.

Figure 12-16   Problem specification, IPO chart information, and C++ instructions
for Lab 12-2 (continues)

Problem specification
Falcon Incorporated wants a program that displays a shipping charge based on the number of
items ordered by the customer. The shipping charge information is shown here.

Minimum order Maximum order Shipping charge ($)
20
10
0

50
100

999999

IPO chart information
Input
 number ordered
 maximum orders and shipping charges

Processing
 array (3 rows, 2 columns)

 row subscript (counter: 0 to 2)

Output
 shipping charge

Algorithm
1. enter the number ordered

2. repeat while (the number ordered
 is greater than 0 and less than
 or equal to 999999)
 assign 0 to the row subscript
 to ensure the search begins
 in the first row

 repeat while (the row subscript
 is less than 3 and the
 number ordered is greater than
 the array[row subscript][0] value)

 add 1 to the row subscript
 to continue the search
 in the next row
 end repeat
 display the shipping charge

 enter the number ordered

 end repeat

C++ instructions

stored in the array

displayed from the array

 1
51

101

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

447

Passing a Two-Dimensional Array to a Function 	﻿

(continued)

Figure 12-16   Problem specification, IPO chart information, and C++ instructions for Lab 12-2

Problem specification
Falcon Incorporated wants a program that displays a shipping charge based on the number of
items ordered by the customer. The shipping charge information is shown here.

Minimum order Maximum order Shipping charge ($)
20
10
0

50
100

999999

IPO chart information
Input
 number ordered
 maximum orders and shipping charges

Processing
 array (3 rows, 2 columns)

 row subscript (counter: 0 to 2)

Output
 shipping charge

Algorithm
1. enter the number ordered

2. repeat while (the number ordered
 is greater than 0 and less than
 or equal to 999999)
 assign 0 to the row subscript
 to ensure the search begins
 in the first row

 repeat while (the row subscript
 is less than 3 and the
 number ordered is greater than
 the array[row subscript][0] value)

 add 1 to the row subscript
 to continue the search
 in the next row
 end repeat
 display the shipping charge

 enter the number ordered

 end repeat

C++ instructions

stored in the array

displayed from the array

 1
51

101

Figure 12-17 shows the code for the entire program, and Figure 12-18 shows the completed
desk-check table, assuming the user enters the numbers 75, 200, and –1 as the number of
items ordered.

Figure 12-17   Falcon Incorporated program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

448

(continued)

Figure 12-17   Falcon Incorporated program

Figure 12-18   Completed desk-check table for the Falcon Incorporated program

shipCharges[0][0]
 50

shipCharges[1][0]
 100

shipCharges[2][0]
 999999

shipCharges[0][1]
 20

shipCharges[1][1]
 10

shipCharges[2][1]
 0

numOrdered
 0
 75
 200
 -1

rowSub
 0
 0
 1
 0
 1
 2

The final step in the problem-solving process is to evaluate and modify (if necessary) the
program. Recall that you evaluate a program by entering its instructions into the computer and
then using the computer to run (execute) it. While the program is running, you enter the same
sample data used when desk-checking the program.

You can use
rowSub++; in
Line 25.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

449

Passing a Two-Dimensional Array to a Function 	﻿

DIRECTIONS

Follow the instructions for starting your C++ development tool. Depending on the development
tool you are using, you may need to create a new project; if so, name the project Lab12-2 Project
and save it in the Cpp8\Chap12 folder. Enter the instructions shown in Figure 12-17 in a source
file named Lab12-2.cpp. (Do not enter the line numbers.) Save the file in either the project
folder or the Cpp8\Chap12 folder. Now, follow the appropriate instructions for running the
Lab12-2.cpp file. Test the program using the same data you used to desk-check the program.
If necessary, correct any bugs (errors) in the program.

LAB 12-3  Modify
If necessary, create a new project named Lab12-3 Project and save it in the
Cpp8\Chap12 folder. Enter (or copy) the Lab12-2.cpp instructions into a new source
file named Lab12-3.cpp. Change Lab12-2.cpp in the first comment to Lab12-3.cpp.
Replace the maximum amounts in the shipCharges array with the minimum

amounts. Then, make the necessary modifications to the program. Save and then run the
program. Test the program appropriately.

LAB 12-4  What’s Missing?
The program in this lab should display the average stock price. Start your C++
development tool and view the Lab12-4.cpp file, which is contained in either the
Cpp8\Chap12\Lab12-4 Project folder or the Cpp8\Chap12 folder. (Depending on
your C++ development tool, you may need to open Lab12-4’s project/solution file

first.) Put the C++ instructions in the proper order, and then determine the one or more missing
instructions. Test the program appropriately.

LAB 12-5  Desk-Check
Desk-check the Jenko Booksellers program, which is shown in Figure 12-8 in
the chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

450

LAB 12-6  Debug
�Follow the instructions for starting C++ and viewing the Lab12-6.cpp file, which is
contained in either the Cpp8\Chap12\Lab12-6 Project folder or the Cpp8\Chap12
folder. (Depending on your C++ development tool, you may need to open Lab12-6’s
project/solution file first.) Read the program’s comments and then run the program.
Notice that the program is not working correctly. Debug the program.

Chapter Summary
•• A two-dimensional array resembles a table in that the elements are in rows and columns.

Each element has the same data type.

•• You can determine the number of elements in a two-dimensional array by multiplying the
number of its rows by the number of its columns.

•• Each element in a two-dimensional array is identified by a unique combination of two
subscripts. The first subscript represents the element’s row location in the array, and
the second subscript represents its column location. You refer to each element in a
two-dimensional array by the array’s name and the element’s subscripts, which are
specified in two sets of square brackets immediately following the name.

•• In a two-dimensional array, the first row and column subscripts are 0. The last row subscript
is always one number less than the number of rows in the array. The last column subscript is
always one number less than the number of columns in the array.

•• You must declare a two-dimensional array before you can use it. When declaring a
two-dimensional array, you must provide the number of rows and the number of columns.

•• After declaring a two-dimensional array, you can use an assignment statement or the
extraction operator to enter data into the array.

•• You need to use two loops to access every element in a two-dimensional array. One of the
loops keeps track of the row subscript, and one keeps track of the column subscript.

•• To pass a two-dimensional array to a function, you include the array’s name in the statement
that calls the function. The array’s corresponding formal parameter in the function header
must specify the formal parameter’s data type and name, followed by two sets of square
brackets. The first bracket contains the number of rows, and the second bracket contains the
number of columns.

Key Term
Two-dimensional array—an array made up of rows and columns; each element has the same
data type and is identified by a unique combination of two subscripts: a row subscript and a
column subscript

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

451

Review Questions 	

Review Questions
1.	 The first element in a two-dimensional array has a row subscript of

_____________________ and a column subscript of _____________________.

a.	 0, 0
b.	 0, 1

c.	 1, 0
d.	 1, 1

2.	 Which of the following statements creates a two-dimensional array that contains three
rows and four columns?

a.	 int rates[3, 4] = {0};

b.	 int rates[4, 3] = {0};

c.	 int rates[3][4] = {0};

d.	 int rates[4][3] = {0};

	 Use the sales array to answer Review Questions 3 through 6. The array was declared
using the int sales[2][5] = {{10000, 12000, 900, 500, 20000},
{350, 600, 700, 800, 100}}; statement.

3.	 The statement sales[1][3] += 10; will replace the number _____________________.

a.	 900 with 910
b.	 500 with 510

c.	 700 with 710
d.	 800 with 810

4.	 The statement sales[0][4] = sales[0][4 – 2]; will replace the
number _____________________.

a.	 20000 with 900
b.	 20000 with 19998

c.	 20000 with 19100
d.	 500 with 12000

5.	 The statement cout << sales[0][3] + sales[1][3] << endl;
will _____________________.

a.	 display 1300
b.	 display 1600
c.	 display sales[0][3] + sales[1][3]
d.	 result in an error

6.	 Which of the following verifies that the array subscripts stored in the row and col
variables are valid for the sales array?

a.	 if (sales[row][col] >= 0 && sales[row][col] < 5)

b.	 if (sales[row][col] >= 0 && sales[row][col] <= 5)

c.	 if (row >= 0 && row < 3 && col >= 0 && col < 6)

d.	 if (row >= 0 && row <= 1 && col >= 0 && col <= 4)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

452

Exercises

Pencil and Paper

1.	 Write the code to declare and initialize a two-dimensional double array named
balances that has four rows and six columns. (The answers to TRY THIS Exercises
are located at the end of the chapter.)

2.	 Write the code to display the contents of the balances array from Pencil and Paper
Exercise 1. Use two for statements to display the array, row by row. (The answers to
TRY THIS Exercises are located at the end of the chapter.)

3.	 Rewrite the code from Pencil and Paper Exercise 2 to display the array, column
by column.

4.	 Write the code to store the number 100 in each element in the balances array from
Pencil and Paper Exercise 1. Use two for statements.

5.	 Rewrite the code from Pencil and Paper Exercise 4 using two while statements.

6.	 Rewrite the code from Pencil and Paper Exercise 4 using the do while statement in
the outer loop and the while statement in the nested loop.

7.	 Write the statement to assign the C++ keyword true to the variable located in the
third row, first column of a bool array named answers.

8.	 Write the code to display the sum of the numbers stored in the following three
elements contained in a two-dimensional double array named sales: the first row,
first column; the second row, third column; and the third row, fourth column.

9.	 Write the code to subtract the number 1 from each element in a two-dimensional
int array named quantities. The array has 10 rows and 25 columns. Use two
for statements.

10.	 Rewrite the code from Pencil and Paper Exercise 9 using two while statements.

11.	 Write the code to find the square root of the number stored in the first row, third
column in a two-dimensional double array named mathNumbers. Display the result
on the screen.

12.	 Rewrite the code shown in Example 3 in Figure 12-5 so it displays the contents of the
prices array, column by column. Use an outer for loop and a nested while loop.

13.	 Write the code to display the largest number stored in the first column of a
two-dimensional int array named orders. The array has five rows and two
columns. Use the for statement.

14.	 Rewrite the code from Pencil and Paper Exercise 13 using the while statement.

15.	 The numbers array is a two-dimensional int array that contains three rows and five
columns. The following statement should call the void calcTotal function, passing it
the numbers array: calcTotal(numbers[3][5]);. Correct the statement.

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

453

Exercises 	

Computer

16.	 Follow the instructions for starting C++ and viewing the TryThis16.cpp file, which is
contained in either the Cpp8\Chap12\TryThis16 Project folder or the Cpp8\Chap12
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) The file contains the code shown earlier in Figure 12-8. The first
column in the array contains the sales amounts for paperback books sold in each of the
three stores; the second column contains the sales amounts for hardcover books. Save
and then run the program. The total sales are $15159.36. Modify the program to also
display the total paperback sales and the total hardcover sales. Save and then run the
program. (The answers to TRY THIS Exercises are located at the end of the chapter.)

17.	 Follow the instructions for starting C++ and viewing the TryThis17.cpp file, which is
contained in either the Cpp8\Chap12\TryThis17 Project folder or the Cpp8\Chap12
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) As mentioned in the chapter, when you pass a two-dimensional array
to a function, the first set of square brackets in its corresponding formal parameter
can be empty. Remove the number 4 from the first formal parameter in the function
prototype and function header. The main function will now need to pass two actual
arguments to the displayArray function: the array and the number of rows (regions)
in the array. Make the appropriate modifications to the displayArray function
prototype, function header, and function call. Also modify the outer loop’s for clause
in the displayArray function so it uses the number of rows passed to the function
rather than the literal constant 4. Save and then run the program. (The answers to TRY
THIS Exercises are located at the end of the chapter.)

18.	 Follow the instructions for starting C++ and viewing the ModifyThis18.cpp file, which is
contained in either the Cpp8\Chap12\ModifyThis18 Project folder or the Cpp8\Chap12
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) The file contains the code shown earlier in Figure 12-8. The first
column in the array contains the sales amounts for paperback books sold in each of the
three stores; the second column contains the sales amounts for hardcover books. Jenko
Booksellers has opened another store. The store’s sales of paperback and hardcover
books are $1650.85 and $1246.85, respectively. Add the new sales information to the
array, and then modify the program appropriately. Save and then run the program.

19.	 If necessary, create a new project named ModifyThis19 Project and save it in the
Cpp8\Chap12 folder. Enter the C++ instructions shown earlier in Figure 12-10 into a
new source file named ModifyThis19.cpp. Change the filename in the first comment.
Save and then run the program. Test the program using the following two pay codes:
6 and 5. Enter –1 to stop the program. Add a new pay code and pay rate to the array.
The new pay code is 11, and its corresponding pay rate is $23. Make the appropriate
modifications to the code. Save and then run the program. Test the program using the
following three pay codes: 6, 5, and 11. Enter –1 to stop the program.

20.	 Follow the instructions for starting C++ and viewing the ModifyThis20.cpp file, which is
contained in either the Cpp8\Chap12\ModifyThis20 Project folder or the Cpp8\Chap12
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) The file contains the code shown earlier in Figure 12-8. The first col-
umn in the array contains the sales amounts for paperback books sold in each of the
three stores; the second column contains the sales amounts for hardcover books. Save
and then run the program. The total sales are $15159.36. Modify the program to also
display each store’s total sales. Save and then run the program.

TRY THIS

TRY THIS

MODIFY THIS

MODIFY THIS

MODIFY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

454

21.	 Follow the instructions for starting C++ and viewing the Introductory21.cpp file,
which is contained in either the Cpp8\Chap12\Introductory21 Project folder or the
Cpp8\Chap12 folder. (Depending on your C++ development tool, you may need to open
the project/solution file first.) The program should calculate and display the average of
the values stored in the rates array. Display the average with two decimal places. Com-
plete the program using the for statement. Save and then run the program.

22.	 Follow the instructions for starting C++ and viewing the Introductory22.cpp file,
which is contained in either the Cpp8\Chap12\Introductory22 Project folder or the
Cpp8\Chap12 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) The program should display the contents of the
two-dimensional array, column by column and also row by row. Complete the program
using a while statement in the outer loops and a for statement in the nested loops.
Save and then run the program.

23.	 If necessary, create a new project named Intermediate23 Project and save it in the
Cpp8\Chap12 folder. Also create a new source file named Intermediate23.cpp. Declare
a seven-row, two-column int array named temperatures. The program should
prompt the user to enter the highest and lowest temperatures for seven days. Store the
highest temperatures in the first column in the array. Store the lowest temperatures in
the second column. The program should display the average high temperature and the
average low temperature. Display the average temperatures with one decimal place.
Save and then run the program. Test the program using the data shown in Figure 12-19.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Day
1
2
3
4
5
6
7

Highest
 95
 98
 86
 99
 83
 75
 80

Lowest
 67
 54
 70
 56
 34
 68
 45

Figure 12-19  

24.	 In this exercise, you modify the program from Computer Exercise 23. If necessary,
create a new project named Intermediate24 Project and save it in the Cpp8\Chap12
folder. Copy the instructions from the Intermediate23.cpp file into a source file
named Intermediate24.cpp. Change the filename in the first comment. In addition to
displaying the average high temperature and average low temperature, the program
should also display the highest temperature stored in the first column in the array and
the lowest temperature stored in the second column. Save and then run the program.
Test the program using the data shown earlier in Figure 12-19.

25.	 Follow the instructions for starting C++ and viewing the Advanced25.cpp file, which is
contained in either the Cpp8\Chap12\Advanced25 Project folder or the Cpp8\Chap12
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) Code the program so that it asks the user for a dollar amount by
which each price should be increased. The program should increase each price in the
array’s first column by that amount. For example, when the user enters the number 10,
the program should increase each price in the array’s first column by $10. Store the

INTERMEDIATE

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

455

Exercises 	

updated prices in the second column of the array. After increasing each price, the
program should display the contents of the array, row by row. Display the array contents
in two columns. Save and then run the program. Increase each price by $10.

26.	 In this exercise, you code an application that displays the number of times a value
appears in a two-dimensional array. Follow the instructions for starting C++ and
viewing the Advanced26.cpp file, which is contained in either the Cpp8\Chap12\
Advanced26 Project folder or the Cpp8\Chap12 folder. (Depending on your C++
development tool, you may need to open the project/solution file first.) Code the
program so that it displays the number of times each of the numbers from 1
through 9 appears in the numbers array. Save and then run the program. (Hint: Use
a one-dimensional array of counter variables.)

27.	 If necessary, create a new project named Advanced27 Project and save it in the
Cpp8\Chap12 folder. Also create a new source file named Advanced27.cpp. JM Sales
employs 10 salespeople. The sales made by the salespeople during the months of
January, February, and March are listed in Figure 12-20. Store the sales amounts in
a two-dimensional array. The sales manager wants an application that allows him to
enter the current bonus rate. The program should display each sales person’s number
(1 through 10), total sales amount, and total bonus amount. It also should display
the total bonus paid to all salespeople. Display the bonus amounts with two decimal
places. Save and then run the program. Test the program using 10% as the bonus rate.

ADVANCED

ADVANCED

Salesperson
1
2
3
4
5
6
7
8
9
10

 January
 2400
 1500
 600
 790
 1000
 6300
 1300
 2700
 4700
 1200

 February
 3500
 7000
 450
 240
 1000
 7000
 450
 5500
 4800
 1300

 March
 2000
 1000
 2100
 500
 1000
 8000
 700
 6000
 4900
 400

Figure 12-20  

28.	 Follow the instructions for starting C++ and viewing the Advanced28.cpp file, which is
contained in either the Cpp8\Chap12\Advanced28 Project folder or the Cpp8\Chap12
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) Notice that the pay codes in the array are in ascending numerical
order. The user will enter the pay code to search for in the array. The program should
search for the pay code in the first column of the array, but the search should begin in
the middle row, which is row 4. If the pay code the user is searching for is located in the
first column of row 4, the program should display the corresponding pay rate from the
second column in row 4. If the pay code the user is searching for is greater than the pay
code in row 4’s first column, the search should continue in rows 5, 6, and 7. However,
if the pay code the user is searching for is less than the pay code in row 4’s first column,
the search should continue in rows 3, 2, and 1. Save and then run the program. (Hint:
To verify that the search works appropriately, use counters to keep track of the number
of greater than comparisons made and the number of less than comparisons made.)

29.	 In this exercise, you will create a program that allows the user to enter an employee’s
gross pay amount as well as his or her filing status and number of withholding allowances.

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

456

The program should calculate and display the amount of federal withholding tax (FWT)
to deduct from the weekly gross pay.

a.	 The amount of FWT is based on the employee’s weekly taxable wages and filing
status, which is either single (including head of household) or married. The program
will need to calculate the weekly taxable wages by first multiplying the number of
withholding allowances by $76.90 (the value of a withholding allowance in 2015) and
then subtracting the result from the weekly gross pay. For example, if your weekly
gross pay is $400 and you have two withholding allowances, your weekly taxable
wages are $246.20, as shown in Figure 12-21.

b.	 You use the weekly taxable wages, along with the filing status and the appropriate
weekly Federal Withholding Tax table, to determine the amount of FWT to withhold.
The weekly tax tables for 2015 are shown in Figure 12-22. Each table contains five
columns of information. The first two columns list various ranges, also called brackets,
of taxable wage amounts. The first column (Over) lists the amount that a taxable wage
in that bracket must be over, and the second column (But not over) lists the maximum
amount included in the bracket. The remaining three columns (Base amount,
Percentage, and Of excess over) tell you how to calculate the tax for each range. For
example, assume that you are single and your weekly taxable wages are $246.20. Before
you can calculate the amount of your tax, you need to locate your taxable wages in the
first two columns of the Single table. Taxable wages of $246.20 fall within the $222
through $764 bracket. After locating the bracket that contains your taxable wages, you
then use the remaining three columns in the table to calculate your tax. In this case,
you calculate the tax by first subtracting 222 (the amount shown in the Of excess over
column) from your taxable wages of 246.20, giving 24.20. You then multiply 24.20
by 15% (the amount shown in the Percentage column), giving 3.63. You then add
that amount to the amount shown in the Base amount column (in this case, 17.80),
giving $21.43 as your tax. The calculations are shown in Figure 12-21 along with the
calculations for a married taxpayer whose weekly taxable wages are $1,659.50.

c.	 If necessary, create a new project named Advanced29 Project and save it in the
Cpp8\Chap12 folder. Enter your C++ instructions in a new source file named
Advanced29.cpp. Store each tax table in its own two-dimensional array. Be sure
to enter appropriate comments and any additional instructions required by the
compiler. Test the program appropriately.

Taxable wage calculation
Gross wages $ 400.00
Allowances – 153.80 (2 withholding allowances * 76.90)
Taxable wages $ 246.20

Single with weekly
taxable wages of $246.20
Taxable wages $ 246.20
Of excess over – 222.00
 24.20
Percentage * 0.15
 3.63
Base amount + 17.80
Tax $ 21.43

Married with weekly
taxable wages of $1,659.50
Taxable wages $ 1,659.50
Of excess over – 1,606.00
 53.50
Percentage * 0.25
 13.38
Base amount + 198.40
Tax $ 211.78

Figure 12-21  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

457

Exercises 	

30.	 Follow the instructions for starting C++ and viewing the SwatTheBugs30.cpp file,
which is contained in either the Cpp8\Chap12\SwatTheBugs30 Project folder or the
Cpp8\Chap12 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) Read the program’s comments and then run the
program. Notice that the program is not working correctly. Debug the program.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 double balances[4][6] = {0.0};

2.	 for (int row = 0; row < 4; row += 1)

 for (int col = 0; col < 6; col += 1)

cout << balances[row][col] << endl;

 //end for

 //end for

SWAT THE BUGS

Figure 12-22  

Single person (including head of household)
If the taxable
wages are: The amount of income tax to withhold is:

Over

$ 44
$ 222
$ 764
$1,789
$3,685
$7,958
$7,990

But not over
$ 44
$ 222
$ 764
$1,789
$3,685
$7,958
$7,990

Base amount
0
0
$ 17.80 plus
$ 99.10 plus
$ 355.35 plus
$ 886.23 plus
$2,296.32 plus
$2,307.52 plus

Percentage

10%
15%
25%
28%
33%
35%
39.6%

Of excess over

$ 44
$ 222
$ 764
$1,789
$3,685
$7,958
$7,990

FWT Tables – Weekly Payroll Period

Over

$ 165
$ 520
$1,606
$3,073
$4,597
$8,079
$9,105

But not over
$ 165
$ 520
$1,606
$3,073
$4,597
$8,079
$9,105

Base amount
0
0
$ 35.50 plus
$ 198.40 plus
$ 565.15 plus
$ 991.87 plus
$2,140.93 plus
$2,500.03 plus

Percentage

10%
15%
25%
28%
33%
35%
39.6%

Of excess over

$ 165
$ 520
$1,606
$3,073
$4,597
$8,079
$9,105

Married person
If the taxable
wages are: The amount of income tax to withhold is:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 2 Two-Dimensional Arrays

458

Computer

16.	 See Figure 12-23.

Figure 12-23  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

459

Exercises 	

17.	 See Figure 12-24. The changes are shaded in the figure.

Figure 12-24  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 13
Strings

After studying Chapter 13, you should be able to:

�� Declare string variables and named constants

�� Get string input using the getline function

�� Ignore characters using the ignore function

�� Determine the number of characters in a string

�� Access the characters in a string

�� Search a string

�� Remove characters from a string

�� Convert a string to a numeric data type

�� Replace characters in a string

�� Insert characters within a string

�� Duplicate characters within a string

�� Concatenate strings

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

462

The string Data Type
The programs created in the previous chapters used int and double variables and named
constants. In this chapter, the programs will also use string variables and named constants.
As you learned in Chapter 3, the string data type is not one of the fundamental data types in
C++. Rather, it was added to the C++ language through the use of a class, called the string
class. Recall that a class is simply a group of instructions that the computer uses to create an
object. The instructions for creating a string object, which can be either a string variable or
a string named constant, are contained in the string file. Therefore, for a program to use the
string class, it must contain the #include <string> directive. Also included in the string
file are functions that you can use to manipulate strings. The functions are called member
functions because they are members of a class—in this case, the string class. You will explore
some of the more commonly used string class member functions in this chapter. First,
however, you need to learn how to declare a string memory location.

Figure 13-1 shows examples of using the string class to create and initialize string variables
and string named constants. Memory locations having the string data type are initialized
using string literal constants. Recall from Chapter 3 that a string literal constant is zero or
more characters enclosed in double quotation marks. The declaration statement in Example 1
creates a string variable named city and initializes it to the empty string (“”), which is two
double quotation marks with no space between; most string variables are initialized to
the empty string. The declaration statement in Example 2 creates a string variable named
playAgain and initializes it to the string “Y”. Example 3 creates a string named constant called
COMPANY_NAME and initializes it to “Jacoby Ltd.”.

Ch13-Chapter Preview

Figure 13-1   How to declare and initialize string variables and named constants

How To �Declare and Initialize string Variables and Named Constants

Example 1
string city = "";
declares and initializes a string variable named city

Example 2
string playAgain = "Y";
declares and initializes a string variable named playAgain

Example 3
const string COMPANY_NAME = "Jacoby Ltd.";
declares and initializes a string named constant called COMPANY_NAME

Getting String Input from the Keyboard
In previous chapters, you used the extraction operator (>>) to get numbers and characters from
the user at the keyboard. The extraction operator can also be used to get string input from the
keyboard, as shown in the examples in Figure 13-2. However, keep in mind that the extraction
operator stops reading characters when it encounters a white-space character in the input.
Recall that a white-space character is a blank, a tab, or a newline. You enter a blank character
when you press the Spacebar on your keyboard. You enter a tab character when you press the
Tab key, and you enter a newline character when you press the Enter key. As a result, if the user
inadvertently enters the string “32 101” (rather than “32101”) as the ZIP code in Example 1, the

You will learn
how to create
your own
classes and
objects in
Chapter 15.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

463

Getting String Input from the Keyboard 	﻿

extraction operator in the cin >> zipCode; statement will store only the string “32” in the
zipCode variable.

Figure 13-2   How to use the extraction operator (>>) to get string input from the keyboard

How To �Use the Extraction Operator (>>) to Get String Input from the Keyboard

Example 1
string zipCode = "";
cout << "Enter your zip code: ";
cin >> zipCode;
gets a string from the keyboard and stores it in the zipCode variable

Example 2
string playAgain = "Y";
cout << "Play the game again? (Y/N): ";
cin >> playAgain;
gets a string from the keyboard and stores it in the playAgain variable

Because many strings entered at the keyboard contain one or more blank characters (such as
“San Diego, CA” and “Marie S. Harris”), the string class provides a member function called
getline for accepting that type of input. Figure 13-3 shows the function’s syntax and includes
examples of using the function. The semicolon that appears as the last character in the syntax
indicates that the function is a self-contained statement.

Figure 13-3   How to use the getline function to get string input from the keyboard

How To �Use the getline Function to Get String Input from the Keyboard

Syntax
getline(cin, stringVariableName[, delimiterCharacter]);

Example 1
string name = "";
cout << "Enter your name: ";
getline(cin, name);
stores the characters entered by the user, up until the newline character, in the name
variable; consumes the newline character

Example 2
string name = "";
cout << "Enter your name: ";
getline(cin, name, '\n');
same as Example 1, but specifies the newline delimiter character

Example 3
string city = "";
cout << "City: ";
getline(cin, city, '\#');
stores the characters entered by the user, up until the # character, in the city
variable; consumes the # character

semicolon

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

464

The getline function has three actual arguments, two of which are required. The required
cin argument refers to the computer keyboard, and the required stringVariableName
argument is the name of a string variable in which to store the input. You can use the optional
delimiterCharacter argument to indicate the end of the string. The argument represents the
character that immediately follows the last character in the string. The getline function will
continue to read the characters entered at the keyboard until it encounters the delimiter
character. If you omit the delimiterCharacter argument, the default delimiter character is the
newline character. For example, if the user types the words “Good night” and then presses the
Enter key, the string will end with the letter t, which is the last character the user typed before
pressing the Enter key. When the getline function encounters the delimiter character in
the input, it discards the character—a process C++ programmers refer to as consuming the
character.

The getline function in Example 1 in Figure 13-3 reads the characters entered at the keyboard
and then stores the characters in the name variable. The function will stop reading and storing
characters when it encounters the newline character, which is when the user presses the
Enter key. As mentioned earlier, the newline character is the default delimiter character in the
getline function. At that point, the function will consume (discard) the newline character.

Like the getline function in Example 1, the getline function in Example 2 also reads
the characters entered at the keyboard and stores them in the name variable. Here, too, the
function will stop reading and storing characters when it encounters the newline character,
which it will consume (discard). The newline character is designated in C++ by a backslash
and the letter n, both enclosed in single quotation marks, like this: '\n'. Although the
newline character consists of two characters, it is treated as one character by the computer.
The backslash in the newline character is called an escape character, and it indicates that the
character that follows it—in this case, the letter n—has a special meaning. The combination
of the backslash and the character that follows it is called an escape sequence. An example
of another escape sequence is '\t', which represents the Tab key.

The getline function in Example 3 in Figure 13-3 reads the characters entered at the keyboard
and stores them in the city variable. In this case, the function will stop reading and storing
characters when it encounters the # character, which it will consume (discard).

The Primrose Auction House Program
Figure 13-4 shows the problem specification and IPO chart for the Primrose Auction House
program, which gets two items from the user: a buyer’s name and the amount of his or her
purchase. It then calculates the buyer’s premium and displays the buyer’s name and premium
amount on the screen.

Problem specification
Primrose Auction House wants a program that calculates the fee a buyer must pay to the auction
house when purchasing an item. The fee, which is called the buyer’s premium, is a percentage of
the purchase price. The Primrose Auction House charges a 10% fee. The program should allow the
user to enter the buyer’s name and the amount of his or her purchase. It should display a message
that contains the buyer’s name and the premium amount.

Input
name
price
rate (10%)

Output
name
premium

Processing
Processing items: none

Algorithm:
1. enter the name and price
2. calculate the premium by multiplying the price by the rate
3. display the name and premium

start

stop

enter name
and price

premium = price * rate

display name
and premium

Figure 13-4   Problem specification and IPO chart for the Primrose Auction House program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

465

The Primrose Auction House Program 	﻿

Figure 13-4   Problem specification and IPO chart for the Primrose Auction House program

(continued)

Problem specification
Primrose Auction House wants a program that calculates the fee a buyer must pay to the auction
house when purchasing an item. The fee, which is called the buyer’s premium, is a percentage of
the purchase price. The Primrose Auction House charges a 10% fee. The program should allow the
user to enter the buyer’s name and the amount of his or her purchase. It should display a message
that contains the buyer’s name and the premium amount.

Input
name
price
rate (10%)

Output
name
premium

Processing
Processing items: none

Algorithm:
1. enter the name and price
2. calculate the premium by multiplying the price by the rate
3. display the name and premium

start

stop

enter name
and price

premium = price * rate

display name
and premium

Figure 13-5 shows the Primrose Auction House program, with the code pertaining to string
data shaded. The #include <string> directive, which is necessary when using string memory
locations, appears on Line 7. The declaration statement on Line 13 declares a string variable
called name and initializes it to the empty string. The getline function on Line 18 waits for the
user to respond to the “Buyer’s name: ” prompt. When the user presses the Enter key, the function
stores the characters typed by the user, up until the newline character, in the name variable. (Recall
that the newline character is the default delimiter character.) The function then consumes the
newline character. Figure 13-5 also includes a sample run of the program.

 1 //Primrose.cpp
 2 //displays a buyer's name and premium
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <iomanip>
 7 #include <string>
 8 using namespace std;
 9
10 int main()
11 {
12 const double RATE = 0.1;
13 string name = "";
14 int price = 0;
15 double premium = 0.0;
16
17 cout << "Buyer's name: ";
18 getline(cin, name);
19 cout << "Purchase price: ";
20 cin >> price;
21
22 premium = price * RATE;
23
24 cout << fixed << setprecision(2);
25 cout << "********Auction Summary********" << endl;
26 cout << "Buyer: " << name << endl
27 << "Premium: $" << premium << endl;
28
29 return 0;
30 } //end of main function

Figure 13-5   Primrose Auction House program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

466

(continued)

Figure 13-5   Primrose Auction House program

 1 //Primrose.cpp
 2 //displays a buyer's name and premium
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <iomanip>
 7 #include <string>
 8 using namespace std;
 9
10 int main()
11 {
12 const double RATE = 0.1;
13 string name = "";
14 int price = 0;
15 double premium = 0.0;
16
17 cout << "Buyer's name: ";
18 getline(cin, name);
19 cout << "Purchase price: ";
20 cin >> price;
21
22 premium = price * RATE;
23
24 cout << fixed << setprecision(2);
25 cout << "********Auction Summary********" << endl;
26 cout << "Buyer: " << name << endl
27 << "Premium: $" << premium << endl;
28
29 return 0;
30 } //end of main function

Now let’s make a slight change to the problem specification for the auction house. In addition to
entering the buyer’s name and the purchase amount, the user should also enter the item number
assigned to the purchased item. The program should now display the item number along with
the buyer’s name and premium amount. Consider how these changes will affect the original
program shown in Figure 13-5.

The modified program will need to declare and initialize a string variable to store the item
number entered by the user. It will also need both a cout statement that prompts the user to enter
the item number and a getline function to get the user’s input. A getline function is appropriate
because the auction house’s item numbers may contain one or more spaces. In addition, the
program will need to include the item number in the cout statement that displays the buyer’s name
and premium amount. The modifications made to the original program are shaded in Figure 13-6.
The figure also contains a sample run of the modified program. Notice that the program does not
work correctly: It does not pause to allow the user to enter the item number.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

467

The Primrose Auction House Program 	﻿

To understand why the modified program is not working correctly, you need to understand how
the extraction operator and getline function get keyboard input. Toward this end, you will
desk-check Lines 18 through 23 from Figure 13-6 using Jason Higgins, 2500, and ABX34 as the
buyer’s name, purchase amount, and item number, respectively.

The cout statement on Line 18 prompts the user to enter the buyer’s name. Before allowing the
user to enter the name, the getline function on Line 19 checks the cin object to determine
whether it contains any characters. (Recall from Chapter 4 that the cin object stores the
characters entered at the keyboard.) Because the cin object is empty at this point in the
program, the getline function waits for the user to enter a name. In this case, the user types
the string “Jason Higgins” and then presses the Enter key to indicate that he or she is finished
entering the name. The computer stores the name and the newline character ('\n') in the cin

 1 //Modified Primrose.cpp
 2 //displays a buyer's name, premium, and the item number
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <iomanip>
 7 #include <string>
 8 using namespace std;
 9
10 int main()
11 {
12 const double RATE = 0.1;
13 string name = "";
14 int price = 0;
15 double premium = 0.0;
16 string itemNum = "";
17
18 cout << "Buyer's name: ";
19 getline(cin, name);
20 cout << "Purchase price: ";
21 cin >> price;
22 cout << "Item number: ";
23 getline(cin, itemNum);
24
25 premium = price * RATE;
26
27 cout << fixed << setprecision(2);
28 cout << "********Auction Summary********" << endl;
29 cout << "Buyer: " << name << endl
30 << "Premium for item " << itemNum
31 << ": $" << premium << endl;
32
33 return 0;
34 } //end of main function

Figure 13-6   Modified Primrose Auction House program

the user was not given
the chance to enter the
item number

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

468

object. It then alerts the getline function that the object now contains data. The getline
function removes both the name and the newline character from the cin object. It stores the
name in the name variable and then consumes the newline character.

Next, the cout statement on Line 20 prompts the user to enter the purchase price. Before
allowing the user to enter the price, the extraction operator in the cin >> price; statement
on Line 21 checks the cin object to determine whether it contains any characters. The object
is empty at this point, so the extraction operator waits for the user to enter the price. In this
case, the user types the four numbers 2, 5, 0, and 0 and then presses the Enter key to indicate
that he or she has completed the price entry. The computer stores the four numbers and the
newline character ('\n') in the cin object. It then alerts the extraction operator that the object
now contains data. The extraction operator removes the four numbers from the cin object and
stores them in the price variable. However, it leaves the newline character in the object.

Next, the cout statement on Line 22 prompts the user to enter the item number. Before
allowing the user to respond to the prompt, the getline function on Line 23 checks the cin
object to determine whether it contains any characters. At this point, the object contains the
newline character, which the getline function interprets as the end of the item number entry.
As a result, the getline function stores the empty string in the itemNum variable and then
consumes the newline character. Processing continues with the calculation statement on Line
25. As the desk-check shows, the program is not working correctly because of the newline
character that the extraction operator on Line 21 leaves in the cin object. You can fix the
program by telling the computer to ignore that character.

The ignore Function
You can use the ignore function to first read and then ignore characters stored in the cin
object. The function ignores the characters by consuming (discarding) them. Figure 13-7 shows
the function’s syntax and includes examples of using the function.

You will need to
use the ignore
function
whenever the
getline

function is processed
after a statement
containing the
extraction operator.

Figure 13-7   How to use the ignore function (continues)

How To �Use the ignore Function

Syntax
cin.ignore([numberOfCharacters][, delimiterCharacter]);

Example 1
cin.ignore();
reads and consumes one character; equivalent to cin.ignore(1);

Example 2
cin.ignore(5);
reads and consumes five characters

Example 3
cin.ignore(100, '\n');
reads and consumes characters until either 100 characters are consumed or the
newline character is consumed, whichever occurs first

Example 4
cin.ignore(25, '#');
reads and consumes characters until either 25 characters are consumed or the
character is consumed, whichever occurs first

semicolon

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

469

The Primrose Auction House Program 	﻿

Like the getline function, the ignore function is a self-contained statement, as the semicolon
at the end of the syntax indicates. The function has two actual arguments, both of which are
optional. The numberOfCharacters argument is an integer that represents the maximum
number of characters the function should consume; if omitted, the default number of characters
is 1. The delimiterCharacter argument is a character that, when consumed, stops the ignore
function from reading and discarding any additional characters. The ignore function stops
reading and discarding characters when it either consumes the number of characters specified in
the numberOfCharacters argument or consumes the delimiterCharacter, whichever occurs first.

As indicated in Example 1 in Figure 13-7, you can use either the statement cin.ignore();
or the statement cin.ignore(1); to read and then discard (consume) one character. The
ignore function in Example 2 reads and consumes five characters. Example 3’s ignore
function reads and consumes characters until either 100 characters are consumed or the
newline character is consumed, whichever occurs first. The ignore function in Example 4
reads and discards characters until either 25 characters are consumed or the # character is
consumed, whichever occurs first.

In the modified auction house program, you will enter the ignore function immediately after
the cin >> price; statement, as shown in Figure 13-8. By doing this, the function will read
and then consume the newline character that remains in the cin object after the user enters the
purchase price. Figure 13-8 also includes a sample run of the modified program.

(continued)

Figure 13-7   How to use the ignore function

Syntax
cin.ignore([numberOfCharacters][, delimiterCharacter]);

Example 1
cin.ignore();
reads and consumes one character; equivalent to cin.ignore(1);

Example 2
cin.ignore(5);
reads and consumes five characters

Example 3
cin.ignore(100, '\n');
reads and consumes characters until either 100 characters are consumed or the
newline character is consumed, whichever occurs first

Example 4
cin.ignore(25, '#');
reads and consumes characters until either 25 characters are consumed or the
character is consumed, whichever occurs first

 1 //Modified Primrose.cpp
 2 //displays a buyer's name, premium, and the item number
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <iomanip>
 7 #include <string>
 8 using namespace std;
 9
10 int main()
11 {
12 const double RATE = 0.1;
13 string name = "";
14 int price = 0;
15 double premium = 0.0;
16 string itemNum = "";
17
18 cout << "Buyer's name: ";
19 getline(cin, name);
20 cout << "Purchase price: ";
21 cin >> price;
22 cin.ignore(100, '\n');
23 cout << "Item number: ";
24 getline(cin, itemNum);
25
26 premium = price * RATE;
27
28 cout << fixed << setprecision(2);
29 cout << "********Auction Summary********" << endl;
30 cout << "Buyer: " << name << endl
31 << "Premium for item " << itemNum
32 << ": $" << premium << endl;
33
34 return 0;
35 } //end of main function

Figure 13-8   The ignore function entered in the modified auction house program (continues)

Lab 13-6
provides
another
example of a
program that

requires the ignore
function.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

470

You may be wondering why the modified program in Figure 13-8 uses cin.ignore(100, '\n');
rather than the simpler cin.ignore();. Although both statements will consume the newline
character left in the cin object after the purchase price is entered, there is an advantage to
using the cin.ignore(100, '\n'); statement in the program. To illustrate, assume that
when entering the purchase price, the user types the four numbers 2, 5, 0, and 0, followed
inadvertently by the letter w, and then presses the Enter key. The computer stores the four
numbers along with the letter w and the newline character in the cin object. It then alerts
the extraction operator in the cin >> price; statement that the object now contains data.
The extraction operator removes the four numbers from the cin object and stores them in
the price variable. However, it leaves both the letter w (which cannot be stored in a numeric
variable) and the newline character in the object. At this point, the cin object contains two
characters, as shown in Figure 13-9.

ignore function

the user can
now enter the
item number

(continued)

 1 //Modified Primrose.cpp
 2 //displays a buyer's name, premium, and the item number
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <iomanip>
 7 #include <string>
 8 using namespace std;
 9
10 int main()
11 {
12 const double RATE = 0.1;
13 string name = "";
14 int price = 0;
15 double premium = 0.0;
16 string itemNum = "";
17
18 cout << "Buyer's name: ";
19 getline(cin, name);
20 cout << "Purchase price: ";
21 cin >> price;
22 cin.ignore(100, '\n');
23 cout << "Item number: ";
24 getline(cin, itemNum);
25
26 premium = price * RATE;
27
28 cout << fixed << setprecision(2);
29 cout << "********Auction Summary********" << endl;
30 cout << "Buyer: " << name << endl
31 << "Premium for item " << itemNum
32 << ": $" << premium << endl;
33
34 return 0;
35 } //end of main function

Figure 13-8   The ignore function entered in the modified auction house program

 cin object price
Before the >> operator in cin >> price; is processed 2500w 0
After the >> operator in cin >> price; is processed w 2500

Figure 13-9   Contents of cin object and price variable

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

471

Determining the Number of Characters in a string Variable 	﻿

If the program used the cin.ignore(); statement, the ignore function would consume only
the letter w. The newline character would still be in the cin object when the getline(cin,
itemNum); statement on Line 24 is processed. As you learned earlier, the getline
function will interpret the newline character as the end of the item number entry. The
cin.ignore(100, '\n'); statement, on the other hand, will consume both the letter w and
the newline character. This is because the statement tells the computer to read and discard
characters until either 100 characters are consumed or the newline character is consumed,
whichever occurs first. As a result, the getline function on Line 24 will not find any characters
in the cin object and will wait for the user to enter the item number.

Mini-Quiz 13-1
1.	 Which of the following creates a named constant called CITY?

a.	 const string CITY = "Fort Knox"

b.	 const string CITY = 'Fort Knox';

c.	 const string CITY = "Fort Knox";

d.	 constant string CITY = "Fort Knox";

2.	 Which of the following declares a variable named state and initializes it to the
empty string?

a.	 string state = ""

b.	 string state = "";

c.	 string state = ' ';

d.	 string state = '';

3.	 Which of the following gets a string of characters from the cin object and stores them
in the streetAddress variable?

a.	 getline(cin, streetAddress, '\n');

b.	 getline(streetAddress, cin);

c.	 cin.getline(streetAddress);

d.	 getline.cin(streetAddress);

4.	 Which of the following will stop reading and discarding characters either when 10 char-
acters are consumed or when the user presses the Enter key, whichever occurs first?

a.	 cin.ignore('\n', 10);

b.	 cin.ignore(10);

c.	 cin.ignore(10, '\n');

d.	 both b and c

Determining the Number of Characters in a string Variable
The string class provides the length function for determining the number of characters
contained in a string variable. The function’s syntax is shown in Figure 13-10 along with
examples of using the function. In the syntax, string is the name of the string variable whose
length you want to determine. The length function returns an integer that represents the
number of characters contained in the variable.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

472

How To �Use the length Function

Syntax
string.length()

Example 1
string name = "Ariel Chou";
cout << name.length() << endl;
displays the number 10 on the screen

Example 2
string stateID = "";
cout << "Two-character state ID: ";
cin >> stateID;
if (stateID.length() == 2)
 cout << "You entered two characters.";
else
 cout << "Please enter only two characters.";
//end if
compares the number of characters stored in the stateID variable with the number 2
and then displays an appropriate message

Example 3
string partNum = "";
cout << "Six-character part number: ";
getline(cin, partNum);
while (partNum.length() != 6)
{
 cout << "Six-character part number: ";
 getline(cin, partNum);
} //end while
continues getting a part number until the user enters exactly six characters

The ZIP Code program shown in Figure 13-11 uses the length function to determine whether
the user’s entry contains exactly five characters. The function appears in the if clause on
Line 19 and is shaded in the figure. The figure also contains a sample run of the program.

Figure 13-10   How to use the length function

 1 //ZIP Code.cpp
 2 //displays a message indicating whether a ZIP code
 3 //contains the appropriate number of characters
 4 //Created/revised by <your name> on <current date>
 5
 6 #include <iostream>
 7 #include <string>
 8 using namespace std;
 9
10 int main()
11 {
12 string zipCode = "";
13
14 cout << "Five-character ZIP code (-1 to end): ";
15 cin >> zipCode;
16
17 while (zipCode != "-1")
18 {
19 if (zipCode.length() == 5)
20 cout << "-->Correct number of characters";
21 else
22 cout << "-->Incorrect number of characters";
23 //end if
24 cout << endl << endl;
25
26 cout << "Five-character ZIP code (-1 to end): ";
27 cin >> zipCode;
28 } //end while
29 return 0;
30 } //end of main function

Figure 13-11   ZIP Code program (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

473

Accessing the Characters in a string Variable 	﻿

Accessing the Characters in a string Variable
The string class’s substr function allows you to access any number of characters contained
in a string variable; it then returns those characters. The function’s syntax is shown in
Figure 13-12. In the syntax, string is the name of a string variable. The required subscript
argument represents the subscript of the first character you want to access in the string. You
learned about subscripts in Chapter 11, which covered one-dimensional arrays. A string is
equivalent to a one-dimensional array of characters, with each character having a unique
subscript that indicates its position in the string. The first character in a string has a subscript
of 0, the second has a subscript of 1, and so on.

The function’s count argument, which is optional, indicates the number of characters you want
to access in the string. To access the first four characters, you use 0 as the subscript argument
and 4 as the count argument. Similarly, to access the tenth through the twelfth characters,
you use 9 as the subscript argument and 3 as the count argument. The substr function
returns a string that contains count number of characters, beginning with the character whose

You can use
city[0] to
refer to the
first character
in a string

variable named city.

(continued)

 1 //ZIP Code.cpp
 2 //displays a message indicating whether a ZIP code
 3 //contains the appropriate number of characters
 4 //Created/revised by <your name> on <current date>
 5
 6 #include <iostream>
 7 #include <string>
 8 using namespace std;
 9
10 int main()
11 {
12 string zipCode = "";
13
14 cout << "Five-character ZIP code (-1 to end): ";
15 cin >> zipCode;
16
17 while (zipCode != "-1")
18 {
19 if (zipCode.length() == 5)
20 cout << "-->Correct number of characters";
21 else
22 cout << "-->Incorrect number of characters";
23 //end if
24 cout << endl << endl;
25
26 cout << "Five-character ZIP code (-1 to end): ";
27 cin >> zipCode;
28 } //end while
29 return 0;
30 } //end of main function

Figure 13-11   ZIP Code program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

474

subscript is specified in the subscript argument. If you omit the count argument, the substr
function returns all of the characters from the subscript position through the end of the string.
Figure 13-12 also includes examples of using the substr function.

Figure 13-12   How to use the substr function

How To �Use the substr Function

Syntax
string.substr(subscript [, count])

Example 1
string name = "Shamika Timkas";
string first = "";
string last = "";
first = name.substr(0, 7);
last = name.substr(8);
assigns Shamika to the first variable and assigns Timkas to the last variable

Example 2
string sales = "";
cout << "Enter the sales: ";
getline(cin, sales);
if (sales.substr(0, 1) == "$")
 sales = sales.substr(1);
//end if
if the string stored in the sales variable begins with the dollar sign, the code assigns
the variable’s contents, excluding the dollar sign, to the variable

Example 3
string rate = "";
cout << "Enter the rate: ";
getline(cin, rate);
if (rate.substr(rate.length() – 1, 1) == "%")
 rate = rate.substr(0, rate.length() – 1);
//end if
if the string stored in the rate variable ends with the percent sign, the code assigns
the variable’s contents, excluding the percent sign, to the variable

In Example 1 in Figure 13-12, the first assignment statement assigns the first seven characters
stored in the name variable (Shamika) to the first variable. The second assignment statement
in the example assigns all of the characters contained in the name variable, beginning with the
character whose subscript is 8, to the last variable. The character whose subscript is 8 is the
letter T; therefore, the statement assigns “Timkas” to the last variable.

The if clause’s condition in Example 2 compares the first character contained in the sales
variable with the dollar sign. If the condition evaluates to true, the sales = sales.substr(1);
statement assigns all of the characters from the sales variable, beginning with the character
whose subscript is 1, to the sales variable. In other words, the statement assigns all of the
characters except the dollar sign to the variable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

475

In Example 3 in Figure 13-12, the if clause’s condition uses the substr and length functions
to determine whether the string stored in the rate variable ends with the percent sign. If the
condition evaluates to true, the rate = rate.substr(0, rate.length() – 1); statement
assigns the rate variable’s contents, excluding the last character (which is the percent sign),
to the rate variable.

Figure 13-13 shows the C++ code for a modified version of the ZIP Code program from
Figure 13-11. The modified program now contains a value-returning function named
verifyNumeric. The function returns a character—either Y or N—that indicates whether each
of the five characters entered by the user is a number. The modifications made to the original
main function are shaded in the figure, which also contains a sample run of the modified
program. The statement containing the substr function in the verifyNumeric function is
also shaded in the figure.

 1 //Modified ZIP Code.cpp
 2 //displays a message indicating whether a ZIP code
 3 //contains the appropriate number of characters
 4 //and whether each character is a number
 5 //Created/revised by <your name> on <current date>
 6
 7 #include <iostream>
 8 #include <string>
 9 using namespace std;
10
11 //function prototype
12 char verifyNumeric(string zip);
13
14 int main()
15 {
16 string zipCode = "";
17 char isAllNumbers = ' ';
18
19 cout << "Five-character ZIP code (-1 to end): ";
20 cin >> zipCode;
21
22 while (zipCode != "-1")
23 {
24 if (zipCode.length() == 5)
25 {
26 cout << "-->Correct number of characters";
27 isAllNumbers = verifyNumeric(zipCode);
28 if (isAllNumbers == 'Y')
29 cout << endl << "-->All numbers";
30 else
31 cout << endl << "-->Not all numbers";
32 //end if
33 }
34 else
35 cout << "-->Incorrect number of characters";
36 //end if
37 cout << endl << endl;
38
39 cout << "Five-character ZIP code (-1 to end): ";
40 cin >> zipCode;
41 } //end while
42 return 0;
43 } //end of main function
44
45 //*****function definitions*****
46 char verifyNumeric(string zip)
47 {
48 //determine whether each character is a number
49 string currentChar = "";
50 int sub = 0; //character subscript
51 char isANumber = 'Y'; //assume all numbers
52
53 while (sub < 5 && isANumber == 'Y')
54 {
55 currentChar = zip.substr(sub, 1);
56 if (currentChar >= "0" && currentChar <= "9")
57 //character is numeric, so check next character
58 sub += 1;
59 else
60 //character is not a number
61 isANumber = 'N';
62 //end if
63 } //end while
64 return isANumber;
65 } //end of verifyNumeric function

Figure 13-13   Modified ZIP Code program (continues)

Accessing the Characters in a string Variable 	﻿

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

476

If the user enters exactly five characters, the statement on Line 27 in the main function calls the
verifyNumeric function, passing it a copy of the string stored in the zipCode variable. The
verifyNumeric function, which begins on Line 46, stores the characters it receives in its formal
parameter: a string variable named zip.

The while clause on Line 53 tells the computer to repeat the loop instructions as long as both
of the following subconditions evaluate to true: First, the value in the sub variable, which keeps
track of the subscripts in the zip variable, must be less than 5 (the number of characters in

(continued)

 1 //Modified ZIP Code.cpp
 2 //displays a message indicating whether a ZIP code
 3 //contains the appropriate number of characters
 4 //and whether each character is a number
 5 //Created/revised by <your name> on <current date>
 6
 7 #include <iostream>
 8 #include <string>
 9 using namespace std;
10
11 //function prototype
12 char verifyNumeric(string zip);
13
14 int main()
15 {
16 string zipCode = "";
17 char isAllNumbers = ' ';
18
19 cout << "Five-character ZIP code (-1 to end): ";
20 cin >> zipCode;
21
22 while (zipCode != "-1")
23 {
24 if (zipCode.length() == 5)
25 {
26 cout << "-->Correct number of characters";
27 isAllNumbers = verifyNumeric(zipCode);
28 if (isAllNumbers == 'Y')
29 cout << endl << "-->All numbers";
30 else
31 cout << endl << "-->Not all numbers";
32 //end if
33 }
34 else
35 cout << "-->Incorrect number of characters";
36 //end if
37 cout << endl << endl;
38
39 cout << "Five-character ZIP code (-1 to end): ";
40 cin >> zipCode;
41 } //end while
42 return 0;
43 } //end of main function
44
45 //*****function definitions*****
46 char verifyNumeric(string zip)
47 {
48 //determine whether each character is a number
49 string currentChar = "";
50 int sub = 0; //character subscript
51 char isANumber = 'Y'; //assume all numbers
52
53 while (sub < 5 && isANumber == 'Y')
54 {
55 currentChar = zip.substr(sub, 1);
56 if (currentChar >= "0" && currentChar <= "9")
57 //character is numeric, so check next character
58 sub += 1;
59 else
60 //character is not a number
61 isANumber = 'N';
62 //end if
63 } //end while
64 return isANumber;
65 } //end of verifyNumeric function

Figure 13-13   Modified ZIP Code program

You use a loop
along with
the substr
function to
access each

character in a string
variable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

477

Searching the Contents of a string Variable 	﻿

the ZIP code). Second, the isANumber variable, which keeps track of whether a nonnumeric
character appears in the zip variable, must contain the character ‘Y’. If both subconditions
evaluate to true, the statement on Line 55 uses the substr function and the sub variable to access
the current character in the zip variable; it assigns the character to the currentChar variable.

The condition in the if statement on Line 56 determines whether the current character is
greater than or equal to “0” and less than or equal to “9”. If the condition evaluates to true, it
means that the character is a number. In that case, the statement on Line 58 increases the sub
variable’s value by 1; doing this allows the loop to look at the next character in the zip variable.
If the condition evaluates to false, on the other hand, it means that the character is not a number.
In that case, the statement on Line 61 assigns the character ‘N’ to the isANumber variable.

When the while loop in the verifyNumeric function ends, the return statement on Line 64
returns either the character ‘Y’ or the character ‘N’ to the main function. The ‘Y’ indicates
that the ZIP code contains only numbers, and the ‘N’ indicates that it contains at least one
nonnumeric character. The statement on Line 27 in the main function assigns the returned
character to the isAllNumbers variable.

Next, the if statement’s condition on Line 28 compares the character stored in the isAllNumbers
variable with the character ‘Y’. If the condition evaluates to true, the statement’s true path
displays the “-->All numbers” message; otherwise, its false path displays the “-->Not all
numbers” message.

Mini-Quiz 13-2
1.	 Which of the following will process the loop instructions as long as the employee

variable contains more than 20 characters?

a.	 while (employee.length() > 20)

b.	 while (employee.length() > "20");

c.	 while (employee.length() > '20');

d.	 while (length(employee) > 20)

2.	 Write a C++ if clause that determines whether a string variable named code
contains seven characters.

3.	 The cityState variable contains the string “Los Angeles, CA”. Which of the following
assigns the state ID (“CA”) to a string variable named state?

a.	 state = cityState.substr(13);

b.	 state = cityState.substr(13, 2);

c.	 state = cityState.substr(14, 2);

d.	 both a and b

4.	 Write a cout statement that displays the last character contained in a string variable
named college.

Searching the Contents of a string Variable
At times, you may need to search the contents of a string variable to determine whether it
contains a specific sequence of characters. For example, you may need to determine whether
a phone number contains a certain area code or whether a specific street name appears in

Recall that
a string is
equivalent
to a one-
dimensional

array of characters.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

478

an address. The string class provides the find function for performing such searches. In the
function’s syntax, which is shown in Figure 13-14, string is the name of the string variable whose
contents you want to search, and searchString is the string for which you are searching. The
searchString argument can be a string literal constant or the name of either a string variable or
a string named constant. The subscript argument specifies the starting position for the search.
In other words, it specifies the subscript of the character at which the search should begin.

The find function searches for the searchString in the string, starting with the character
whose subscript is specified in the subscript argument. The function performs a case-sensitive
search, which means that uppercase letters are not equivalent to their lowercase counterparts.
When the searchString is contained within the string, the find function returns an integer that
indicates the beginning position (subscript) of the searchString within the string. The function
returns the number –1 when the searchString is not contained within the string. Figure 13-14
also includes examples of using the find function.

Figure 13-14   How to use the find function (continues)

How To �Use the find Function

Syntax
string.find(searchString, subscript)

Example 1
int location = 0;
string phone = "(312) 999-9999";
location = phone.find("(312)", 0);
searches for the string “(312)” in the phone variable, starting with the first character
(subscript 0); stores the result (0) in the location variable

Example 2
int spaceLocation = 0;
string name = "Carol Cho";
spaceLocation = name.find(" ", 1);
searches for the space character in the name variable, starting with the second
character (subscript 1); stores the result (5) in the spaceLocation variable

Example 3
int location = 0;
string address = "210 Elm Street, Elmwood, NJ";
location = address.find("Elm ", 2);
searches for the string “Elm ” in the address variable, starting with the third
character (subscript 2); stores the result (4) in the location variable

Example 4
int location = 0;
string address = "210 Elm Street, Elmwood, NJ";
location = address.find("elm ", 0);
searches for the string “elm ” in the address variable, starting with the first character
(subscript 0); stores the result (–1) in the location variable (Recall that the find
function performs a case-sensitive search.)

Example 5
int location = 0;
string address = "210 Elm Street, Elmwood, NJ";
location = address.find("Elm ", 9);
searches for the string “Elm ” in the address variable, starting with the tenth
character (subscript 9); stores the result (–1) in the location variable

Notice the
space after the
letter m in the
find function
in Examples 3,

4, and 5.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

479

(continued)

Figure 13-14   How to use the find function

Syntax
string.find(searchString, subscript)

Example 1
int location = 0;
string phone = "(312) 999-9999";
location = phone.find("(312)", 0);
searches for the string “(312)” in the phone variable, starting with the first character
(subscript 0); stores the result (0) in the location variable

Example 2
int spaceLocation = 0;
string name = "Carol Cho";
spaceLocation = name.find(" ", 1);
searches for the space character in the name variable, starting with the second
character (subscript 1); stores the result (5) in the spaceLocation variable

Example 3
int location = 0;
string address = "210 Elm Street, Elmwood, NJ";
location = address.find("Elm ", 2);
searches for the string “Elm ” in the address variable, starting with the third
character (subscript 2); stores the result (4) in the location variable

Example 4
int location = 0;
string address = "210 Elm Street, Elmwood, NJ";
location = address.find("elm ", 0);
searches for the string “elm ” in the address variable, starting with the first character
(subscript 0); stores the result (–1) in the location variable (Recall that the find
function performs a case-sensitive search.)

Example 5
int location = 0;
string address = "210 Elm Street, Elmwood, NJ";
location = address.find("Elm ", 9);
searches for the string “Elm ” in the address variable, starting with the tenth
character (subscript 9); stores the result (–1) in the location variable

The assignment statement in Example 1 in Figure 13-14 searches for the searchString “(312)” in
the phone variable, beginning with the first character in the variable. It then assigns the result—
in this case, the number 0—to the location variable. The number 0 is assigned because the
searchString “(312)” begins with the first character in the phone variable.

The assignment statement in Example 2 searches for the space character in the name variable,
starting with the second character. The space character is the sixth character in the name
variable, which means its subscript is 5. Therefore, the statement assigns the number 5 to the
spaceLocation variable.

The assignment statement in Example 3 searches the third through the last characters in
the address variable, looking for the string “Elm ” (notice the space after the letter m). The
statement assigns the number 4 to the location variable because the string “Elm ” begins with
the character whose subscript is 4 in the address variable.

The assignment statement in Example 4 searches for the string “elm ” (notice the space after the
letter m) in the address variable, starting with the first character. The statement assigns the
number –1 to the location variable because the address variable does not contain the string
“elm ”. (Recall that the find function performs a case-sensitive search.)

The assignment statement in Example 5 searches for the string “Elm ” (notice the space after the
letter m) in the tenth through the last characters in the address variable. The statement assigns the
number –1 to the location variable because the string “Elm ” does not appear in the tenth through
the last characters. In other words, it doesn’t appear in the characters “treet, Elmwood, NJ”.

Figure 13-15 shows the C++ code for the Rearrange Name program. The program gets a person’s
first and last names from the user. It then displays the person’s last name followed by a comma, a
space, and the person’s first name. The figure also includes a sample run of the program.

 1 //Rearrange Name.cpp - displays the last name
 2 //followed by a comma, a space, and the first name
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 using namespace std;
 8
 9 int main()
10 {
11 string firstLast = "";
12 string first = "";
13 string last = "";
14 int spaceLocation = 0;
15
16 //get first and last name
17 cout << "Name (first and last only): ";
18 getline(cin, firstLast);
19
20 //locate space, then pull out first and last names
21 spaceLocation = firstLast.find(" ", 0);
22 first = firstLast.substr(0, spaceLocation);
23 last = firstLast.substr(spaceLocation + 1);
24
25 //display rearranged name
26 cout << last << ", " << first << endl;
27 return 0;
28 } //end of main function

Figure 13-15   Rearrange Name program (continues)

Searching the Contents of a string Variable 	﻿

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

480

(continued)

 1 //Rearrange Name.cpp - displays the last name
 2 //followed by a comma, a space, and the first name
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 using namespace std;
 8
 9 int main()
10 {
11 string firstLast = "";
12 string first = "";
13 string last = "";
14 int spaceLocation = 0;
15
16 //get first and last name
17 cout << "Name (first and last only): ";
18 getline(cin, firstLast);
19
20 //locate space, then pull out first and last names
21 spaceLocation = firstLast.find(" ", 0);
22 first = firstLast.substr(0, spaceLocation);
23 last = firstLast.substr(spaceLocation + 1);
24
25 //display rearranged name
26 cout << last << ", " << first << endl;
27 return 0;
28 } //end of main function

Figure 13-15   Rearrange Name program

The statement on Line 17 in Figure 13-15 prompts the user to enter a person’s first and last
names, and the statement on Line 18 stores the user’s response in the firstLast variable. The
statement on Line 21, which is shaded in the figure, uses the find function to locate the space
between the names stored in the firstLast variable; it assigns the function’s return value to the
spaceLocation variable. If the user enters Heather Kingsley as the name, the statement assigns
the number 7 to the spaceLocation variable. As illustrated in Figure 13-16, all of the characters
to the left of the space character represent the first name. Likewise, all of the characters to the
right of the space character represent the last name.

subscript 0 1

1

H e a t h e r K n s l e ygi

2

2

3

3

4

4

5

5

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15 16

6

6count

space character

first name last name

Figure 13-16   Location of the first and last names

Start at 0 when
determining
a character’s
subscript. But
start at 1 when

counting characters.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

481

Removing Characters from a string Variable 	﻿

The first = firstLast.substr(0, spaceLocation); statement on Line 22 in Figure 13-15
uses the substr function to access only the first name from the firstLast variable. The
first name begins with the first character in the variable. Therefore, the number 0 is used
for the substr function’s subscript argument. Recall that the function’s second argument,
count, specifies the number of characters you want to access. In this case, you want to access
seven characters. You can use the space character’s subscript (7), which is stored in the
spaceLocation variable, to access the appropriate number of characters. The statement on
Line 22 assigns the first name to the first variable.

The last = firstLast.substr(spaceLocation + 1); statement on Line 23 in Figure 13-15
uses the substr function to access only the last name from the firstLast variable. The last
name begins with the character immediately after the space character in the variable. Therefore,
the number 1 is added to the value stored in the spaceLocation variable, and the result (8)
is used for the substr function’s subscript argument. Because the count argument is omitted
from the substr function, the statement on Line 23 will assign all of the remaining characters,
beginning with the one whose subscript is 8, to the last variable.

Removing Characters from a string Variable
When validating user input, you may need to remove one or more characters from the user’s
entry, such as a dollar sign from the beginning of a sales amount or a percent sign from the end
of a tax rate. The string class’s erase function allows you to remove one or more characters
located anywhere in a string variable. Figure 13-17 shows the function’s syntax and includes
examples of using the function. In the syntax, string is the name of a string variable, and the
subscript argument is the subscript of the first character you want to remove (erase) from the
variable’s contents. The optional count argument is an integer that specifies the number of
characters you want removed. If you omit the count argument, the erase function removes all
characters from the subscript position through the end of the string.

Figure 13-17   How to use the erase function (continues)

How To �Use the erase Function

Syntax
string.erase(subscript [, count]);

Example 1
string place = "Miami, FL";
place.erase(0, 7);
removes the first seven characters from the place variable, changing the variable’s
contents to “FL”

Example 2
string place = "Miami, FL";
place.erase(5);
removes all of the characters from the place variable, beginning with the character
whose subscript is 5, changing the variable’s contents to “Miami”

Example 3
string name = "Carol";
name.erase(3, 1);
removes the fourth character from the name variable, changing the variable’s
contents to “Carl”

Example 4
int x = 0;
string sales = "";
string currentChar = "";
cout << "Sales: ";
getline(cin, sales);
while (x < sales.length())
{
 currentChar = sales.substr(x, 1);
 if (currentChar == "$" || currentChar == ",")
 sales.erase(x, 1);
 else
 x += 1;
 //end if
} //end while
removes (erases) any dollar signs and commas from the sales variable

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

482

(continued)

Syntax
string.erase(subscript [, count]);

Example 1
string place = "Miami, FL";
place.erase(0, 7);
removes the first seven characters from the place variable, changing the variable’s
contents to “FL”

Example 2
string place = "Miami, FL";
place.erase(5);
removes all of the characters from the place variable, beginning with the character
whose subscript is 5, changing the variable’s contents to “Miami”

Example 3
string name = "Carol";
name.erase(3, 1);
removes the fourth character from the name variable, changing the variable’s
contents to “Carl”

Example 4
int x = 0;
string sales = "";
string currentChar = "";
cout << "Sales: ";
getline(cin, sales);
while (x < sales.length())
{
 currentChar = sales.substr(x, 1);
 if (currentChar == "$" || currentChar == ",")
 sales.erase(x, 1);
 else
 x += 1;
 //end if
} //end while
removes (erases) any dollar signs and commas from the sales variable

Figure 13-17   How to use the erase function

The erase function in Example 1 in Figure 13-17 removes the first seven characters from the
string stored in the place variable. The first seven characters are the letters M, i, a, m, and i and
the comma and space characters. After the function is processed, the place variable contains
the string “FL”.

The erase function in Example 2 removes all of the characters from the place variable,
beginning with the character whose subscript is 5. In this case, the function removes the “, FL”
portion of the string from the variable. After the function is processed, the place variable
contains the string “Miami”.

The erase function in Example 3 removes one character from the string stored in the name
variable, beginning with the character whose subscript is 3; that character is the letter o. After
the function is processed, the name variable contains the string “Carl”.

The code in Example 4 contains a loop that looks at each character in the sales variable,
one character at a time. The condition in the if statement within the loop compares the
current character to both a dollar sign and a comma. If the current character is either of those
characters, the erase function in the if statement’s true path removes the character from the
sales variable. Otherwise, the statement in its false path increments the x variable by 1; doing
this allows the loop to look at the next character in the sales variable.

Figure 13-18 shows the C++ code for the Bonus program, which calculates a 10% bonus on the
sales amount entered by the user. Before calculating the bonus, the program ensures that the sales
amount contains only numbers. It does this using the erase function to remove any nonnumeric
characters from the user’s entry. The erase function appears on Line 25 and is shaded in the figure.

After removing the unwanted characters, the program calculates the bonus. The bonus
calculation statement appears on Line 32 in Figure 13-18. The stod function in the statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

483

Removing Characters from a string Variable 	﻿

temporarily converts the string stored in the sales variable to the double data type. (C++ also
provides a function named stoi for temporarily converting a string to the int data type.) The
statement multiplies the result by the double number stored in the RATE named constant and
then assigns that result to the double bonus variable. After calculating the bonus, the program
displays the sales and bonus amounts on the computer screen. Figure 13-18 also contains a
sample run of the program.

�stod stands
for string to
double, and
stoi stands
for string to
integer.

Figure 13-18   Bonus program

 1 //Bonus.cpp - displays sales and bonus amounts
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 #include <string>
 7 using namespace std;
 8
 9 int main()
10 {
11 const double RATE = 0.1;
12 string sales = "";
13 string currentChar = "";
14 int sub = 0;
15 double bonus = 0.0;
16
17 cout << "Sales: ";
18 getline(cin, sales);
19
20 //remove all characters except numbers
21 while (sub < sales.length())
22 {
23 currentChar = sales.substr(sub, 1);
24 if (currentChar < "0" || currentChar > "9")
25 sales.erase(sub, 1);
26 else
27 sub += 1;
28 //end if
29 } //end while
30
31 //calculate bonus
32 bonus = stod(sales) * RATE;
33
34 //display sales and bonus
35 cout << fixed << setprecision(2) << endl;
36 cout << "Sales amount: " << sales << endl;
37 cout << "Bonus amount: " << bonus << endl;
38 return 0;
39 } //end of main function

temporarily converts
a string to double

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

484

Replacing Characters in a string Variable
Instead of using the erase function to code the Bonus program from the previous section,
you can use the string class’s replace function. The replace function replaces a sequence of
characters in a string variable with another sequence of characters. For example, you can use
the replace function to replace area code “800” with area code “877” in a phone number. Or,
you can use it to replace the dashes in a Social Security number with the empty string.

Figure 13-19 shows the replace function’s syntax and includes examples of using the function.
In the syntax, string is the name of a string variable, and the subscript argument specifies
where to begin replacing characters in the string. The count argument indicates the number of
characters to replace, and the replacementString argument contains the replacement characters.

Figure 13-19   How to use the replace function

How To �Use the replace Function

Syntax
string.replace(subscript, count, replacementString);

Example 1
string phone = "1-800-111-0000";
phone.replace(2, 3, "877");
beginning with the character whose subscript is 2, replaces three characters in the
phone variable with “877”; changes the contents of the phone variable
to “1-877-111-0000”

Example 2
string item = "ABCX34";
item.replace(3, 1, "D");
beginning with the character whose subscript is 3, replaces one character in the
item variable with “D”; changes the contents of the item variable to “ABCD34”

Example 3
string name = "Karena Wilson";
name.replace(7, 6, "Farley");
beginning with the character whose subscript is 7, replaces six characters in the
name variable with “Farley”; changes the contents of the name variable to
“Karena Farley”

Example 4
int x = 0;
string sales = "";
cout << "Sales: ";
getline(cin, sales);
while (x < sales.length())
 if (sales.substr(x, 1) == "$" || sales.substr(x, 1) == ",")
 sales.replace(x, 1, "");
 else
 x += 1;
 //end if
//end while
replaces any dollar signs and commas in the sales variable with the empty string

subscript 2

subscript 3

subscript 7

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

485

Inserting Characters Within a string Variable 	﻿

The partial Bonus program in Figure 13-20 shows how you can use the replace function
instead of the erase function. The replace function is shaded in the figure.

Figure 13-20   Partial Bonus program showing the replace function

Note: Lines 1 through 19 are the same as in Figure 13-18.
20 //remove all characters except numbers
21 while (sub < sales.length())
22 {
23 currentChar = sales.substr(sub, 1);
24 if (currentChar < "0" || currentChar > "9")
25 sales.replace(sub, 1, "");
26 else
27 sub += 1;
28 //end if
29 } //end while
Note: The remainder of the program is the same as Lines 30 through 39 in
Figure 13-18.

Mini-Quiz 13-3
1.	 Which of the following searches for a comma in the cityState variable and then

assigns the result to an int variable named location?

a.	 location = cityState.find(",", 0);

b.	 location = cityState.find(0, ",");

c.	 location = cityState.search(",", 0);

d.	 location = cityState.searchFor(",");

2.	 If the cityState variable contains the string “Bowling Green, KY”, what will the
statement from Question 1 assign to the location variable?

3.	 If the cityState variable contains the string “Bowling Green, KY”, which of the
following changes the variable’s contents to “Bowling Green”?

a.	 cityState.erase(13);

b.	 cityState.erase(13, 4);

c.	 cityState.replace(13, 4, "");

d.	 all of the above

Inserting Characters Within a string Variable
The string class provides the insert function for inserting characters within a string variable.
The function’s syntax and examples of using the function are shown in Figure 13-21. In the
syntax, string is the name of a string variable, and subscript specifies where in the string you
want the insertString inserted. To insert the insertString at the beginning of the string, you use
the number 0 as the subscript. To insert the insertString starting with the second character in the
string, you use the number 1 as the subscript, and so on.

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

486

The insert function in Example 1 in Figure 13-21 inserts the insertString—in this case, “G. ”
(the letter G, a period, and a space)—in the name variable. The letter G is inserted in subscript 7,
which makes it the eighth character in the name variable. The period and space are inserted in
subscripts 8 and 9, respectively, making them the ninth and tenth characters in the variable.
After the function is processed, the name variable contains the string “Harold G. Cruthers”.

In Example 2, the first insert function changes the contents of the phone variable from
“312 050-1111” to “(312 050-1111”. The second insert function in the example then changes
the variable’s contents to “(312) 050-1111”. In Example 3, the first insert function changes the
contents of the ssn variable from “111220000” to 111-220000”, and the second insert function
then changes the variable’s contents to “111-22-0000”.

Figure 13-22 shows the C++ code for the Social Security Number program. The program allows
the user to enter a nine-character Social Security number. If the user’s entry contains exactly
nine characters, the program uses the insert function to insert hyphens in the appropriate
places in the entry. The insert function appears twice in the program; both occurrences are
shaded in the figure. After inserting the hyphens, the program displays the result on the screen.
If the user’s entry does not contain exactly nine characters, the program displays an appropriate
message. Figure 13-22 also includes a sample run of the program.

Figure 13-21   How to use the insert function

How To �Use the insert Function

Syntax
string.insert(subscript, insertString);

Example 1
string name = "Harold Cruthers";
name.insert(7, "G. ");
inserts the letter G, followed by a period and a space, between the first and last
names stored in the name variable; changes the contents of the name variable to
“Harold G. Cruthers”

Example 2
string phone = "312 050-1111";
phone.insert(0, "(");
phone.insert(4, ")");
inserts the opening and closing parentheses at the beginning and end, respectively,
of the area code; changes the contents of the phone variable to “(312) 050-1111”

Example 3
string ssn = "111220000";
ssn.insert(3, "-");
ssn.insert(6, "-");
inserts two hyphens in the Social Security number, one after the third number and
the other after the fifth number; changes the contents of the ssn variable to
“111-22-0000”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

487

Duplicating a Character Within a string Variable 	﻿

Duplicating a Character Within a string Variable
You can use the string class’s assign function to duplicate a single character a specified
number of times and then assign the resulting string to a string variable. Figure 13-23 shows
the function’s syntax and includes examples of using the function. In the syntax, string is the
name of a string variable that will store the duplicated characters. The count argument is an
integer that specifies the number of times you want to duplicate the character. The character
argument can be either a character literal constant enclosed in single quotation marks or the
name of a char memory location. The assign function in Example 1 duplicates the asterisk
character 10 times and then assigns the resulting string to the asterisks variable. The assign
function in Example 2 duplicates the hyphen character zero or more times, depending on the
number of characters in the companyName variable. It then assigns the resulting string to the
underline variable.

 1 //SSN.cpp - displays the Social Security number with hyphens
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 using namespace std;
 7
 8 int main()
 9 {
10 string ssn = "";
11 cout << "Nine-character Social Security number: ";
12 getline(cin, ssn);
13
14 if (ssn.length() == 9)
15 {
16 //insert hyphens
17 ssn.insert(3, "-"); //xxx-xxxxxx
18 ssn.insert(6, "-"); //xxx-xx-xxxx
19 cout << "Social Security number: " << ssn << endl;
20 }
21 else
22 cout << "The number must contain 9 characters" << endl;
23 //end if
24 return 0;
25 } //end of main function

Figure 13-22   Social Security Number program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

488

Figure 13-24 shows the C++ code for the Company Name program. The program gets a
company name from the user and then displays the name with a row of hyphens below it. The
assign function appears on Line 18 and is shaded in the figure. The figure also includes a
sample run of the program.

Figure 13-23   How to use the assign function

How To �Use the assign Function

Syntax
string.assign(count, character);

Example 1
string asterisks = "";
asterisks.assign(10, '*');
assigns 10 asterisks to the asterisks variable

Example 2
string companyName = "";
string underline = "";
cout << "Company name: ";
getline(cin, companyName);
underline.assign(companyName.length(), '-');
assigns zero or more hyphens to the underline variable; the number of hyphens
depends on the number of characters in the companyName variable

Figure 13-24   Company Name program (continues)

 1 //Company Name.cpp
 2 //displays the company name underlined with hyphens
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 using namespace std;
 8
 9 int main()
10 {
11 string companyName = "";
12 string underline = "";
13
14 cout << "Company name: ";
15 getline(cin, companyName);
16
17 //assign the appropriate number of hyphens
18 underline.assign(companyName.length(), '-');
19
20 //display the company name and row of hyphens
21 cout << endl << companyName
22 << endl << underline << endl;
23 return 0;
24 } //end of main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

489

Concatenating Strings 	﻿

Figure 13-25   How to use the concatenation operator

How To �Use the Concatenation Operator

Example 1
string first = "Perry";
string last = "Lozinsky";
string full = "";
full = first + " " + last;
concatenates the contents of the first variable, a space, and the contents of the
last variable and then assigns the result (“Perry Lozinsky”) to the full variable

Example 2
string sentence = "How are you";
sentence = sentence + "?";
concatenates the contents of the sentence variable and a question mark and then
assigns the result (“How are you?”) to the sentence variable

Example 3
string companyName = "";
string underline = "";
cout << "Company name: ";
getline(cin, companyName);
for (int x = 1; x <= companyName.length(); x += 1)
 underline = underline + "-";
//end for
concatenates zero or more hyphens within the underline variable; the number
of hyphens depends on the number of characters in the companyName variable
(You can also write the assignment statement as underline += "-";.)

(continued)

 1 //Company Name.cpp
 2 //displays the company name underlined with hyphens
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 using namespace std;
 8
 9 int main()
10 {
11 string companyName = "";
12 string underline = "";
13
14 cout << "Company name: ";
15 getline(cin, companyName);
16
17 //assign the appropriate number of hyphens
18 underline.assign(companyName.length(), '-');
19
20 //display the company name and row of hyphens
21 cout << endl << companyName
22 << endl << underline << endl;
23 return 0;
24 } //end of main function

Figure 13-24   Company Name program

Concatenating Strings
The Company Name program, which you viewed in the previous section, used the assign
function to assign zero or more hyphens to a string variable named underline. You can
accomplish the same result using string concatenation. String concatenation refers to
the process of connecting (or linking) strings together. You concatenate strings using the
concatenation operator, which is the + sign in C++. Figure 13-25 shows examples of using the
concatenation operator in a C++ statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

490

The partial Company Name program in Figure 13-26 shows how you can use string
concatenation, instead of the assign function, in the Company Name program. The
modifications made to the original code from Figure 13-24 are shaded in Figure 13-26.
Although you could use the loop shown in Figure 13-26 to assign the appropriate number
of hyphens to the underline variable, it is much easier to use the assign function for this
purpose. The figure also shows a sample run of the program.

Line 19 can
also be written
as underline
+= "-";.

Note: Lines 1 through 16 are the same as in Figure 13-24.
17 //assign the appropriate number of hyphens
18 for (int x = 1; x <= companyName.length(); x += 1)
19 underline = underline + "-";
20 //end for
Note: The remainder of the program is the same as Lines 19 through
24 in Figure 13-24.

Figure 13-26   Partial Company Name program showing string concatenation

Mini-Quiz 13-4
1.	 Which of the following changes the contents of the cityState variable from “Las

Vegas Nevada” to “Las Vegas, Nevada”?

a.	 cityState.insert(10, ",");

b.	 cityState.replace("s N", "s, N");

c.	 cityState.assign(9, ",");

d.	 none of the above

2.	 The temp and sentence variables are string variables. Which of the following assigns
four exclamation points to the temp variable and then concatenates the variable and the
sentence variable?

a.	 sentence = sentence + temp.assign(4, '!');

b.	 sentence = sentence + temp.assign(4, "!");

c.	 sentence = sentence + temp.assign('!', 4);

d.	 none of the above

3.	 If the areaCode variable contains the string “212”, which of the following changes the
variable’s contents to the string “(212)”.

a.	 areaCode = "(" + "areaCode" + ")";

b.	 areaCode = "(" + areaCode + ")";

c.	 areaCode = '(' & areaCode & ')';

d.	 none of the above

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

For more
examples
of manipu-

lating strings, see the
Strings section in the
Ch13WantMore.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

491

Concatenating Strings 	﻿

LAB 13-1  Stop and Analyze
	 Study the program shown in Figure 13-27 and then answer the questions.

 1 //Lab13-1.cpp
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 using namespace std;
 7
 8 int main()
 9 {
10 string sales = "";
11 string currentChar = "";
12 int sub = 0;
13 int numNumbers = 0;
14 int numPeriods = 0;
15 int numOtherChars = 0;
16
17 cout << "Sales amount: ";
18 getline(cin, sales);
19
20 while (sub < sales.length())
21 {
22 currentChar = sales.substr(sub, 1);
23 if (currentChar == ".")
24 numPeriods += 1;
25 else
26 if (currentChar < "0" || currentChar > "9")
27 numOtherChars += 1;
28 else
29 numNumbers += 1;
30 //end if
31 //end if
32 sub += 1;
33 } //end while
34
35 if (numPeriods > 1 || numOtherChars > 0)
36 cout << "Invalid sales amount" << endl;
37 else
38 cout << "Valid sales amount" << endl;
39 //end if
40 cout << "Numbers: " << numNumbers << endl;
41 cout << "Periods: " << numPeriods << endl;
42 cout << "Other characters: " << numOtherChars << endl;
43
44 return 0;
45 } //end of main function

Figure 13-27   Code for Lab 13-1

The answers
to the labs are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

492

QUESTIONS

1.	 What is the purpose of the loop on Lines 20 through 33?

2.	 What is the purpose of the statement on Line 22?

3.	 What is the purpose of the selection structure on Lines 35 through 39?

4.	 Why is the statement on Line 32 necessary?

5.	 Follow the instructions for starting C++ and viewing the Lab13-1.cpp file, which is
contained in either the Cpp8\Chap13\Lab13-1 Project folder or the Cpp8\Chap13 folder.
(Depending on your C++ development tool, you may need to open Lab13-1’s project/
solution file first.) Run the program. Test the program using the following four sales
amounts: 123.45, $67.5.3, 34 5a6, and 4,500.

6.	 Make the following two modifications to the program. First, change the while statement
to a for statement. Second, in addition to displaying the number of other characters,
display the characters themselves, as shown in Figure 13-28. Save and then run and test
the program.

Figure 13-28   Sample run of the modified Lab 13-1 program

LAB 13-2  Plan and Create
	 In this lab, you will plan and create an algorithm for Mr. Coleman. The problem

specification, IPO chart information, and C++ instructions are shown in Figure 13-29.

Problem specification
Mr. Coleman teaches second grade at Hinsbrook School. On days when the weather is bad and the
students cannot go outside to play, he spends recess time playing the Guess the Word game with his
class. The game requires two people to play. Currently, Mr. Coleman thinks of a word that has five
letters. He then draws five dashes on the chalkboard—one for each letter in the word. One student
then is chosen to guess the word, letter by letter. When the student guesses a correct letter,
Mr. Coleman replaces the appropriate dash(es) with the letter. For example, if the original word is
moose and the student guesses the letter o, Mr. Coleman changes the five dashes on the chalkboard
to -oo--. The game is over when the student either guesses all of the letters in the word or makes
10 incorrect guesses, whichever occurs first. Mr. Coleman wants a program that allows two students
to play the game on the computer.

IPO chart information
Input
 original word (from player 1)
 letter (from player 2)

Processing
 variable that keeps track of whether
 a dash was replaced (‘N’)

 variable that keeps track of whether
 the game is over (‘N’)

 number of incorrect guesses

Output
 display word (5 dashes when
 the program begins)

Algorithm
1. repeat while (the original word does
 not contain exactly five characters)
 get original word
 end while

2. clear the screen
3. display the five dashes contained
 in the display word
4. repeat while (the game is not over)

 get an uppercase letter

 repeat for (each letter in the
 original word)
 if (the current character in the
 original word matches the letter)
 replace the dash in the
 display word with the letter

 assign ‘Y’ to the variable that
 keeps track of whether a dash
 was replaced
 end if
 end repeat
 if (a dash was replaced)
 if (the display word does not
 contain any dashes)
 assign ‘Y’ to the variable that
 keeps track of whether the
 game is over
 display the original word
 display “Great guessing”
 message

 else
 display the status of
 the display word

 reset to ‘N’ the variable that keeps
 track of whether a dash was
 replaced
 end if
 else
 add 1 to the number of incorrect
 guesses
 if (the number of incorrect guesses
 is 10)
 assign ‘Y’ to the variable that
 keeps track of whether the
 game is over
 display “Sorry, the word is”
 and the original word
 end if
 end if
 end repeat

C++ instructionsFigure 13-29   Problem specification, IPO chart information, and C++ instructions for
Lab 13-2 (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

493

Concatenating Strings 	﻿

(continued)

Figure 13-29   Problem specification, IPO chart information, and C++ instructions for
Lab 13-2 (continues)

Problem specification
Mr. Coleman teaches second grade at Hinsbrook School. On days when the weather is bad and the
students cannot go outside to play, he spends recess time playing the Guess the Word game with his
class. The game requires two people to play. Currently, Mr. Coleman thinks of a word that has five
letters. He then draws five dashes on the chalkboard—one for each letter in the word. One student
then is chosen to guess the word, letter by letter. When the student guesses a correct letter,
Mr. Coleman replaces the appropriate dash(es) with the letter. For example, if the original word is
moose and the student guesses the letter o, Mr. Coleman changes the five dashes on the chalkboard
to -oo--. The game is over when the student either guesses all of the letters in the word or makes
10 incorrect guesses, whichever occurs first. Mr. Coleman wants a program that allows two students
to play the game on the computer.

IPO chart information
Input
 original word (from player 1)
 letter (from player 2)

Processing
 variable that keeps track of whether
 a dash was replaced (‘N’)

 variable that keeps track of whether
 the game is over (‘N’)

 number of incorrect guesses

Output
 display word (5 dashes when
 the program begins)

Algorithm
1. repeat while (the original word does
 not contain exactly five characters)
 get original word
 end while

2. clear the screen
3. display the five dashes contained
 in the display word
4. repeat while (the game is not over)

 get an uppercase letter

 repeat for (each letter in the
 original word)
 if (the current character in the
 original word matches the letter)
 replace the dash in the
 display word with the letter

 assign ‘Y’ to the variable that
 keeps track of whether a dash
 was replaced
 end if
 end repeat
 if (a dash was replaced)
 if (the display word does not
 contain any dashes)
 assign ‘Y’ to the variable that
 keeps track of whether the
 game is over
 display the original word
 display “Great guessing”
 message

 else
 display the status of
 the display word

 reset to ‘N’ the variable that keeps
 track of whether a dash was
 replaced
 end if
 else
 add 1 to the number of incorrect
 guesses
 if (the number of incorrect guesses
 is 10)
 assign ‘Y’ to the variable that
 keeps track of whether the
 game is over
 display “Sorry, the word is”
 and the original word
 end if
 end if
 end repeat

C++ instructions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

494

(continued)

Problem specification
Mr. Coleman teaches second grade at Hinsbrook School. On days when the weather is bad and the
students cannot go outside to play, he spends recess time playing the Guess the Word game with his
class. The game requires two people to play. Currently, Mr. Coleman thinks of a word that has five
letters. He then draws five dashes on the chalkboard—one for each letter in the word. One student
then is chosen to guess the word, letter by letter. When the student guesses a correct letter,
Mr. Coleman replaces the appropriate dash(es) with the letter. For example, if the original word is
moose and the student guesses the letter o, Mr. Coleman changes the five dashes on the chalkboard
to -oo--. The game is over when the student either guesses all of the letters in the word or makes
10 incorrect guesses, whichever occurs first. Mr. Coleman wants a program that allows two students
to play the game on the computer.

IPO chart information
Input
 original word (from player 1)
 letter (from player 2)

Processing
 variable that keeps track of whether
 a dash was replaced (‘N’)

 variable that keeps track of whether
 the game is over (‘N’)

 number of incorrect guesses

Output
 display word (5 dashes when
 the program begins)

Algorithm
1. repeat while (the original word does
 not contain exactly five characters)
 get original word
 end while

2. clear the screen
3. display the five dashes contained
 in the display word
4. repeat while (the game is not over)

 get an uppercase letter

 repeat for (each letter in the
 original word)
 if (the current character in the
 original word matches the letter)
 replace the dash in the
 display word with the letter

 assign ‘Y’ to the variable that
 keeps track of whether a dash
 was replaced
 end if
 end repeat
 if (a dash was replaced)
 if (the display word does not
 contain any dashes)
 assign ‘Y’ to the variable that
 keeps track of whether the
 game is over
 display the original word
 display “Great guessing”
 message

 else
 display the status of
 the display word

 reset to ‘N’ the variable that keeps
 track of whether a dash was
 replaced
 end if
 else
 add 1 to the number of incorrect
 guesses
 if (the number of incorrect guesses
 is 10)
 assign ‘Y’ to the variable that
 keeps track of whether the
 game is over
 display “Sorry, the word is”
 and the original word
 end if
 end if
 end repeat

C++ instructions

Figure 13-29   Problem specification, IPO chart information, and C++ instructions for Lab 13-2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

495

Concatenating Strings 	﻿

Figure 13-30 shows the code for the entire Guess the Word game program, and Figures 13-31
and 13-32 show sample runs of the program using APPLE and HOUSE as the original words.

 1 //Lab13-2.cpp - Guess the Word game
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 //#include <cstdlib>
 7 using namespace std;
 8
 9 int main()
10 {
11 string origWord = "";
12 string letter = "";
13 char dashReplaced = 'N';
14 char gameOver = 'N';
15 int numIncorrect = 0;
16 string displayWord = "-----";
17
18 //get original word
19 while (origWord.length() != 5)
20 {
21 cout << "Enter a 5-letter word in uppercase: ";
22 getline(cin, origWord);
23 } //end while
24
25 system("cls"); //clear the screen
26
27 //start guessing
28 cout << "Guess this word: " <<
29 displayWord << endl;
30 while (gameOver == 'N')
31 {
32 cout << "Enter an uppercase letter: ";
33 cin >> letter;
34
35 //search for the letter in the original word
36 for (int x = 0; x < 5; x += 1)
37 {
38 //if the current character matches
39 //the letter, replace the corresponding
40 //dash in the displayWord variable and then
41 //set the dashReplaced variable to 'Y'
42 if (origWord.substr(x, 1) == letter)
43 {
44 displayWord.replace(x, 1, letter);
45 dashReplaced = 'Y';
46 } //end if
47 } //end for
48
49 //if a dash was replaced, check whether the
50 //displayWord variable contains another dash
51 if (dashReplaced == 'Y')
52 {
53 //if the displayWord variable does not
54 //contain any dashes, the game is over
55 if (displayWord.find("-", 0) == -1)
56 {
57 gameOver = 'Y';
58 cout << endl << "Yes, the word is "
59 << origWord << endl;
60 cout << "Great guessing!" << endl;
61 }
62 else //otherwise, continue guessing
63 {
64 cout << endl << "Guess this word: "
65 << displayWord << endl;
66 dashReplaced = 'N';
67 } //end if
68 }
69 else //processed when dashReplaced contains 'N'
70 {
71 //add 1 to the number of incorrect guesses
72 numIncorrect += 1;
73 //if the number of incorrect guesses is 10,
74 //the game is over
75 if (numIncorrect == 10)
76 {
77 gameOver = 'Y';
78 cout << endl << "Sorry, the word is "
79 << origWord << endl;
80 } //end if
81 } //end if
82 } //end while
83 return 0;
84 } //end of main function

Figure 13-30   Guess the Word game program (continues)

your C++ development tool may
require this directive to use the
statement on Line 25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

496

(continued)

Figure 13-30   Guess the Word game program

 1 //Lab13-2.cpp - Guess the Word game
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 //#include <cstdlib>
 7 using namespace std;
 8
 9 int main()
10 {
11 string origWord = "";
12 string letter = "";
13 char dashReplaced = 'N';
14 char gameOver = 'N';
15 int numIncorrect = 0;
16 string displayWord = "-----";
17
18 //get original word
19 while (origWord.length() != 5)
20 {
21 cout << "Enter a 5-letter word in uppercase: ";
22 getline(cin, origWord);
23 } //end while
24
25 system("cls"); //clear the screen
26
27 //start guessing
28 cout << "Guess this word: " <<
29 displayWord << endl;
30 while (gameOver == 'N')
31 {
32 cout << "Enter an uppercase letter: ";
33 cin >> letter;
34
35 //search for the letter in the original word
36 for (int x = 0; x < 5; x += 1)
37 {
38 //if the current character matches
39 //the letter, replace the corresponding
40 //dash in the displayWord variable and then
41 //set the dashReplaced variable to 'Y'
42 if (origWord.substr(x, 1) == letter)
43 {
44 displayWord.replace(x, 1, letter);
45 dashReplaced = 'Y';
46 } //end if
47 } //end for
48
49 //if a dash was replaced, check whether the
50 //displayWord variable contains another dash
51 if (dashReplaced == 'Y')
52 {
53 //if the displayWord variable does not
54 //contain any dashes, the game is over
55 if (displayWord.find("-", 0) == -1)
56 {
57 gameOver = 'Y';
58 cout << endl << "Yes, the word is "
59 << origWord << endl;
60 cout << "Great guessing!" << endl;
61 }
62 else //otherwise, continue guessing
63 {
64 cout << endl << "Guess this word: "
65 << displayWord << endl;
66 dashReplaced = 'N';
67 } //end if
68 }
69 else //processed when dashReplaced contains 'N'
70 {
71 //add 1 to the number of incorrect guesses
72 numIncorrect += 1;
73 //if the number of incorrect guesses is 10,
74 //the game is over
75 if (numIncorrect == 10)
76 {
77 gameOver = 'Y';
78 cout << endl << "Sorry, the word is "
79 << origWord << endl;
80 } //end if
81 } //end if
82 } //end while
83 return 0;
84 } //end of main function

Figure 13-31   Sample run of the Guess the Word game program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

497

Concatenating Strings 	﻿

Figure 13-32   Another sample run of the Guess the Word game program

DIRECTIONS

Follow the instructions for starting your C++ development tool. Depending on the development
tool you are using, you may need to create a new project; if so, name the project Lab13-2
Project and save it in the Cpp8\Chap13 folder. Enter the instructions shown in Figure 13-30
in a source file named Lab13-2.cpp. (Do not enter the line numbers.) Save the file in either the
project folder or the Cpp8\Chap13 folder. Now follow the appropriate instructions for running
the Lab13-2.cpp file. Test the program using an original word that does not contain exactly five
characters. Also test the program using the words and letters shown in Figures 13-31 and 13-32.
If necessary, correct any bugs (errors) in the program.

LAB 13-3  Modify
If necessary, create a new project named Lab13-3 Project and save it in the Cpp8\
Chap13 folder. Enter (or copy) the Lab13-2.cpp instructions into a new source file
named Lab13-3.cpp. Change Lab13-2.cpp in the first comment to Lab13-3.cpp.
Currently, the program allows player 1 to enter only a five-character word. Modify

the program so that player 1 can enter a word of any length. Save and then run the program.
Test the program appropriately.

LAB 13-4  What’s Missing?
	 The program in this lab should include commas (if necessary) when displaying the

output. Start your C++ development tool, and view the Lab13-4.cpp file, which is
contained in either the Cpp8\Chap13\Lab13-4 Project folder or the Cpp8\Chap13
folder. (Depending on your C++ development tool, you may need to open Lab13-4’s

project/solution file first.) Put the C++ instructions in the proper order, and then determine the
one or more missing instructions. Test the program appropriately.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

498

LAB 13-5  Desk-Check
Desk-check the code shown in Figure 13-33. What will the code display on the screen?

 1 //Lab13-5.cpp - displays a message
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 using namespace std;
 7
 8 int main()
 9 {
10 string message = "vexprealjik";
11 string subMessage1 = "";
12 string subMessage2 = "";
13
14 message.erase(8, 2);
15 message.insert(7, "da");
16 message.replace(9, 2, "y");
17
18 subMessage1 = message.substr(0, 7);
19 subMessage1.replace(3, 1, "g");
20 subMessage1.erase(2, 1);
21 subMessage1.replace(1, 2, "eag");
22 subMessage1.insert(7, "t");
23 subMessage1.insert(0, "Ha");
24
25 subMessage2.assign(5, '!');
26 subMessage2 = message.substr(7) + subMessage2;
27
28 message = subMessage1 + subMessage2;
29 message.insert(4, " ");
30 message.insert(6, " ");
31 message.insert(12, " ");
32
33 //display message
34 cout << "Message: " << message << endl;
35 return 0;
36 } //end of main function

Figure 13-33   Code for Lab 13-5

LAB 13-6  Debug
Follow the instructions for starting C++ and viewing the Lab13-6.cpp file, which is
contained in either the Cpp8\Chap13\Lab13-6 Project folder or the Cpp8\Chap13 folder.
(Depending on your C++ development tool, you may need to open Lab13-6’s project/
solution file first.) Run the program. Type Joe and press Enter. Rather than displaying the

letters J, o, and e on three separate lines, the program displays Joe, oe, and e. Debug the program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

499

Chapter Summary ﻿ 	

Chapter Summary

•• The string data type was added to the C++ language using the string class.

•• Memory locations (variables and named constants) whose data type is string are initialized
using string literal constants, which are zero or more characters enclosed in double quotation
marks. Most string variables are initialized to the empty string.

•• You can use the extraction operator to get a string from the user at the keyboard, but only if
the string does not contain a white-space character (blank, tab, or newline).

•• The getline function gets a string of characters entered at the keyboard and stores them in
a string variable. The string can contain any characters, including white-space characters
(blanks, tabs, and newlines). The getline function stops reading and storing characters
when it encounters the delimiter character in the input. The function’s default delimiter
character is the newline character. The function reads and then consumes (discards) the
delimiter character.

•• The computer stores the characters entered at the keyboard in the cin object. Both the
extraction operator and the getline function remove characters from the object. However,
unlike the extraction operator, which leaves the newline character in the cin object, the
getline function consumes the newline character.

•• The ignore function reads and then consumes characters entered at the keyboard. The
function stops reading and consuming characters when it consumes either a specified
number of characters or the delimiter character, whichever occurs first. The default number
of characters to consume is 1.

•• You can use the C++ stod (string to double) function to convert a string to a double number.
C++ also provides the stoi (string to int) function for converting a string to an int number.

•• Figure 13-34 shows the syntax and purpose of each function covered in the chapter. It also
includes the string concatenation operator. The assign, erase, insert, and replace
functions are self-contained statements that change the value of the string variable.

Function/Operator
+

assign function

erase function

find function

getline function

ignore function

insert function

length function

replace function

substr function

Syntax

string.assign(count, character);

string.erase(subscript[, count]);

string.find(searchString, subscript)

getline(cin, stringVariableName
[, delimiterCharacter]);

cin.ignore([numberOfCharacters]
[, delimiterCharacter]);

string.insert(subscript, insertString);

string.length()

string.replace(subscript, count,
replacementString);

string.substr(subscript [, count])

Purpose
concatenate strings

duplicate a character
within a string variable

remove one or more
characters located
anywhere in a
string variable

search a string
variable to determine
whether it contains a
specific sequence of
characters

get string input from
the keyboard

read and consume
characters entered at
the keyboard

insert characters
within a string
variable

determine the number
of characters
contained in a
string variable

replace a sequence of
characters in a
string variable with
another sequence of
characters

access any number of
characters contained
in a string variable

Figure 13-34   Summary of string functions and the concatenation operator (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

500

Key Terms
assign function—duplicates a character a specified number of times within a string

Concatenation operator—used to concatenate (connect) strings; the + sign in C++

Consuming the character—another term for discarding the character

erase function—removes (erases) characters from a string

Escape sequence—the combination of the backslash and the character that follows;
for example, the escape sequences '\n' and '\t' represent the Enter key and Tab key,
respectively

find function—returns an integer that indicates the beginning position of a string within a
string variable

getline function—reads characters entered at the keyboard until it encounters the delimiter
character, which it consumes

ignore function—tells the computer to first read and then consume (discard) one or more
characters

insert function—inserts characters within a string

length function—returns the number of characters contained in a string variable

(continued)

Function/Operator
+

assign function

erase function

find function

getline function

ignore function

insert function

length function

replace function

substr function

Syntax

string.assign(count, character);

string.erase(subscript[, count]);

string.find(searchString, subscript)

getline(cin, stringVariableName
[, delimiterCharacter]);

cin.ignore([numberOfCharacters]
[, delimiterCharacter]);

string.insert(subscript, insertString);

string.length()

string.replace(subscript, count,
replacementString);

string.substr(subscript [, count])

Purpose
concatenate strings

duplicate a character
within a string variable

remove one or more
characters located
anywhere in a
string variable

search a string
variable to determine
whether it contains a
specific sequence of
characters

get string input from
the keyboard

read and consume
characters entered at
the keyboard

insert characters
within a string
variable

determine the number
of characters
contained in a
string variable

replace a sequence of
characters in a
string variable with
another sequence of
characters

access any number of
characters contained
in a string variable

Figure 13-34   Summary of string functions and the concatenation operator

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

501

Review Questions 	

replace function—used to replace characters within a string

stod function—converts a string to a double number

String concatenation—the process of connecting (or linking) strings together; accomplished
with the concatenation operator (+)

substr function—returns the characters you want to access from a string variable

Review Questions
1.	 Which of the following displays the number of characters contained in a string

variable named address?

a.	 cout << address.length() << endl;

b.	 cout << numChars(address) << endl;

c.	 cout << length(address) << endl;

d.	 cout << size.address << endl;

2.	 Which of the following should a program use to store the name of any city in a string
variable named cityName?

a.	 cin >> cityName;

b.	 cin(cityName);

c.	 getline(cityName, cin);

d.	 getline(cin, cityName);

3.	 If the amount variable contains the string “$56.55”, which of the following statements
will remove the dollar sign from the variable’s contents?

a.	 amount.erase("$");

b.	 amount.erase(0, 1);

c.	 amount = amount.substr(1);

d.	 both b and c

4.	 If the state variable contains the two letters MI followed by three spaces, which of the
following statements will remove the three spaces from the variable’s contents?

a.	 state.erase(" ");

b.	 state.erase(3, "");

c.	 state.remove(2, 3);

d.	 none of the above

5.	 What is the subscript of the first character contained in a string variable?

a.	 0 (zero)
b.	 1 (one)

6.	 Which of the following determines whether the string stored in the part variable
begins with the letter A?

a.	 if (part.begins("A"))

b.	 if (part.beginswith("A"))

c.	 if (part.substr(0, 1) == "A")

d.	 if (part.substr(1) == "A")

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

502

7.	 Which of the following determines whether the string stored in the part variable ends
with the letter B?

a.	 if (part.ends("B"))

b.	 if (part.endswith("B")

c.	 if (part.substr(part.length() – 1, 1) == "B")

d.	 none of the above

8.	 Which of the following statements assigns the first three characters in the part
variable to the code variable?

a.	 code = part.assign(0, 3);

b.	 code = part.substr(0, 3);

c.	 code = part.substr(1, 3);

d.	 code = part.substring(0, 3);

9.	 If the word variable contains the string “Bells”, which of the following statements will
change the contents of the variable to “Bell”?

a.	 word.erase(word.length() – 1, 1);

b.	 word.replace(word.length() – 1, 1, "");

c.	 word = word.substr(0, word.length() – 1);

d.	 all of the above

10.	 Which of the following statements changes the contents of the word variable from
“men” to “mean”?

a.	 word.addTo(2, "a");

b.	 word.insert(2, "a");

c.	 word.insert(3, "a");

d.	 none of the above

11.	 If the msg variable contains the string “Happy holidays”, what will the cout
<< msg.find("day", 0); statement display on the screen?

a.	 –1
b.	 0

c.	 10
d.	 11

12.	 If the msg variable contains the string “Happy holidays”, what will the location =
msg.find("Day", 0); statement assign to the location variable?

a.	 –1
b.	 0

c.	 10
d.	 11

13.	 Which of the following statements assigns the location of the comma in the amount
variable to an int variable named loc?

a.	 loc = amount.contains(",");

b.	 loc = amount.substr(",");

c.	 loc = amount.find(",", 0);

d.	 none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

503

Review Questions 	

14.	 Which of the following searches for the string “CA” in a string variable named state
and then assigns the result to an int variable named result? The search should begin
with the character located in subscript 5 in the state variable. The state variable’s
contents are uppercase.

a.	 result = find(state, 5, "CA");

b.	 result = state.find(5, "CA");

c.	 result = state.find("CA", 5);

d.	 result = state.find("CA", 5, 2);

15.	 If the state variable contains the string “San Francisco, CA”, what will the correct
statement in Question 14 assign to the result variable?

a.	 –1
b.	 0

c.	 11
d.	 15

16.	 Which of the following replaces the two characters located in subscripts 4 and 5 in a
string variable named code with the string “AB”?

a.	 code.replace(2, 4, "AB");

b.	 code.replace(4, 2, "AB");

c.	 code.replace(4, 5, "AB");

d.	 replace(code, 4, "AB");

17.	 Which of the following assigns five asterisks to a string variable named divider?

a.	 divider.assign(5, '*');

b.	 divider.assign(5, "*");

c.	 divider.assign('*', 5);

d.	 assign(divider, '*', 5);

18.	 Which of the following concatenates the contents of a string variable named city,
a comma, a space, and the contents of a string variable named state and then
assigns the result to a string variable named cityState?

a.	 cityState = "city" + ", " + "state";

b.	 cityState = city + ", " + state;

c.	 cityState = city & ", " & state;

d.	 cityState = "city, + state";

19.	 Which of the following assigns the fifth character in the word variable to the
letter variable?

a.	 letter = word.substr(4);

b.	 letter = word.substr(4, 1);

c.	 letter = word(5).substring;

d.	 letter = substring(word, 5);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

504

20.	 Which of the following statements tells the computer to consume the next 100 characters?

a.	 cin.ignore(100);

b.	 cin.ignore('100');

c.	 ignore(cin, 100);

d.	 none of the above

21.	 When processed, which of the following can consume the newline character?

a.	 >> operator
b.	 << operator

c.	 getline function
d.	 both a and c

Exercises

Pencil and Paper

1.	 Write a C++ statement that assigns the number of characters contained in the
message variable to an int variable named numChars. (The answers to TRY THIS
Exercises are located at the end of the chapter.)

2.	 Write a C++ statement that uses the erase function to remove the first two characters
from the message variable. (The answers to TRY THIS Exercises are located at the
end of the chapter.)

3.	 Rewrite the code from Pencil and Paper Exercise 2 using the replace function.

4.	 Write a C++ statement that replaces the first character in a string variable named
code with the letter B.

5.	 Write a C++ statement that assigns the first four characters in a string variable
named address to a string variable named streetNum.

6.	 The part variable contains the string “ABCD34G”. Write a C++ statement that assigns
the 34 in the part variable to a string variable named code.

7.	 Write a C++ statement to change the contents of the word variable from “mend”
to “amend”.

8.	 Write a C++ statement to change the contents of the word variable from “mouse”
to “mouth”.

9.	 The amount variable contains the string “3,123,560”. Write the C++ code to remove
the commas from the contents of the variable.

10.	 Write the C++ code that uses the substr function to determine whether the string
stored in the rate variable ends with the percent sign. If it does, the code should use
the replace function to remove the percent sign from the variable’s contents.

11.	 Write the C++ code to determine whether the address variable contains the street
name “Grove Street”. Begin the search with the fifth character in the address variable
and assign the result to an int variable named subNum variable.

12.	 Write a C++ statement that searches for the period in a string variable named
amount and then assigns the location of the period to an int variable named
location. Begin the search with the first character in the amount variable.

TRY THIS

TRY THIS

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

505

Exercises 	

13.	 The total and dollars variables are string variables. Write the C++ code that
uses the assign function to assign 10 asterisks to the total variable. The code should
then concatenate the contents of the total variable and the contents of the dollars
variable and then assign the resulting string to the total variable.

14.	 A string variable named amount contains a string that has zero or more commas.
Write the C++ code to count the number of commas in the string. Assign the result to
an int variable named numCommas.

15.	 Correct the following statement, which should change the contents of the day variable
from “731” to “7/31”: day = day.insert(2, "/");.

Computer

16.	 If necessary, create a new project named TryThis16 Project and save it in the Cpp8\
Chap13 folder. Enter the C++ instructions from Figure 13-15 into a source file named
TryThis16.cpp. Change the filename in the first comment to TryThis16.cpp. Save and
then run the program. Test the program using the data shown in Figure 13-15 in the
chapter. Now, modify the program so the user enters the last name followed by a comma,
a space, and the first name. The program should display the first name followed by a
space and the last name. Be sure to modify the comments that document the program’s
purpose. Save and then run the program. Test the program appropriately. (The answers to
TRY THIS Exercises are located at the end of the chapter.)

17.	 If necessary, create a new project named TryThis17 Project and save it in the Cpp8\
Chap13 folder. Also create a new source file named TryThis17.cpp. Write a program
that allows the user to enter a string that represents a date. The date should be entered
in the following format: mm/yy. Verify that the user entered exactly five characters and
that the third character is the slash character (/). If the user did not enter the required
number of characters, or if the third character is not a slash, display a message that indi-
cates the type of entry error made by the user. Otherwise, the program should display
the date in the following format: mm/20yy. Use a sentinel value to end the program.
Save and then run the program. Test the program by entering the following dates: 6/08,
12/09, 05/10, and 123/4. (The answers to TRY THIS Exercises are located at the end of
the chapter.)

18.	 In this exercise, you will modify the program from TRY THIS Exercise 17. If necessary, cre-
ate a new project named ModifyThis18 Project and save it in the Cpp8\Chap13 folder. Copy
the instructions from the TryThis17.cpp file into a source file named ModifyThis18.cpp.
Change the filename in the first comment to ModifyThis18.cpp. Modify the program so that
it allows the user to enter the date in the following format: mm/dd/yy. Verify that the user
entered exactly eight characters and that the third and sixth characters are slashes (/). If the
user did not enter the required number of characters, or if the third and sixth characters are
not slashes, display a message that indicates the type of entry error made by the user.
Otherwise, the program should display the date in the following format: mm/dd/20yy.
Save and then run the program. Test the program appropriately.

19.	 In this exercise, you modify one of the ZIP code programs from the chapter. If nec-
essary, create a new project named ModifyThis19 Project and save it in the Cpp8\
Chap13 folder. Enter the C++ instructions from Figure 13-13 into a new source file
named ModifyThis19.cpp. Change the filename in the first comment. Save and then
run the program. Test the program using the data shown in Figure 13-13 in the chapter.

INTERMEDIATE

INTERMEDIATE

SWAT THE BUGS

TRY THIS

TRY THIS

MODIFY THIS

MODIFY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

506

Now, modify the program so that it allows the user to enter either a five-character
ZIP code or a nine-character ZIP code. Pass the number of characters in the ZIP code
to the verifyNumeric function. Save and then run the program. Test the program
appropriately.

20.	 If necessary, create a new project named Introductory20 Project and save it in the
Cpp8\Chap13 folder. Also create a new source file named Introductory20.cpp. Write
a program that displays the appropriate shipping charge based on the region code
entered by the user. To be valid, the region code must contain exactly three characters:
a letter (either A or B) followed by two numbers. The shipping charge for region A
is $25. The shipping charge for region B is $30. Display an appropriate message if the
region code is invalid. Use a sentinel value to end the program. Save and then run the
program. Test the program using the following region codes: A11, B34, C7, D2A, A3N,
C45, and 74TV.

21.	 If necessary, create a new project named Introductory21 Project and save it in the
Cpp8\Chap13 folder. Also create a new source file named Introductory21.cpp. Write a
program that allows the user to enter three separate strings: a city name, a state name,
and a ZIP code. The program should use string concatenation to display the city name
followed by a comma, a space, the state name, two spaces, and the ZIP code. Use a
sentinel value to end the program. Save and then run the program. Test the program.

22.	 In this exercise, you modify the program from ModifyThis Exercise 19. If necessary,
create a new project named Intermediate22 Project and save it in the Cpp8\Chap13
folder. Enter (or copy) the C++ instructions from the ModifyThis19.cpp file into a new
source file named Intermediate22.cpp. Change the filename in the first comment.
Modify the program so that it also allows the user to enter a 10-character ZIP code,
as long as the sixth character is a hyphen. Remove the hyphen before sending the ZIP
code to the verifyNumeric function. Save and then run the program. Test the
program appropriately.

23.	 If necessary, create a new project named Intermediate23 Project and save it in the
Cpp8\Chap13 folder. Also create a new source file named Intermediate23.cpp. Write
a program that displays the color of the item whose item number is entered by the
user. All item numbers contain exactly seven characters. All items are available in four
colors: blue, green, red, and white. The fourth character in the item number indicates
the item’s color, as follows: a B or b indicates Blue, a G or g indicates Green, an R or r
indicates Red, and a W or w indicates White. If the item number does not contain
exactly seven characters, or if the fourth character is not one of the valid color
characters, the program should display an appropriate message. Use a sentinel value to
end the program. Save and then run the program. Test the program using the following
item numbers: 123B567, 34AG123, 111r222, 111w222, 123, 1234567, and 111k456.

24.	 In this exercise, you modify the Social Security Number program from the chapter. If
necessary, create a new project named Intermediate24 Project and save it in the
Cpp8\Chap13 folder. Enter the instructions from Figure 13-22 into a source file
named Intermediate24.cpp. Change the filename in the first comment. Before inserting
the missing hyphens, verify that the nine characters entered by the user are numeric.
Save and then run and test the program.

25.	 If necessary, create a new project named Intermediate25 Project and save it in the
Cpp8\Chap13 folder. Also create a new source file named Intermediate25.cpp. Write a
program that accepts a string of characters from the user. The program should display the
characters in reverse order. In other words, if the user enters the string “Programming”, the
program should display “gnimmargorP”. Save and then run and test the program.

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

507

Exercises 	

26.	 If necessary, create a new project named Intermediate26 Project and save it in the
Cpp8\Chap13 folder. Also create a new source file named Intermediate26.cpp. Write
a program that allows the user to enter a part number that consists of four or five
characters. The second and third characters represent the delivery method, as follows:
“MS” represents “Mail – Standard”, “MP” represents “Mail – Priority”, “FS” represents
“FedEx – Standard”, “FO” represents “FedEx – Overnight”, and “UP” represents “UPS”.
Display an appropriate message when the part number does not contain either four
or five characters. Also display an appropriate message when the second and third
characters are not one of the delivery methods. If the part number is valid, the program
should display the delivery method. Use a sentinel value to end the program. Save and
then run the program. Test the program using the following part numbers: 7MP6, 3fs5,
2UP7, 7mS89, 9FO8, 9fo89, 8ko89, and 1234MS.

27.	 In this exercise, you modify the program from Lab 13-2. If necessary, create a new project
named Intermediate27 Project and save it in the Cpp8\Chap13 folder. Also create a new
source file named Intermediate27.cpp. Copy the C++ instructions from the Lab13-2.cpp
file into the Intermediate27.cpp file. Change the filename in the first comment. Modify
the program so that it displays a message indicating the number of incorrect guesses
remaining. Display the message each time the user enters an incorrect guess.

28.	 If necessary, create a new project named Advanced28 Project and save it in the
Cpp8\Chap13 folder. Also create a new source file named Advanced28.cpp. Write a
program that determines whether the user entered an item number in the required
format: three digits, a hyphen, and two digits. Display an appropriate message
indicating whether the format is correct. Use a sentinel value to end the program.
Save and then run the program.

29.	 Follow the instructions for starting C++ and viewing the Advanced29.cpp file, which is
contained in either the Cpp8\Chap13\Advanced29 Project folder or the Cpp8\Chap13
folder. (Depending on your C++ development tool, you may need to open the project/
solution file first.) If necessary, delete the two forward slashes that appear before the
#include <cstdlib> directive, and then save the program. The program assigns the
letters of the alphabet to a string variable named letters. It also prompts the user
to enter a letter. Complete the program by entering instructions to perform the tasks
listed in Figure 13-35. Save and then run the program. Test the program appropriately.

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

1. Generate a random number that can be used to select one of the letters from the letters
 variable. Assign the letter to the randomLetter variable.
2. Verify that the user entered exactly one lowercase letter. If the user did not enter exactly one
 lowercase letter, display an appropriate error message.
3. If the user entered exactly one lowercase letter, compare the letter to the random letter. If the
 letter entered by the user is the same as the random letter, display the message “You guessed
 the correct letter.” and then end the program. Otherwise, display messages indicating whether
 the correct letter comes alphabetically before or after the letter entered by the user.
4. Allow the user to enter a letter until he or she guesses the random letter.

Figure 13-35

30.	 In this exercise, you modify the program from ADVANCED Exercise 29. If necessary,
create a new project named Advanced30 Project and save it in the Cpp8\Chap13 folder.
Also create a new source file named Advanced30.cpp. Copy the C++ instructions from
the Advanced29.cpp file into the Advanced30.cpp file. Research the C++ compare
function. Modify the program to use the compare function. Save and then run the
program. Test the program appropriately.

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

508

31.	 In this exercise, you modify the program from Lab 13-2. If necessary, create a new proj-
ect named Advanced31 Project and save it in the Cpp8\Chap13 folder. Also create a new
source file named Advanced31.cpp. Copy the C++ instructions from the Lab13-2.cpp file
into the Advanced31.cpp file. Change the filename in the first comment. Modify the pro-
gram so that it keeps track of the letters guessed by the user. If the user enters a letter that
he or she has already entered, display an appropriate message, and do not include the let-
ter in the number of incorrect guesses. Save and then run the program. Test the program
appropriately.

32.	 In this exercise, you modify the program from ADVANCED Exercise 31. If necessary,
create a new project named Advanced32 Project and save it in the Cpp8\Chap13 folder.
Also create a new source file named Advanced32.cpp. Copy the instructions from the
Advanced31.cpp file into the Advanced32.cpp file. Change the filename in the first
comment. Modify the program so that it displays the letters already entered by the user.
Display the letters immediately before prompting the user to enter a letter. Save and
then run the program. Test the program appropriately.

33.	 Some credit card companies assign a special digit, called a check digit, to the end of
each customer’s credit card number. Many methods for creating the check digit have
been developed. One very simple method is to append the second digit in the credit
card number to the end of the number. For example, if the first four characters in the
credit card number are 1357, you would append the number 3 to the end of the num-
ber, making the credit card number 13573. If necessary, create a new project named
Advanced33 Project and save it in the Cpp8\Chap13 folder. Also create a new source
file named Advanced33.cpp. Write a program that prompts the user to enter a five-
digit credit card number, with the fifth digit being the check digit. Verify that the user
entered exactly five numbers. If the user entered the required number of numbers,
verify that the last number is the check digit. Display appropriate messages indicating
whether the credit card number is valid or invalid. Use a sentinel value to end the pro-
gram. Save and then run the program. Test the program appropriately.

34.	 If necessary, create a new project named Advanced34 Project and save it in the Cpp8\
Chap13 folder. Also create a new source file named Advanced34.cpp. Create a program
that allows the user to enter a password. The program should then create and display a new
password using the rules listed in Figure 13-36. Use a sentinel value to end the program.

ADVANCED

ADVANCED

ADVANCED

ADVANCED

1. All vowels (A, E, I, O, and U) in the original password should be replaced with the letter X.
2. All numbers in the original password should be replaced with the letter Z.
3. All of the characters in the original password should be reversed.

Figure 13-36

35.	 In this exercise, you modify the program from Lab 13-2. If necessary, create a new
project named Advanced35 Project and save it in the Cpp8\Chap13 folder. Also create a
new source file named Advanced35.cpp. Copy the C++ instructions from the Lab13-2.cpp
file into the Advanced35.cpp file. Change the prompt on Line 21 to “Enter a 5-letter word: ”.
Also change the prompt on Line 32 to “Enter a letter: ”. Modify the program so that it con-
verts both the 5-letter word and the letter to uppercase. Save and then run the program.
Test the program appropriately. (Hint: Recall that a string is equivalent to a one-dimensional
array of characters.)

36.	 If necessary, create a new project named Advanced36 Project and save it in the Cpp8\
Chap13 folder. Also create a new source file named Advanced36.cpp. Each salesperson
at Rembrandt Auto-Mart is assigned an ID number that consists of five characters. The

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

509

Exercises 	

first three characters are numbers. The fourth character is a letter: either the letter N if
the salesperson sells new cars or the letter U if the salesperson sells used cars. The fifth
character is also a letter: either the letter F if the salesperson is a full-time employee or the
letter P if the salesperson is a part-time employee. Create a program that allows the sales
manager to enter the ID and the number of cars sold for as many salespeople as needed.
Use a sentinel value to stop the program. When the sales manager has finished entering
the data, the program should display the total number of cars sold by each of the follow-
ing four categories of employees: full-time employees, part-time employees, employees
selling new cars, and employees selling used cars. Save, run, and test the program.

37.	 Follow the instructions for starting C++ and viewing the SwatTheBugs37.cpp file,
which is contained in either the Cpp8\Chap13\SwatTheBugs37 Project folder or the
Cpp8\Chap13 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) The program should calculate and display the total
of the prices entered by the user. Run the program. Use your own data to test the pro-
gram. Notice that the program is not working correctly. Debug the program.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 numChars = message.length();

2.	 message.erase(0, 2);

Computer

16.	 See Figure 13-37.

SWAT THE BUGS

Figure 13-37 (continues)

//TryThis16.cpp - displays the first name followed
//by a space and the last name
//Created/revised by <your name> on <current date>

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string firstLast = "";
 string first = "";
 string last = "";
 int commaLocation = 0;

 //get first and last name
 cout << "Name (last, comma, space, first): ";
 getline(cin, firstLast);

 //locate comma, then pull out first and last names
 commaLocation = firstLast.find(",", 0);
 first = firstLast.substr(commaLocation + 2);
 last = firstLast.substr(0, commaLocation);

 //display rearranged name
 cout << first << " " << last << endl;
 return 0;
} //end of main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 3 Strings

510

17.	 See Figure 13-38.

(continued)

//TryThis16.cpp - displays the first name followed
//by a space and the last name
//Created/revised by <your name> on <current date>

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string firstLast = "";
 string first = "";
 string last = "";
 int commaLocation = 0;

 //get first and last name
 cout << "Name (last, comma, space, first): ";
 getline(cin, firstLast);

 //locate comma, then pull out first and last names
 commaLocation = firstLast.find(",", 0);
 first = firstLast.substr(commaLocation + 2);
 last = firstLast.substr(0, commaLocation);

 //display rearranged name
 cout << first << " " << last << endl;
 return 0;
} //end of main function

Figure 13-37

//TryThis17.cpp
//displays a date using the format mm/20yy
//Created/revised by <your name> on <current date>

#include <iostream>
#include <string>
using namespace std;

int main()
{
 string date = "";

 cout << "Enter date (mm/yy). Enter -1 to end. ";
 getline(cin, date);
 while (date != "-1")
 {
 if (date.length() != 5)
 cout << "Invalid length" << endl << endl;
 else
 if (date.substr(2, 1) != "/")
 cout << "Invalid third character"
 << endl << endl;
 else
 {
 date.insert(3, "20");
 cout << date << endl << endl;
 } //end if
 //end if

 cout << "Enter date (mm/yy). Enter -1 to end. ";
 getline(cin, date);
 } //end while
 return 0;
} //end of main function

Figure 13-38

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying Chapter 14, you should be able to:

�� Create file objects

�� Open a sequential access file

�� Determine whether a sequential access file was opened successfully

�� Write data to a sequential access file

�� Read data from a sequential access file

�� Test for the end of a sequential access file

�� Close a sequential access file

C h a p t e r 14
Sequential Access Files

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

512

File Types
In addition to getting data from the keyboard and sending data to the computer screen, a
program can also read data from and write data to a file on a permanent or secondary storage
device (such as a flash drive). Files to which data is written are called output files because the
files store the output produced by a program. Files that are read by the computer are called
input files because a program uses the data in the files as input.

Most input and output files are composed of lines of text that are both read and written in
consecutive order, one line at a time, beginning with the first line in the file and ending with the
last line in the file. Such files are referred to as sequential access files because of the manner in
which the lines of text are accessed. They are also called text files because they are composed of
lines of text. Figure 14-1 shows examples of text you might find stored in sequential access files.

Ch14-Chapter Preview

Figure 14-1   Examples of text stored in sequential access files

You can also create random access and binary access files in C++. The data stored in a random
access file can be accessed in either consecutive or random order. The data in a binary access file
can be accessed by its byte location in the file. Random access and binary access files are used
less often in programs and, therefore, are not covered in this book.

Creating File Objects
In previous chapters, you used stream objects to perform standard input and output operations
in a program. The standard input stream object (cin) refers to the computer keyboard, and the
standard output stream object (cout) refers to the computer screen. A program that uses the
cin and cout objects must contain the #include <iostream> directive, which tells the
compiler to include the contents of the iostream file in the program. The iostream file contains
the definitions of the istream and ostream classes from which the cin and cout objects,
respectively, are created. You do not have to create the cin and cout objects in a program
because C++ creates those objects for you.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

513

Creating File Objects 	﻿

Objects are also used to perform file input and output operations in C++. However, unlike the
standard cin and cout objects, the input and output file objects must be created by the
programmer. To create a file object in a program, the program must contain the #include
<fstream> directive, which tells the compiler to include the contents of the fstream file in the
program. The fstream file contains the definitions of the ifstream (input file stream) and
ofstream (output file stream) classes, which allow you to create input and output file objects,
respectively.

Figure 14-2 shows the syntaxes for creating input file objects and output file objects. In the first
syntax, ifstream is the name of the class from which all input file objects are created. Similarly,
ofstream in the second syntax is the name of the class from which all output file objects are
created. In each syntax, fileObject is the name of the file object you want to create. Notice that a
semicolon appears at the end of each syntax.

Also included in Figure 14-2 are examples of creating file objects. The statements in
Examples 1 and 2 create input file objects named inFile and inEmploy, respectively. The
statements in Examples 3 and 4 create output file objects named outFile and outSales,
respectively. Notice that the names of the input file objects in the examples begin with the
two letters in, whereas the names of the output file objects begin with the three letters out.
Although the C++ syntax does not require you to begin file object names with either in or
out, using this naming convention helps to distinguish a program’s input file objects from its
output file objects.

All objects in
C++ are
created from
a class and
are referred to

as an instance of the
class. A cin object is an
instance of the istream
class, whereas an input
file object is an instance
of the ifstream class.

Figure 14-2   How to create input and output file objects

How To �Create Input and Output File Objects

Syntax
To create an input file object: ifstream fileObject;
To create an output file object: ofstream fileObject;

Example 1
ifstream inFile;
creates an input file object named inFile

Example 2
ifstream inEmploy;
creates an input file object named inEmploy

Example 3
ofstream outFile;
creates an output file object named outFile

Example 4
ofstream outSales;
creates an output file object named outSales

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

514

Opening a Sequential Access File
You use a program’s input and output file objects, along with the C++ open function, to open
actual files on your computer’s disk. Figure 14-3 shows the open function’s syntax and describes
the modes most commonly used to open a sequential access file. In the syntax, fileObject is the
name of either an existing ifstream file object or an existing ofstream file object, and
fileName is the name of the file (including an optional path) you want to open. The fileName
argument can be either a string literal constant or a string variable. If the fileName argument
does not contain a path, the computer assumes that the file is located in the same folder as the
program file. (See the second TIP on this page.) The open function opens the file whose name
is specified in the fileName argument and associates the file with the fileObject. When a
subsequent statement in the program needs to refer to the file, it does so using the name of
the fileObject rather than the fileName itself.

The optional mode argument in the syntax indicates how the file is to be opened. As Figure 14-3
indicates, you use the ios::in mode to open a file for input, which allows the computer to read
the data stored in the file. The ios::out and ios::app modes are used to open output files.
Both of these modes allow the computer to write data to the file. You use the ios::app (app
stands for append) mode when you want to add data to the end of an existing file. If the file does
not exist, the computer creates the file for you. You use the ios::out mode to open a new,
empty file for output. If the file already exists, the computer erases the contents of the file before
writing any data to it. The two colons (::) in each mode are called the scope resolution operator
and indicate that the keywords in, out, and app are defined in the ios class.

The open
function is
defined in the
ifstream and
ofstream

classes and is referred
to as a class member
function.

In most cases,
the program
file refers to
the .exe file.
However, when

running a program from
the Microsoft Visual
C++ IDE, the program
file refers to the .cpp file.

Figure 14-3   How to open a sequential access file (continues)

How To �Open a Sequential Access File

Syntax
fileObject.open(fileName[, mode]);

mode Description
ios::in Used with an ifstream object. Opens the file for input, which
 allows the computer to read the file’s contents. This is the default
 mode for input files.

ios::out Used with an ofstream object. Opens the file for output, which
 creates a new, empty file to which data can be written. If the file
 already exists, the computer erases the file’s contents before the
 new data is written to it. This is the default mode for output files.

ios::app Used with an ofstream object. Opens the file for append, which
 allows the computer to write new data to the end of the existing
 data in the file. If the file does not exist, the computer creates the
 file before writing any data to it.

Example 1
inFile.open("payroll.txt", ios::in);
 or
inFile.open("payroll.txt");
opens the payroll.txt file for input

Example 2
outFile.open("employ.txt", ios::out);
 or
outFile.open("employ.txt");
opens the employ.txt file for output

Example 3
outSales.open("F:/FirstQtr/sales.txt", ios::app);
opens the sales.txt file for append

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

515

Opening a Sequential Access File 	﻿

Also included in Figure 14-3 are examples of statements that open sequential access files.
Although it is not a requirement, many programmers use the three letters txt (short for text) as
the filename extension when naming sequential access files. You can use either of the statements
in Example 1 to open the payroll.txt file for input. Because the fileName argument in both
statements does not contain a path, the computer will look for the payroll.txt file in the same
location as the program file. Notice that the mode argument is omitted in the second statement
in Example 1. Because all files associated with an ifstream file object are opened automatically
for input, it is not necessary to specify ios::in when opening an input file.

Unlike files associated with an ifstream object, files associated with an ofstream object are
opened automatically for output. In other words, ios::out is the default mode when opening
output files. This explains why you can use either of the statements in Example 2 to open the
employ.txt file for output. Here too, because the fileName argument in both statements does
not contain a path, the computer will look for the employ.txt file in the same location as the
program file.

If a program needs to add data to the end of an output file’s existing data, you will need to
specify the ios::app mode in the open function, as shown in Example 3. In this case, the
outSales.open("F:/FirstQtr/sales.txt", ios::app); statement tells the computer to
locate the sales.txt file in the FirstQtr folder on the F drive and then open it for append.

The computer uses a file pointer to keep track of the next character either to read from or to
write to a file. When you open a file for input, the computer positions the file pointer at the
beginning of the file, immediately before the first character. When you open a file for output,
the computer also positions the file pointer at the beginning of the file, but recall that the file
is empty. (As you learned earlier, when you open a file for output, the computer either creates
a new, empty file or erases the contents of an existing file.) However, when you open a file for
append, the computer positions the file pointer immediately after the last character in the file.
Figure 14-4 illustrates the position of the file pointer when files are opened for input, output,
and append.

Syntax
fileObject.open(fileName[, mode]);

mode Description
ios::in Used with an ifstream object. Opens the file for input, which
 allows the computer to read the file’s contents. This is the default
 mode for input files.

ios::out Used with an ofstream object. Opens the file for output, which
 creates a new, empty file to which data can be written. If the file
 already exists, the computer erases the file’s contents before the
 new data is written to it. This is the default mode for output files.

ios::app Used with an ofstream object. Opens the file for append, which
 allows the computer to write new data to the end of the existing
 data in the file. If the file does not exist, the computer creates the
 file before writing any data to it.

Example 1
inFile.open("payroll.txt", ios::in);
 or
inFile.open("payroll.txt");
opens the payroll.txt file for input

Example 2
outFile.open("employ.txt", ios::out);
 or
outFile.open("employ.txt");
opens the employ.txt file for output

Example 3
outSales.open("F:/FirstQtr/sales.txt", ios::app);
opens the sales.txt file for append

Figure 14-3   How to open a sequential access file

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

516

Figure 14-4   Position of the file pointer when files are opened for input, output, and append

file pointer is
positioned here

file opened for input

lin
es

 o
f t

ex
t lin

es
 o

f t
ex

t

file opened for output file opened for append

file pointer is
positioned here

file pointer is
positioned here

Determining Whether a File Was Opened Successfully
Keep in mind that it is possible for the open function to fail when attempting to open a file. For
example, the function will not be able to create an output file when either the path specified in
the fileName argument does not exist or the disk is full. It also will not be able to open an input
file that does not exist or one that you don’t have permission to open. Therefore, immediately
after using the open function in a program, you should use the is_open function to determine
whether the file was opened successfully. The is_open function returns the Boolean value true if
the open function was able to open the file; otherwise, it returns the Boolean value false.

Figure 14-5 shows the is_open function’s syntax and includes examples of using the function. In
the syntax, fileObject is the name of an existing file object in the program. Most times, you will
use the is_open function in an if statement’s condition, as shown in the examples. (For clarity,
an appropriate open function is included in each example.)

The is_open
function is a
class member
function in the
ifstream and

ofstream classes.

Figure 14-5   How to determine the success of the open function (continues)

How To �Determine the Success of the open Function

Syntax
fileObject.is_open()

Example 1
inFile.open("payroll.txt");

if (inFile.is_open() == true)
 or
if (inFile.is_open())
determines whether the open function succeeded in opening the file associated
with the inFile object

Example 2
outFile.open("employ.txt");

if (outFile.is_open() == false)
 or
if (!outFile.is_open())
determines whether the open function failed to open the file associated with
the outFile object

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

517

Opening a Sequential Access File 	﻿

You can use either of the conditions shown in Example 1 to determine whether the open
function was able to open the file associated with the inFile object. The first condition in
Example 1, inFile.is_open() == true, compares the is_open function’s return value with
the Boolean value true. If the condition evaluates to true, it means that the open function was
successful in opening the file. If the condition evaluates to false, it means that the open function
was not able to open the file. As the second condition in Example 1 shows, you can omit the
== true text from the condition and use inFile.is_open() instead.

Unlike the conditions in Example 1, the conditions in Example 2 determine whether the open function
failed to open the file associated with the outFile object. The outFile.is_open() == false
condition compares the is_open function’s return value with the Boolean value false. In this
case, you can omit the == false text by preceding the condition with an exclamation point (!), as
shown in the second condition in Example 2. The ! is the Not logical operator in C++, and its
purpose is to reverse the truth-value of the condition. If the value of outFile.is_open() is true,
then the value of !outFile.is_open() is false. Likewise, if the value of outFile.is_open() is
false, then the value of !outFile.is_open() is true.

Mini-Quiz 14-1
1.	 Which directive is necessary to create an input file in a program?

a.	 #include <filestream>

b.	 #include <fstream>

c.	 #include <instream>

d.	 #include <iofilestream>

2.	 Which mode tells the computer to open a file for input?

a.	 add::ios

b.	 in::file

c.	 ios::app

d.	 ios::in

3.	 What value does the is_open function return when the open function fails?

4.	 Write the C++ statement to create an output file object named outAlbums.

Syntax
fileObject.is_open()

Example 1
inFile.open("payroll.txt");

if (inFile.is_open() == true)
 or
if (inFile.is_open())
determines whether the open function succeeded in opening the file associated
with the inFile object

Example 2
outFile.open("employ.txt");

if (outFile.is_open() == false)
 or
if (!outFile.is_open())
determines whether the open function failed to open the file associated with
the outFile object

Figure 14-5   How to determine the success of the open function

(continued)

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

518

5.	 Which of the following statements uses the outAlbums file object from Question 4 to
open an output file named mine.txt? New information should be written following the
existing information in the file.

a.	 outAlbums.open("mine.txt", ios::in);

b.	 outAlbums.open("mine.txt", ios::out);

c.	 outAlbums.open("mine.txt", ios::app);

d.	 outAlbums.open("mine.txt", ios::add);

Writing Data to a Sequential Access File
Figure 14-6 shows the syntax for writing data to a sequential access file in C++. In the syntax,
fileObject is the name of an existing ofstream object in the program, and data is the information
you want written to the file. The figure also includes examples of using the syntax.

Figure 14-6   How to write data to a sequential access file

How To �Write Data to a Sequential Access File
Syntax
fileObject << data;

Example 1
outFile << "Rainbow Boutique" << endl;
writes the string “Rainbow Boutique” to the file associated with the outFile object
and then advances the file pointer to the next line in the file

Example 2
outFile << "Gross pay: $";
outFile << gross << endl;
writes the string “Gross pay: $” and the contents of the gross variable to the file
associated with the outFile object and then advances the file pointer to the next
line in the file

Example 3
outSales << custName << endl;
writes the contents of the custName variable to the file associated with the
outSales object and then advances the file pointer to the next line in the file

Example 4
outEmploy << name << '#' << bonus << endl;
writes the contents of the name variable, the number sign (#), and the contents
of the bonus variable to the file associated with the outEmploy object and then
advances the file pointer to the next line in the file

The statement in Example 1 writes the string “Rainbow Boutique” followed by a newline
character to the file associated with the outFile object. The newline character, which
represents the Enter key, advances the file pointer to the next line in the file. The first statement
in Example 2 writes the string “Gross pay: $” to the file associated with the outFile object,

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

519

Reading Information from a Sequential Access File 	﻿

but it leaves the file pointer after the last character written, which is the dollar sign. The
second statement in Example 2 writes the contents of the gross variable followed by a newline
character to the file. If the gross variable contains the number 450, the statements in Example 2
write “Gross pay: $450” (without the quotes) to the file before advancing the file pointer.

In many programs, a sequential access file is used to store fields and records. A field is a single
item of information about a person, place, or thing—such as a name, a salary, a Social Security
number, or a price. A record is a collection of one or more related fields that contain all of the
necessary data about a specific person, place, or thing. The college you are attending keeps
a student record on you. Examples of fields contained in your student record include your
Social Security number, name, address, phone number, credits earned, and grades earned.

To distinguish one record from another in a sequential access file, programmers typically write
each record on a separate line in the file. You do this by including the endl stream manipulator
at the end of the statement that writes the record. The outSales << custName << endl;
statement in Example 3 in Figure 14-6, for instance, writes a record that contains one field (the
name stored in the custName variable) to the file associated with the outSales object. The endl
stream manipulator writes a newline character at the end of the record, which advances the file
pointer to the next line in the file.

When writing a record that contains more than one field, programmers typically separate each
field with a character literal constant, such as '#' (the number sign or hash mark enclosed in
single quotation marks). The '#' character appears in the outEmploy << name << '#' <<
bonus << endl; statement in Example 4 in Figure 14-6. The statement writes a record that
contains two fields: the name stored in the name variable and the bonus amount stored in the
bonus variable. The statement writes the record on a separate line in the file, with the number
sign separating the data in the name field from the data in the bonus field.

You can verify that the information was written correctly to a sequential access file by opening
the file in a text editor, such as the text editor in your C++ development tool or in Notepad.
Figure 14-7 shows a sequential access file named yearsAndSalaries.txt opened in a text editor.
The file contains four records: one for each of the company’s four employees. Each record has
two fields separated by a number sign (#). The first field in each record represents the number
of years the employee has worked for the company; the second field represents the employee’s
salary. A newline character separates one record from the next. Because the newline character is
invisible, you will not see it when you open a sequential access file.

Fields and
records are like
columns and
rows, respec-
tively, in a table.

You can also
use a string
literal constant,
such as "#",
�to separate
each field.

You can use
Notepad to
create a text
file. However,
when saving the

file, be sure to enclose
the filename in quota-
tion marks, like this:
“yearsAndSalaries.txt”.

The OpenText-
File.pdf file
contains the
instructions
for opening a

text file in Notepad
and in several C++
development tools.

Reading Information from a Sequential Access File
Figure 14-8 shows the syntax for reading numeric and char data from a sequential access file in
C++. It also includes the syntax for reading string data. In each syntax, fileObject is the name
of an existing ifstream object in the program. The variableName and stringVariableName
arguments represent the name of the variable that will store the information read from the file.
The figure also shows examples of using each syntax.

Figure 14-7   The yearsAndSalaries.txt sequential access file opened in a text editor

years employed

salary

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

520

As Figure 14-8 indicates, you use the extraction operator (>>) to read char and numeric
data from a file. The code in Example 1 shows how you can read the first record from the
yearsAndSalaries.txt file (shown earlier in Figure 14-7), which is associated with the inFile
object. The inFile >> years; statement in the example reads the first number from the file
(13) and stores the number in the years variable. The first inFile.ignore(1); statement then
consumes (ignores) the number sign (#) that separates the years field from the salary field. Next,
the inFile >> salary; statement reads the employee’s salary (54000) from the file and stores

Figure 14-8   How to read data from a sequential access file

How To �Read Data from a Sequential Access File

Syntax
To read numeric and char data: fileObject >> variableName;
To read string data: getline(fileObject, stringVariableName[, delimiterCharacter]);

Example 1
int years = 0;
double salary = 0.0;
inFile >> years;
inFile.ignore(1);
inFile >> salary;
inFile.ignore(1);
reads a number from the file associated with the inFile object and stores the
number in the years variable, then ignores (consumes) one character, then reads
the next number and stores it in the salary variable, and then ignores (consumes)
one character; when used to read a record from the yearsAndSalaries.txt file shown
earlier in Figure 14-7, the first ignore function will consume the # character, and the
second ignore function will consume the newline character

Example 2
char letter = ' ';
inAlphabet >> letter;
reads a character from the file associated with the inAlphabet object and stores
the character in the letter variable

Example 3
string name = "";
getline(inEmploy, name);
reads a string from the file associated with the inEmploy object and stores the
string in the name variable, and then ignores (consumes) the newline character

Example 4
string name = "";
double bonus = 0.0;
getline(inEmploy, name, '#');
inEmploy >> bonus;
inEmploy.ignore(1);
reads a string from the file associated with the inEmploy object and stores the
string in the name variable, then ignores (consumes) the # character, then reads
a number from the file and stores the number in the bonus variable, and then
ignores (consumes) one character

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

521

Reading Information from a Sequential Access File 	﻿

it in the salary variable. Finally, the second inFile.ignore(1); statement consumes the new-
line character that separates the first record from the second record.

The code in Example 2 in Figure 14-8 uses the extraction operator to read a character from the
file associated with the inAlphabet object. The code stores the character in the letter variable.

To read string data from a sequential access file, you use the getline function, which you
learned about in Chapter 13. The getline function will continue to read characters from
the file associated with the fileObject until it encounters the delimiterCharacter, which it
consumes. Recall that consuming a character means to read and discard it. If you omit the
delimiterCharacter argument in the getline function, the default delimiter character is the
newline character. The getline(inEmploy, name); statement in Example 3 in Figure 14-8
uses the getline function to read a string from the file associated with the inEmploy object.
Because the getline function does not specify a delimiterCharacter, the function stops reading
when it encounters the newline character. The function stores the string in the name variable and
then consumes the newline character.

The getline(inEmploy, name, '#'); statement in Example 4 in Figure 14-8 also reads a
string from the file associated with the inEmploy object. In this case, however, the getline
function’s delimiterCharacter argument indicates that the string ends with the character
immediately preceding the # character. After storing the string in the name variable, the
getline function consumes the # character. The next statement in the example,
inEmploy >> bonus;, reads a number from the file and stores the number in the bonus
variable. The inEmploy.ignore(1); statement then consumes the next character in the file.

Mini-Quiz 14-2
1.	 Which of the following statements writes the contents of the quantity variable to the

inventory.txt file, which is associated with a file object named outInv?

a.	 inventory.txt << quantity << endl;

b.	 ofstream << quantity << endl;

c.	 outInv << quantity << endl;

d.	 outInv >> quantity >> endl;

2.	 Which of the following statements writes a record to the test.txt file? The file is
associated with a file object named outFile. The record contains two scores, which are
stored in the score1 and score2 variables.

a.	 test.txt << score1 << score2 << endl;

b.	 ofstream << score1 << '#' << score2 << endl;

c.	 outFile << score1 << score2 << endl;

d.	 outFile << score1 << '#' << score2 << endl;

3.	 Which of the following statements reads a record written by the statement from
Question 1 and stores the record in the number variable? The inventory.txt file is
associated with a file object named inInv.

a.	 ifstream >> number;

b.	 inventory.txt >> number;

c.	 inInv << number;

d.	 inInv >> number;

�The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

522

Testing for the End of a Sequential Access File
As you learned earlier, the computer uses a file pointer to keep track of the next character to
either read from a file or write to a file. When a sequential access file is opened for input, the
computer positions the file pointer before the first character in the file. Each time a character is
read from the file, the file pointer is moved to the next character. When an entire line from the
file is read, the computer moves the file pointer to the beginning of the next line in the file.

Most times, a program will need to read each line contained in a sequential access file, one line
at a time, beginning with the first line and ending with the last line. You can accomplish this task
by using a loop along with the eof (end of file) function. The eof function determines whether
the last character in a file has been read. In other words, it determines whether the file pointer
is located after the last character in the file. If the file pointer is located at the end of the file, the
eof function returns the Boolean value true; otherwise, it returns the Boolean value false.

Figure 14-9 shows the eof function’s syntax and includes examples of using the function. In the
syntax, fileObject is the name of an existing ifstream object in the program. The condition in
the while clause in Example 1 tells the computer to repeat the loop instructions as long as the
end of the file has not been reached. You can also write the condition using the Not logical
operator (!), as shown in Example 2. As the examples indicate, you should enter the priming
read above the while clause that contains the eof function. (You learned about the priming
read in Chapter 7.)

The eof function
is a class mem-
ber function in
the ifstream
class.

Figure 14-9   How to test for the end of a sequential access file

How To �Test for the End of a Sequential Access File

Syntax
fileObject.eof()

Example 1
priming read instruction
while (inFile.eof() == false)
tells the computer to repeat the loop instructions as long as (or while) the end of the
file associated with the inFile object has not been reached

Example 2
priming read instruction
while (!inFile.eof())
same as Example 1

Closing a Sequential Access File
To prevent the loss of data, you should use the close function to close a sequential access file as
soon as the program is finished using it. The function’s syntax is shown in Figure 14-10 along
with examples of using the function. In the syntax, fileObject is the name of either an existing
ifstream object or an existing ofstream object in the program. Notice that the close
function does not require the name of the file you want to close. This is because the computer
automatically closes the file whose name is associated with the fileObject. (Recall that the open
function associates the file’s name with the fileObject when the file is opened.) Because it is so
easy to forget to close the files used in a program, you should enter the statement to close the
file as soon as possible after entering the one that opens it.

The close
function is a
class member
function in the
ifstream and

ofstream classes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

523

The eBook Collection Program 	﻿

The eBook Collection Program
The eBook Collection program will use a sequential access file to save two items of information
for each eBook: the title and the author’s name. Figure 14-11 shows the IPO chart information
and C++ instructions for the program. In addition to the main function, the program uses two
void functions named saveInfo and displayInfo. The saveInfo function saves the user’s
input in the eBooks.txt file, and the displayInfo function displays the file’s contents on the
computer screen.

After a file has
been read, the
only way to
access the first
record again

is to close the file and
then reopen it.

Figure 14-10   How to close a sequential access file

How To �Close a Sequential Access File

Syntax
fileObject.close()

Example 1
inFile.close()
closes the file associated with the inFile object

Example 2
outFile.close()
closes the file associated with the outFile object

Figure 14-11   IPO chart information and C++ instructions for the eBook Collection program (continues)

main function
IPO chart information
Input
 none

Processing
 none

Output
 none

Algorithm
 call the saveInfo function to get
 and save the eBook information

 call the displayInfo function to
 display the eBook information

saveInfo function
IPO chart information
Input
 title
 author

Processing
 none

Output
 file (sequential access file
 containing title and author)

Algorithm
1. open the file for append
2. if (the file was opened successfully)

 enter the title

 repeat while (the title is not “–1”)

 enter the author

 write the title and author to the file

 get another title
 end repeat
 close the file

 else
 display a message indicating that
 the file could not be opened
 end if

displayInfo function
IPO chart information
Input
 file (sequential access file
 containing title and author)

Processing
 none

 title
 author

1. open the file for input
2. if (the file was opened successfully)

 display heading

 read the title and author from the file

 repeat while (it’s not the end of the file)

 display the title and author

 read the title and author from the file
 end repeat
 close the file

 else
 display a message indicating that
 the file could not be opened
end if

main function
C++ instructions

saveInfo();

displayInfo();

saveInfo function
C++ instructions
string title = "";
string author = "";

ofstream outFile;

outFile.open("eBooks.txt", ios::app);
if (outFile.is_open())
{
 cout << "Title (-1 to stop): ";
 getline(cin, title);
 while (title != "-1")
 {
 cout << "Author: ";
 getline(cin, author);
 outFile << title << '#' << author
 << endl;
 cout << "Title (-1 to stop): ";
 getline(cin, title);
 } //end while
 outFile.close();
}
else
 cout << "eBooks.txt file could not
 be opened" << endl;
//end if

displayInfo function
C++ instructions

ifstream inFile;

string title = "";
string author = "";

inFile.open("eBooks.txt", ios::in);
if (inFile.is_open())
{
 cout << endl << endl <<
 "eBook Collection" << endl;
 cout << "----------------" << endl;
 getline(inFile, title, '#');
 getline(inFile, author);

 while (!inFile.eof())
 {
 cout << title << " by "
 << author << endl;
 getline(inFile, title, '#');
 getline(inFile, author);
 } //end while
 inFile.close();
}
else
 cout << "eBooks.txt file could
 not be opened" << endl;
//end if

Output

Algorithm

The flowcharts
for the eBook
Collection
program are
contained in

the eBook.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

524

Figure 14-11   IPO chart information and C++ instructions for the eBook Collection program (continues)

main function
IPO chart information
Input
 none

Processing
 none

Output
 none

Algorithm
 call the saveInfo function to get
 and save the eBook information

 call the displayInfo function to
 display the eBook information

saveInfo function
IPO chart information
Input
 title
 author

Processing
 none

Output
 file (sequential access file
 containing title and author)

Algorithm
1. open the file for append
2. if (the file was opened successfully)

 enter the title

 repeat while (the title is not “–1”)

 enter the author

 write the title and author to the file

 get another title
 end repeat
 close the file

 else
 display a message indicating that
 the file could not be opened
 end if

displayInfo function
IPO chart information
Input
 file (sequential access file
 containing title and author)

Processing
 none

 title
 author

1. open the file for input
2. if (the file was opened successfully)

 display heading

 read the title and author from the file

 repeat while (it’s not the end of the file)

 display the title and author

 read the title and author from the file
 end repeat
 close the file

 else
 display a message indicating that
 the file could not be opened
end if

main function
C++ instructions

saveInfo();

displayInfo();

saveInfo function
C++ instructions
string title = "";
string author = "";

ofstream outFile;

outFile.open("eBooks.txt", ios::app);
if (outFile.is_open())
{
 cout << "Title (-1 to stop): ";
 getline(cin, title);
 while (title != "-1")
 {
 cout << "Author: ";
 getline(cin, author);
 outFile << title << '#' << author
 << endl;
 cout << "Title (-1 to stop): ";
 getline(cin, title);
 } //end while
 outFile.close();
}
else
 cout << "eBooks.txt file could not
 be opened" << endl;
//end if

displayInfo function
C++ instructions

ifstream inFile;

string title = "";
string author = "";

inFile.open("eBooks.txt", ios::in);
if (inFile.is_open())
{
 cout << endl << endl <<
 "eBook Collection" << endl;
 cout << "----------------" << endl;
 getline(inFile, title, '#');
 getline(inFile, author);

 while (!inFile.eof())
 {
 cout << title << " by "
 << author << endl;
 getline(inFile, title, '#');
 getline(inFile, author);
 } //end while
 inFile.close();
}
else
 cout << "eBooks.txt file could
 not be opened" << endl;
//end if

Output

Algorithm

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

525

The eBook Collection Program 	﻿

The eBook Collection program is shown in Figure 14-12. The instructions pertaining to
sequential access files are shaded in the figure. Figure 14-13 shows both a sample run of the
program and the eBooks.txt file opened in a text editor.

Figure 14-11   IPO chart information and C++ instructions for the eBook Collection program

(continued)

main function
IPO chart information
Input
 none

Processing
 none

Output
 none

Algorithm
 call the saveInfo function to get
 and save the eBook information

 call the displayInfo function to
 display the eBook information

saveInfo function
IPO chart information
Input
 title
 author

Processing
 none

Output
 file (sequential access file
 containing title and author)

Algorithm
1. open the file for append
2. if (the file was opened successfully)

 enter the title

 repeat while (the title is not “–1”)

 enter the author

 write the title and author to the file

 get another title
 end repeat
 close the file

 else
 display a message indicating that
 the file could not be opened
 end if

displayInfo function
IPO chart information
Input
 file (sequential access file
 containing title and author)

Processing
 none

 title
 author

1. open the file for input
2. if (the file was opened successfully)

 display heading

 read the title and author from the file

 repeat while (it’s not the end of the file)

 display the title and author

 read the title and author from the file
 end repeat
 close the file

 else
 display a message indicating that
 the file could not be opened
end if

main function
C++ instructions

saveInfo();

displayInfo();

saveInfo function
C++ instructions
string title = "";
string author = "";

ofstream outFile;

outFile.open("eBooks.txt", ios::app);
if (outFile.is_open())
{
 cout << "Title (-1 to stop): ";
 getline(cin, title);
 while (title != "-1")
 {
 cout << "Author: ";
 getline(cin, author);
 outFile << title << '#' << author
 << endl;
 cout << "Title (-1 to stop): ";
 getline(cin, title);
 } //end while
 outFile.close();
}
else
 cout << "eBooks.txt file could not
 be opened" << endl;
//end if

displayInfo function
C++ instructions

ifstream inFile;

string title = "";
string author = "";

inFile.open("eBooks.txt", ios::in);
if (inFile.is_open())
{
 cout << endl << endl <<
 "eBook Collection" << endl;
 cout << "----------------" << endl;
 getline(inFile, title, '#');
 getline(inFile, author);

 while (!inFile.eof())
 {
 cout << title << " by "
 << author << endl;
 getline(inFile, title, '#');
 getline(inFile, author);
 } //end while
 inFile.close();
}
else
 cout << "eBooks.txt file could
 not be opened" << endl;
//end if

Output

Algorithm

Figure 14-12   eBook Collection program (continues)

 1 //eBook Collection.cpp - gets and displays the
 2 //items in an eBook collection
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 #include <fstream>
 8 using namespace std;
 9
10 //function prototypes
11 void saveInfo();
12 void displayInfo();
13
14 int main()
15 {
16 saveInfo();
17 displayInfo();
18 return 0;
19 } //end of main function
20
21 //*****function definitions*****
22 void saveInfo()
23 {
24 //writes records to a sequential access file
25 string title = "";
26 string author = "";
27
28 //create file object and open the file
29 ofstream outFile;
30 outFile.open("eBooks.txt", ios::app);
31
32 //determine whether the file was opened
33 if (outFile.is_open())
34 {
35 cout << "Title (-1 to stop): ";
36 getline(cin, title);
37 while (title != "-1")
38 {
39 cout << "Author: ";
40 getline(cin, author);
41 //write the record
42 outFile << title << '#' << author << endl;
43
44 cout << "Title (-1 to stop): ";
45 getline(cin, title);
46 } //end while
47 outFile.close();
48 }
49 else
50 cout << "eBooks.txt file could not be opened"
51 << endl;
52 //end if
53 } //end of saveInfo function
54
55 void displayInfo()
56 {
57 //displays the records stored in the file
58 string title = "";
59 string author = "";
60
61 //create file object and open the file
62 ifstream inFile;
63 inFile.open("eBooks.txt", ios::in);
64
65 //determine whether the file was opened
66 if (inFile.is_open())
67 {
68 cout << endl << endl << "eBook Collection" << endl;
69 cout << "----------------" << endl;
70 //read a record
71 getline(inFile, title, '#');
72 getline(inFile, author);
73
74 while (!inFile.eof())
75 {
76 //display the record
77 cout << title << " by " << author << endl;
78 //read another record
79 getline(inFile, title, '#');
80 getline(inFile, author);
81 } //end while
82 inFile.close();
83 }
84 else
85 cout << "eBooks.txt file could not be opened"
86 << endl;
87 //end if
88 } //end of displayInfo function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

526

 1 //eBook Collection.cpp - gets and displays the
 2 //items in an eBook collection
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 #include <fstream>
 8 using namespace std;
 9
10 //function prototypes
11 void saveInfo();
12 void displayInfo();
13
14 int main()
15 {
16 saveInfo();
17 displayInfo();
18 return 0;
19 } //end of main function
20
21 //*****function definitions*****
22 void saveInfo()
23 {
24 //writes records to a sequential access file
25 string title = "";
26 string author = "";
27
28 //create file object and open the file
29 ofstream outFile;
30 outFile.open("eBooks.txt", ios::app);
31
32 //determine whether the file was opened
33 if (outFile.is_open())
34 {
35 cout << "Title (-1 to stop): ";
36 getline(cin, title);
37 while (title != "-1")
38 {
39 cout << "Author: ";
40 getline(cin, author);
41 //write the record
42 outFile << title << '#' << author << endl;
43
44 cout << "Title (-1 to stop): ";
45 getline(cin, title);
46 } //end while
47 outFile.close();
48 }
49 else
50 cout << "eBooks.txt file could not be opened"
51 << endl;
52 //end if
53 } //end of saveInfo function
54
55 void displayInfo()
56 {
57 //displays the records stored in the file
58 string title = "";
59 string author = "";
60
61 //create file object and open the file
62 ifstream inFile;
63 inFile.open("eBooks.txt", ios::in);
64
65 //determine whether the file was opened
66 if (inFile.is_open())
67 {
68 cout << endl << endl << "eBook Collection" << endl;
69 cout << "----------------" << endl;
70 //read a record
71 getline(inFile, title, '#');
72 getline(inFile, author);
73
74 while (!inFile.eof())
75 {
76 //display the record
77 cout << title << " by " << author << endl;
78 //read another record
79 getline(inFile, title, '#');
80 getline(inFile, author);
81 } //end while
82 inFile.close();
83 }
84 else
85 cout << "eBooks.txt file could not be opened"
86 << endl;
87 //end if
88 } //end of displayInfo function

Figure 14-12   eBook Collection program (continues)

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

527

The eBook Collection Program 	﻿

Figure 14-13   Sample run of the program and the eBooks.txt file (continues)

(continued)

 1 //eBook Collection.cpp - gets and displays the
 2 //items in an eBook collection
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 #include <fstream>
 8 using namespace std;
 9
10 //function prototypes
11 void saveInfo();
12 void displayInfo();
13
14 int main()
15 {
16 saveInfo();
17 displayInfo();
18 return 0;
19 } //end of main function
20
21 //*****function definitions*****
22 void saveInfo()
23 {
24 //writes records to a sequential access file
25 string title = "";
26 string author = "";
27
28 //create file object and open the file
29 ofstream outFile;
30 outFile.open("eBooks.txt", ios::app);
31
32 //determine whether the file was opened
33 if (outFile.is_open())
34 {
35 cout << "Title (-1 to stop): ";
36 getline(cin, title);
37 while (title != "-1")
38 {
39 cout << "Author: ";
40 getline(cin, author);
41 //write the record
42 outFile << title << '#' << author << endl;
43
44 cout << "Title (-1 to stop): ";
45 getline(cin, title);
46 } //end while
47 outFile.close();
48 }
49 else
50 cout << "eBooks.txt file could not be opened"
51 << endl;
52 //end if
53 } //end of saveInfo function
54
55 void displayInfo()
56 {
57 //displays the records stored in the file
58 string title = "";
59 string author = "";
60
61 //create file object and open the file
62 ifstream inFile;
63 inFile.open("eBooks.txt", ios::in);
64
65 //determine whether the file was opened
66 if (inFile.is_open())
67 {
68 cout << endl << endl << "eBook Collection" << endl;
69 cout << "----------------" << endl;
70 //read a record
71 getline(inFile, title, '#');
72 getline(inFile, author);
73
74 while (!inFile.eof())
75 {
76 //display the record
77 cout << title << " by " << author << endl;
78 //read another record
79 getline(inFile, title, '#');
80 getline(inFile, author);
81 } //end while
82 inFile.close();
83 }
84 else
85 cout << "eBooks.txt file could not be opened"
86 << endl;
87 //end if
88 } //end of displayInfo function

Figure 14-12   eBook Collection program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

528

Mini-Quiz 14-3
1.	 Which of the following tells the computer to continue reading the inventory.txt file

until the end of the file is reached? The file object is named inInv.

a.	 while (inventory.txt.end())

b.	 while (inInv.end())

c.	 while (!inInv.eof())

d.	 while (!inventory.txt.eof())

2.	 What value does the eof function return when the file pointer is not at the end of the file?

3.	 Write the statement to close the inventory.txt file, which is associated with a file object
named outInv.

LAB 14-1  Stop and Analyze
Study the program shown in Figure 14-14 and then answer the questions.

Figure 14-13   Sample run of the program and the eBooks.txt file

(continued)

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

The answers
to the labs are
contained in the
Answers.pdf file.

Figure 14-14   Code for Lab 14-1 (continues)

 1 //Lab14-1.cpp - saves movie titles and release
 2 //years in a sequential access file
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 #include <fstream>
 8
 9 using namespace std;
10
11 int main()
12 {
13 string title = "";
14 string year = "";
15 ofstream outFile;
16
17 outFile.open("movies.txt", ios::out);
18
19 if (outFile.is_open())
20 {
21 cout << "Movie title (-1 to stop): ";
22 getline(cin, title);
23 while (title != "-1")
24 {
25 cout << "Year released: ";
26 getline(cin, year);
27 outFile << title << '#' << year << endl;
28
29 cout << "Movie title (-1 to stop): ";
30 getline(cin, title);
31 } //end while
32 outFile.close();
33 }
34 else
35 cout << "The movies.txt file could not be opened."
36 << endl;
37
38 return 0;
39 } //end of main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

529

The eBook Collection Program 	﻿

QUESTIONS

1.	 Why are the instructions in Lines 5, 6, and 7 necessary?

2.	 The program writes records to a sequential access file. How many fields are in each
record, and what are they?

3.	 Suppose you run the program twice, entering three records the first time and two
records the second time. If you open the movies.txt file in a text editor, how many
records will the file contain and why?

4.	 How can you modify the program so that the existing records in the movies.txt file are
not erased when the program is run?

5.	 What is another way of writing the if clause in Line 19?

6.	 What is the purpose of the # character in Line 27?

7.	 Why is the statement in Line 32 necessary?

8.	 Follow the instructions for starting C++ and viewing the Lab14-1.cpp file, which is
contained in either the Cpp8\Chap14\Lab14-1 Project folder or the Cpp8\Chap14
folder. (Depending on your C++ development tool, you may need to open Lab14-1’s
project/solution file first.) Run the program. When you are prompted to enter a movie
title, type The Avengers and press Enter. When you are prompted to enter the release
year, type 2012 and press Enter. Next, enter Maleficent as the movie title and 2014 as
the release year. Finally, enter –1 as the movie title.

9.	 Use a text editor to open the movies.txt file. The file contains two records. Close the
movies.txt file.

(continued)

 1 //Lab14-1.cpp - saves movie titles and release
 2 //years in a sequential access file
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 #include <fstream>
 8
 9 using namespace std;
10
11 int main()
12 {
13 string title = "";
14 string year = "";
15 ofstream outFile;
16
17 outFile.open("movies.txt", ios::out);
18
19 if (outFile.is_open())
20 {
21 cout << "Movie title (-1 to stop): ";
22 getline(cin, title);
23 while (title != "-1")
24 {
25 cout << "Year released: ";
26 getline(cin, year);
27 outFile << title << '#' << year << endl;
28
29 cout << "Movie title (-1 to stop): ";
30 getline(cin, title);
31 } //end while
32 outFile.close();
33 }
34 else
35 cout << "The movies.txt file could not be opened."
36 << endl;
37
38 return 0;
39 } //end of main function

Figure 14-14   Code for Lab 14-1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

530

10.	 Run the program again. Enter Frozen and 2013 as the movie title and release year,
respectively, and then enter –1 as the movie title. Use a text editor to open the
movies.txt file. The file contains one record. Close the movies.txt file.

11.	 Modify the program so that the existing records in the movies.txt file are not erased
when the program is run.

12.	 Save and then run the program. Enter the following four movie titles and release years,
followed by the sentinel value: The Avengers, 2012, Maleficent, 2014, Casablanca, 1942,
Chicago, 2002, –1.

13.	 Use a text editor to open the movies.txt file. The file contains five records. Close the
movies.txt file.

LAB 14-2  Plan and Create
In this lab, you will plan and create an algorithm for Cheryl Liu, the owner of a candy
shop named Sweets-4-You. The problem specification is shown in Figure 14-15.

Problem specification
Cheryl Liu is the owner of a candy shop named Sweets-4-You. She wants a program that displays
the following menu:
 Menu Options
 1 Add Records
 2 Display Total Sales
 3 Exit
If Cheryl selects option 1, the program should call a function that prompts her to enter each
salesperson’s name and sales amount. The function should save Cheryl’s entries in a sequential
access file named sales.txt. If Cheryl selects option 2, the program should call a function that
calculates and displays the total of the sales amounts stored in the sales.txt file. The program
should end only when Cheryl selects option 3.

Figure 14-15   Problem specification for Lab 14-2

The Sweets-4-You program will use four functions: main, getChoice, addRecords, and
displayTotal. Figure 14-16 shows the IPO chart information (including flowcharts) and
C++ instructions for the main and getChoice functions.

Figure 14-16   IPO chart information and C++ instructions for the main and getChoice
functions (continues)

main function
IPO chart information
Input
 menu choice

Processing
 none

Output
 none

Algorithm
repeat
 call the getChoice function to
 display the menu and get the
 menu choice

 if (menu choice is 1)
 call the addRecords function
 else if (menu choice is 2)
 call the displayTotal function
 end if
 end repeat while (menu choice is not 3)

int choice = 0;

do
{
 choice = getChoice();

 if (choice == 1)
 addRecords();

 else if (choice == 2)
 displayTotal();
 //end if
} while (choice != 3);

C++ instructions

menu
choice is

not 3

menu
choice is 1

menu
choice is 2

start

T

T

TF

F

F

stop

call getChoice to
display menu and get

menu choice

call displayTotal

call addRecords

getChoice function
IPO chart information
Input
 none

Processing
 none

Output
 menu choice

Algorithm
1. display menu

2. get menu choice

3. return menu choice

getChoice function
C++ instructions

int menuChoice = 0;

cout << endl << "Menu Options" << endl;
cout << "1 Add Records" << endl;
cout << "2 Display Total Sales" << endl;
cout << "3 Exit" << endl;
cout << "Choice (1, 2, or 3)? ";
cin >> menuChoice;
cin.ignore(100, '\n');
cout << endl;
return menuChoice;

stop

return menu choice

get menu
choice

display menu

start

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

531

The eBook Collection Program 	﻿

Figure 14-16   IPO chart information and C++ instructions for the main and getChoice
functions (continues)

(continued)

main function
IPO chart information
Input
 menu choice

Processing
 none

Output
 none

Algorithm
repeat
 call the getChoice function to
 display the menu and get the
 menu choice

 if (menu choice is 1)
 call the addRecords function
 else if (menu choice is 2)
 call the displayTotal function
 end if
 end repeat while (menu choice is not 3)

int choice = 0;

do
{
 choice = getChoice();

 if (choice == 1)
 addRecords();

 else if (choice == 2)
 displayTotal();
 //end if
} while (choice != 3);

C++ instructions

menu
choice is

not 3

menu
choice is 1

menu
choice is 2

start

T

T

TF

F

F

stop

call getChoice to
display menu and get

menu choice

call displayTotal

call addRecords

getChoice function
IPO chart information
Input
 none

Processing
 none

Output
 menu choice

Algorithm
1. display menu

2. get menu choice

3. return menu choice

getChoice function
C++ instructions

int menuChoice = 0;

cout << endl << "Menu Options" << endl;
cout << "1 Add Records" << endl;
cout << "2 Display Total Sales" << endl;
cout << "3 Exit" << endl;
cout << "Choice (1, 2, or 3)? ";
cin >> menuChoice;
cin.ignore(100, '\n');
cout << endl;
return menuChoice;

stop

return menu choice

get menu
choice

display menu

start

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

532

The main function declares and initializes an int variable named choice. It then calls the
getChoice function to display the menu, which contains three options. After displaying the
menu, the getChoice function prompts the user to enter her choice of menu options: 1 to add
records, 2 to display the total sales, or 3 to exit the program. The getChoice function returns the
user’s response to the main function, which assigns the value to the choice variable. The selection
structure in the main function uses the value stored in the choice variable to determine whether
either the addRecords function or the displayTotal function needs to be called.

The while clause in the main function compares the value stored in the choice variable
with the number 3. If the variable does not contain the number 3, the main function calls the
getChoice function to display the menu again and get another choice from the user. The pro-
gram ends only when the choice variable contains the number 3.

Figure 14-17 shows the IPO chart information and C++ instructions for the addRecords function;
it also includes the function’s flowchart. The function creates an output file object named outFile
and then uses the object along with the open function to open the sales.txt file for append. The
condition in the if clause determines whether the sales.txt file was opened successfully. If the
condition evaluates to false, it means that the open function failed to open the file. In that case, the
addRecords function displays an appropriate error message and then the function ends. If the
condition evaluates to true, on the other hand, it means that the open function was successful in
opening the sales.txt file. As a result, the instructions in the if statement’s true path are processed.

The first two statements in the true path in Figure 14-17 prompt the user to enter the salesperson’s
name and then store the user’s response in the name variable. The while clause in the true path

(continued)

main function
IPO chart information
Input
 menu choice

Processing
 none

Output
 none

Algorithm
repeat
 call the getChoice function to
 display the menu and get the
 menu choice

 if (menu choice is 1)
 call the addRecords function
 else if (menu choice is 2)
 call the displayTotal function
 end if
 end repeat while (menu choice is not 3)

int choice = 0;

do
{
 choice = getChoice();

 if (choice == 1)
 addRecords();

 else if (choice == 2)
 displayTotal();
 //end if
} while (choice != 3);

C++ instructions

menu
choice is

not 3

menu
choice is 1

menu
choice is 2

start

T

T

TF

F

F

stop

call getChoice to
display menu and get

menu choice

call displayTotal

call addRecords

getChoice function
IPO chart information
Input
 none

Processing
 none

Output
 menu choice

Algorithm
1. display menu

2. get menu choice

3. return menu choice

getChoice function
C++ instructions

int menuChoice = 0;

cout << endl << "Menu Options" << endl;
cout << "1 Add Records" << endl;
cout << "2 Display Total Sales" << endl;
cout << "3 Exit" << endl;
cout << "Choice (1, 2, or 3)? ";
cin >> menuChoice;
cin.ignore(100, '\n');
cout << endl;
return menuChoice;

stop

return menu choice

get menu
choice

display menu

start

Figure 14-16   IPO chart information and C++ instructions for the main and getChoice functions

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

533

The eBook Collection Program 	﻿

indicates that the loop body instructions should be repeated as long as the name variable does not
contain either the letter X or the letter x. The first two statements in the loop body prompt the
user to enter the sales amount and then store the user’s response in the sales variable. The
cin.ignore(100, '\n'); statement instructs the computer to consume the newline character
that remains in the cin object after the sales amount is entered. The outFile << name << '#'
<< sales << endl; statement then writes a record, followed by a newline character, to the file.
The record contains the contents of the name variable, the # character, and the contents of the
sales variable. The last two statements in the loop body prompt the user to enter another
salesperson’s name and then store the user’s response in the name variable. The loop will end
when the name variable contains either the string “X” or the string “x”. When the loop ends, the
outFile.close(); statement closes the sales.txt file before the addRecords function ends.

Figure 14-17  � IPO chart information and C++ instructions for the addRecords function (continues)

addRecords function
IPO chart information
Input
 salesperson's name
 sales amount

Processing
 none

Output
 sales.txt file (sequential access)

Algorithm
1. open the sales.txt file for append
2. if (the sales.txt file was opened
 successfully)

 enter the salesperson’s name

 repeat while (the salesperson’s name
 is not “X” or “x”)
 enter the sales amount

 write the salesperson’s name and
 sales amount to the sales.txt file

 enter the salesperson’s name

 end repeat
 close the sales.txt file

 else
 display the “sales.txt file could
 not be opened” message
 end if

addRecords function
C++ instructions

string name = "";
int sales = 0;

ofstream outFile;

outFile.open("sales.txt", ios::app);
if (outFile.is_open())
{

 cout << "Salesperson's
 name (X to stop): ";
 getline(cin, name);
 while (name != "X" && name != "x")
 {

 cout << "Sales: ";
 cin >> sales;
 cin.ignore(100, '\n');
 outFile << name << '#' <<
 sales << endl;

 cout << "Salesperson's
 name " << "(X to stop): ";
 getline(cin, name);
 } //end while
 outFile.close();
}
else
 cout << "sales.txt file could
 not be opened" << endl;
//end if

write
salesperson’s

name and sales
amount to

sales.txt file

stop

open sales.txt file
for append

start

sales.txt
file opened

F

F

T

T

display message
indicating that

sales.txt file could
not be opened

enter
salesperson’s

name

salesperson’s
name is not
“X” or “x”

close
sales.txt file

enter sales
amount

enter
salesperson’s

name

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

534

Finally, Figure 14-18 shows the IPO chart information and C++ instructions for the displayTotal
function; it also contains the function’s flowchart. The function creates an input file object named
inFile and then uses the object along with the open function to open the sales.txt file for input.
The condition in the if clause determines whether the sales.txt file was opened successfully. If the
condition evaluates to false, the displayTotal function displays an appropriate error message and
then the function ends. If the condition evaluates to true, on the other hand, the instructions in the
if statement’s true path are processed.

The instructions in the true path in Figure 14-18 read a record from the sales.txt file, assigning
the name to the name variable and assigning the sales to the sales variable. The while clause in
the true path tells the computer to repeat the loop body instructions as long as the file pointer
is not at the end of the file. The first statement in the loop body adds the sales amount to the
accumulator variable, which is named total. The remaining instructions in the loop body read
another record from the file. When the loop ends, which occurs when the file pointer is at the

Figure 14-17  � IPO chart information and C++ instructions for the addRecords function

(continued)

addRecords function
IPO chart information
Input
 salesperson's name
 sales amount

Processing
 none

Output
 sales.txt file (sequential access)

Algorithm
1. open the sales.txt file for append
2. if (the sales.txt file was opened
 successfully)

 enter the salesperson’s name

 repeat while (the salesperson’s name
 is not “X” or “x”)
 enter the sales amount

 write the salesperson’s name and
 sales amount to the sales.txt file

 enter the salesperson’s name

 end repeat
 close the sales.txt file

 else
 display the “sales.txt file could
 not be opened” message
 end if

addRecords function
C++ instructions

string name = "";
int sales = 0;

ofstream outFile;

outFile.open("sales.txt", ios::app);
if (outFile.is_open())
{

 cout << "Salesperson's
 name (X to stop): ";
 getline(cin, name);
 while (name != "X" && name != "x")
 {

 cout << "Sales: ";
 cin >> sales;
 cin.ignore(100, '\n');
 outFile << name << '#' <<
 sales << endl;

 cout << "Salesperson's
 name " << "(X to stop): ";
 getline(cin, name);
 } //end while
 outFile.close();
}
else
 cout << "sales.txt file could
 not be opened" << endl;
//end if

write
salesperson’s

name and sales
amount to

sales.txt file

stop

open sales.txt file
for append

start

sales.txt
file opened

F

F

T

T

display message
indicating that

sales.txt file could
not be opened

enter
salesperson’s

name

salesperson’s
name is not
“X” or “x”

close
sales.txt file

enter sales
amount

enter
salesperson’s

name

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

535

The eBook Collection Program 	﻿

end of the sales.txt file, the last two statements in the if statement’s true path close the file and
then display the total sales amount on the screen. After displaying the total sales amount, the
displayTotal function ends.

Figure 14-18  � IPO chart information and C++ instructions for the displayTotal function (continues)

T

open sales.txt file
for input

start

sales.txt
file opened

F

F

T

display message
indicating that

sales.txt file could
not be opened

close
sales.txt file

stop

display total
sales amount

read
salesperson’s

name and sales
amount from
sales.txt file

add sales amount to
total sales amount

not end of
sales.txt file

read salesperson’s
name and sales

amount from
sales.txt file

displayTotal function
IPO chart information
Input
 sales.txt file (sequential access)

Processing
 salesperson's name
 sales amount

Output
 total sales amount (accumulator)

Algorithm
1. open the sales.txt file for input
2. if (the sales.txt file was opened
 successfully)
 read the salesperson’s name
 and sales amount from the
 sales.txt file

 repeat while (it’s not the end
 of the sales.txt file)
 add the sales amount to
 the total sales amount

 read the salesperson’s name and
 sales amount from the sales.txt file

 end repeat
 close the sales.txt file
 display the total sales amount

 else
 display the “sales.txt file could not
 be opened.” message
 end if

displayTotal function
C++ instructions

ifstream inFile;

string name = "";
int sales = 0;

int total = 0;

inFile.open("sales.txt");
if (inFile.is_open())
{

 getline(inFile, name, '#');
 inFile >> sales;
 inFile.ignore();

 while (!inFile.eof())
 {

 total += sales;

 getline(inFile, name, '#');
 inFile >> sales;
 inFile.ignore();

 } //end while
 inFile.close();
 cout << "Total sales $" <<
 total << endl << endl;

}
else
 cout << "sales.txt file could
 not be opened" << endl;
//end if

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

536

(continued)

T

open sales.txt file
for input

start

sales.txt
file opened

F

F

T

display message
indicating that

sales.txt file could
not be opened

close
sales.txt file

stop

display total
sales amount

read
salesperson’s

name and sales
amount from
sales.txt file

add sales amount to
total sales amount

not end of
sales.txt file

read salesperson’s
name and sales

amount from
sales.txt file

displayTotal function
IPO chart information
Input
 sales.txt file (sequential access)

Processing
 salesperson's name
 sales amount

Output
 total sales amount (accumulator)

Algorithm
1. open the sales.txt file for input
2. if (the sales.txt file was opened
 successfully)
 read the salesperson’s name
 and sales amount from the
 sales.txt file

 repeat while (it’s not the end
 of the sales.txt file)
 add the sales amount to
 the total sales amount

 read the salesperson’s name and
 sales amount from the sales.txt file

 end repeat
 close the sales.txt file
 display the total sales amount

 else
 display the “sales.txt file could not
 be opened.” message
 end if

displayTotal function
C++ instructions

ifstream inFile;

string name = "";
int sales = 0;

int total = 0;

inFile.open("sales.txt");
if (inFile.is_open())
{

 getline(inFile, name, '#');
 inFile >> sales;
 inFile.ignore();

 while (!inFile.eof())
 {

 total += sales;

 getline(inFile, name, '#');
 inFile >> sales;
 inFile.ignore();

 } //end while
 inFile.close();
 cout << "Total sales $" <<
 total << endl << endl;

}
else
 cout << "sales.txt file could
 not be opened" << endl;
//end if

Figure 14-19 shows the Sweets-4-You program and includes a sample run of the program.

Figure 14-18  � IPO chart information and C++ instructions for the displayTotal function

Figure 14-19  � Sweets-4-You program (continues)

 1 //Lab14-2.cpp - saves records to a sequential access
 2 //file and also calculates and displays the total
 3 //of the sales amounts stored in the file
 4 //Created/revised by <your name> on <current date>
 5
 6 #include <iostream>
 7 #include <string>
 8 #include <fstream>
 9 using namespace std;
 10
 11 //function prototypes
 12 int getChoice();
 13 void addRecords();
 14 void displayTotal();
 15
 16 int main()
 17 {
 18 int choice = 0;
 19 do
 20 {
 21 //get user's menu choice
 22 choice = getChoice();
 23 if (choice == 1)
 24 addRecords();
 25 else if (choice == 2)
 26 displayTotal();
 27 //end if
 28 } while (choice != 3);
 29 return 0;
 30 } //end of main function
 31
 32 //*****function definitions*****
 33 int getChoice()
 34 {
 35 //displays menu and returns choice
 36 int menuChoice = 0;
 37 cout << endl << "Menu Options" << endl;
 38 cout << "1 Add Records" << endl;
 39 cout << "2 Display Total Sales" << endl;
 40 cout << "3 Exit" << endl;
 41 cout << "Choice (1, 2, or 3)? ";
 42 cin >> menuChoice;
 43 cin.ignore(100, '\n');
 44 cout << endl;
 45 return menuChoice;
 46 } //end of getChoice function
 47
 48 void addRecords()
 49 {
 50 //saves records to a sequential access file
 51 string name = "";
 52 int sales = 0;
 53 ofstream outFile;
 54
 55 //open file for append
 56 outFile.open("sales.txt", ios::app);
 57
 58 //if the open was successful, get the
 59 //salesperson's name and sales amount and
 60 //then write the information to the file;
 61 //otherwise, display an error message
 62 if (outFile.is_open())
 63 {
 64 cout << "Salesperson's name (X to stop): ";
 65 getline(cin, name);
 66 while (name != "X" && name != "x")
 67 {
 68 cout << "Sales: ";
 69 cin >> sales;
 70 cin.ignore(100, '\n');
 71
 72 outFile << name << '#' << sales << endl;
 73
 74 cout << "Salesperson's name "
 75 << "(X to stop): ";
 76 getline(cin, name);
 77 } //end while
 78 outFile.close();
 79 }
 80 else
 81 cout << "sales.txt file could not be opened"
 82 << endl;
 83 //end if
 84 } //end of addRecords function
 85
 86 void displayTotal()
 87 {
 88 //calculates and displays the total sales
 89 string name = "";
 90 int sales = 0;
 91 int total = 0;
 92 ifstream inFile;
 93
 94 //open file for input
 95 inFile.open("sales.txt");
 96
 97 //if the open was successful, read the
 98 //salesperson's name and sales amount, then add
 99 //the sales amount to the accumulator, and then
100 //display the accumulator; otherwise, display
101 //an error message
102 if (inFile.is_open())
103 {
104 getline(inFile, name, '#');
105 inFile >> sales;
106 inFile.ignore();
107
108 while (!inFile.eof())
109 {
110 total += sales;
111 getline(inFile, name, '#');
112 inFile >> sales;
113 inFile.ignore();
114 } //end while
115 inFile.close();
116 cout << "Total sales $" << total
117 << endl << endl;
118 }
119 else
120 cout << "sales.txt file could not be opened"
121 << endl;
122 //end if
123 } //end of displayTotal function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

537

The eBook Collection Program 	﻿

Figure 14-19  � Sweets-4-You program (continues)

(continued)

 1 //Lab14-2.cpp - saves records to a sequential access
 2 //file and also calculates and displays the total
 3 //of the sales amounts stored in the file
 4 //Created/revised by <your name> on <current date>
 5
 6 #include <iostream>
 7 #include <string>
 8 #include <fstream>
 9 using namespace std;
 10
 11 //function prototypes
 12 int getChoice();
 13 void addRecords();
 14 void displayTotal();
 15
 16 int main()
 17 {
 18 int choice = 0;
 19 do
 20 {
 21 //get user's menu choice
 22 choice = getChoice();
 23 if (choice == 1)
 24 addRecords();
 25 else if (choice == 2)
 26 displayTotal();
 27 //end if
 28 } while (choice != 3);
 29 return 0;
 30 } //end of main function
 31
 32 //*****function definitions*****
 33 int getChoice()
 34 {
 35 //displays menu and returns choice
 36 int menuChoice = 0;
 37 cout << endl << "Menu Options" << endl;
 38 cout << "1 Add Records" << endl;
 39 cout << "2 Display Total Sales" << endl;
 40 cout << "3 Exit" << endl;
 41 cout << "Choice (1, 2, or 3)? ";
 42 cin >> menuChoice;
 43 cin.ignore(100, '\n');
 44 cout << endl;
 45 return menuChoice;
 46 } //end of getChoice function
 47
 48 void addRecords()
 49 {
 50 //saves records to a sequential access file
 51 string name = "";
 52 int sales = 0;
 53 ofstream outFile;
 54
 55 //open file for append
 56 outFile.open("sales.txt", ios::app);
 57
 58 //if the open was successful, get the
 59 //salesperson's name and sales amount and
 60 //then write the information to the file;
 61 //otherwise, display an error message
 62 if (outFile.is_open())
 63 {
 64 cout << "Salesperson's name (X to stop): ";
 65 getline(cin, name);
 66 while (name != "X" && name != "x")
 67 {
 68 cout << "Sales: ";
 69 cin >> sales;
 70 cin.ignore(100, '\n');
 71
 72 outFile << name << '#' << sales << endl;
 73
 74 cout << "Salesperson's name "
 75 << "(X to stop): ";
 76 getline(cin, name);
 77 } //end while
 78 outFile.close();
 79 }
 80 else
 81 cout << "sales.txt file could not be opened"
 82 << endl;
 83 //end if
 84 } //end of addRecords function
 85
 86 void displayTotal()
 87 {
 88 //calculates and displays the total sales
 89 string name = "";
 90 int sales = 0;
 91 int total = 0;
 92 ifstream inFile;
 93
 94 //open file for input
 95 inFile.open("sales.txt");
 96
 97 //if the open was successful, read the
 98 //salesperson's name and sales amount, then add
 99 //the sales amount to the accumulator, and then
100 //display the accumulator; otherwise, display
101 //an error message
102 if (inFile.is_open())
103 {
104 getline(inFile, name, '#');
105 inFile >> sales;
106 inFile.ignore();
107
108 while (!inFile.eof())
109 {
110 total += sales;
111 getline(inFile, name, '#');
112 inFile >> sales;
113 inFile.ignore();
114 } //end while
115 inFile.close();
116 cout << "Total sales $" << total
117 << endl << endl;
118 }
119 else
120 cout << "sales.txt file could not be opened"
121 << endl;
122 //end if
123 } //end of displayTotal function

The instructions
on Lines 19
through 28 are
a posttest loop.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

538

Figure 14-19  � Sweets-4-You program (continues)

(continued)

 1 //Lab14-2.cpp - saves records to a sequential access
 2 //file and also calculates and displays the total
 3 //of the sales amounts stored in the file
 4 //Created/revised by <your name> on <current date>
 5
 6 #include <iostream>
 7 #include <string>
 8 #include <fstream>
 9 using namespace std;
 10
 11 //function prototypes
 12 int getChoice();
 13 void addRecords();
 14 void displayTotal();
 15
 16 int main()
 17 {
 18 int choice = 0;
 19 do
 20 {
 21 //get user's menu choice
 22 choice = getChoice();
 23 if (choice == 1)
 24 addRecords();
 25 else if (choice == 2)
 26 displayTotal();
 27 //end if
 28 } while (choice != 3);
 29 return 0;
 30 } //end of main function
 31
 32 //*****function definitions*****
 33 int getChoice()
 34 {
 35 //displays menu and returns choice
 36 int menuChoice = 0;
 37 cout << endl << "Menu Options" << endl;
 38 cout << "1 Add Records" << endl;
 39 cout << "2 Display Total Sales" << endl;
 40 cout << "3 Exit" << endl;
 41 cout << "Choice (1, 2, or 3)? ";
 42 cin >> menuChoice;
 43 cin.ignore(100, '\n');
 44 cout << endl;
 45 return menuChoice;
 46 } //end of getChoice function
 47
 48 void addRecords()
 49 {
 50 //saves records to a sequential access file
 51 string name = "";
 52 int sales = 0;
 53 ofstream outFile;
 54
 55 //open file for append
 56 outFile.open("sales.txt", ios::app);
 57
 58 //if the open was successful, get the
 59 //salesperson's name and sales amount and
 60 //then write the information to the file;
 61 //otherwise, display an error message
 62 if (outFile.is_open())
 63 {
 64 cout << "Salesperson's name (X to stop): ";
 65 getline(cin, name);
 66 while (name != "X" && name != "x")
 67 {
 68 cout << "Sales: ";
 69 cin >> sales;
 70 cin.ignore(100, '\n');
 71
 72 outFile << name << '#' << sales << endl;
 73
 74 cout << "Salesperson's name "
 75 << "(X to stop): ";
 76 getline(cin, name);
 77 } //end while
 78 outFile.close();
 79 }
 80 else
 81 cout << "sales.txt file could not be opened"
 82 << endl;
 83 //end if
 84 } //end of addRecords function
 85
 86 void displayTotal()
 87 {
 88 //calculates and displays the total sales
 89 string name = "";
 90 int sales = 0;
 91 int total = 0;
 92 ifstream inFile;
 93
 94 //open file for input
 95 inFile.open("sales.txt");
 96
 97 //if the open was successful, read the
 98 //salesperson's name and sales amount, then add
 99 //the sales amount to the accumulator, and then
100 //display the accumulator; otherwise, display
101 //an error message
102 if (inFile.is_open())
103 {
104 getline(inFile, name, '#');
105 inFile >> sales;
106 inFile.ignore();
107
108 while (!inFile.eof())
109 {
110 total += sales;
111 getline(inFile, name, '#');
112 inFile >> sales;
113 inFile.ignore();
114 } //end while
115 inFile.close();
116 cout << "Total sales $" << total
117 << endl << endl;
118 }
119 else
120 cout << "sales.txt file could not be opened"
121 << endl;
122 //end if
123 } //end of displayTotal function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

539

The eBook Collection Program 	﻿

DIRECTIONS

Follow the instructions for starting your C++ development tool. Depending on the development
tool you are using, you may need to create a new project; if so, name the project Lab14-2
Project and save it in the Cpp8\Chap14 folder. Enter the instructions shown in Figure 14-19
in a source file named Lab14-2.cpp. (Do not enter the line numbers.) Save the file in either the
project folder or the Cpp8\Chap14 folder. Now, follow the appropriate instructions for running
the Lab14-2.cpp file. Test the program using the data shown in Figure 14-19. If necessary,
correct any bugs (errors) in the program.

LAB 14-3  Modify
If necessary, create a new project named Lab14-3 Project and save it in the
Cpp8\Chap14 folder. Enter (or copy) the Lab14-2.cpp instructions into a source
file named Lab14-3.cpp. Change Lab14-2.cpp in the first comment to Lab14-3.cpp.
Modify the menu so that it contains five options: Add Records, Display Records,

Display Total Sales, Display Average Sales, and Exit. When the user selects the Display Records
option, the program should call a function to display the contents of the sales.txt file on the
screen. When the user selects the Display Average Sales option, the program should call a
function to calculate and display the average sales amount stored in the file. Save and then run
the program. Test each menu option.

(continued)

Figure 14-19  � Sweets-4-You program

 1 //Lab14-2.cpp - saves records to a sequential access
 2 //file and also calculates and displays the total
 3 //of the sales amounts stored in the file
 4 //Created/revised by <your name> on <current date>
 5
 6 #include <iostream>
 7 #include <string>
 8 #include <fstream>
 9 using namespace std;
 10
 11 //function prototypes
 12 int getChoice();
 13 void addRecords();
 14 void displayTotal();
 15
 16 int main()
 17 {
 18 int choice = 0;
 19 do
 20 {
 21 //get user's menu choice
 22 choice = getChoice();
 23 if (choice == 1)
 24 addRecords();
 25 else if (choice == 2)
 26 displayTotal();
 27 //end if
 28 } while (choice != 3);
 29 return 0;
 30 } //end of main function
 31
 32 //*****function definitions*****
 33 int getChoice()
 34 {
 35 //displays menu and returns choice
 36 int menuChoice = 0;
 37 cout << endl << "Menu Options" << endl;
 38 cout << "1 Add Records" << endl;
 39 cout << "2 Display Total Sales" << endl;
 40 cout << "3 Exit" << endl;
 41 cout << "Choice (1, 2, or 3)? ";
 42 cin >> menuChoice;
 43 cin.ignore(100, '\n');
 44 cout << endl;
 45 return menuChoice;
 46 } //end of getChoice function
 47
 48 void addRecords()
 49 {
 50 //saves records to a sequential access file
 51 string name = "";
 52 int sales = 0;
 53 ofstream outFile;
 54
 55 //open file for append
 56 outFile.open("sales.txt", ios::app);
 57
 58 //if the open was successful, get the
 59 //salesperson's name and sales amount and
 60 //then write the information to the file;
 61 //otherwise, display an error message
 62 if (outFile.is_open())
 63 {
 64 cout << "Salesperson's name (X to stop): ";
 65 getline(cin, name);
 66 while (name != "X" && name != "x")
 67 {
 68 cout << "Sales: ";
 69 cin >> sales;
 70 cin.ignore(100, '\n');
 71
 72 outFile << name << '#' << sales << endl;
 73
 74 cout << "Salesperson's name "
 75 << "(X to stop): ";
 76 getline(cin, name);
 77 } //end while
 78 outFile.close();
 79 }
 80 else
 81 cout << "sales.txt file could not be opened"
 82 << endl;
 83 //end if
 84 } //end of addRecords function
 85
 86 void displayTotal()
 87 {
 88 //calculates and displays the total sales
 89 string name = "";
 90 int sales = 0;
 91 int total = 0;
 92 ifstream inFile;
 93
 94 //open file for input
 95 inFile.open("sales.txt");
 96
 97 //if the open was successful, read the
 98 //salesperson's name and sales amount, then add
 99 //the sales amount to the accumulator, and then
100 //display the accumulator; otherwise, display
101 //an error message
102 if (inFile.is_open())
103 {
104 getline(inFile, name, '#');
105 inFile >> sales;
106 inFile.ignore();
107
108 while (!inFile.eof())
109 {
110 total += sales;
111 getline(inFile, name, '#');
112 inFile >> sales;
113 inFile.ignore();
114 } //end while
115 inFile.close();
116 cout << "Total sales $" << total
117 << endl << endl;
118 }
119 else
120 cout << "sales.txt file could not be opened"
121 << endl;
122 //end if
123 } //end of displayTotal function

adds records
to the file

displays total sales

exits the program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

540

LAB 14-4  What’s Missing?
The program in this lab should read five records from and write five records to a
sequential access file. Start your C++ development tool and view the Lab14-4.cpp
file, which is contained in either the Cpp8\Chap14\Lab14-4 Project folder or the
Cpp8\Chap14 folder. (Depending on your C++ development tool, you may need to

open Lab14-4’s project/solution file first.) Put the C++ instructions in the proper order, and then
determine the one or more missing instructions. Test the program appropriately.

LAB 14-5  Desk-Check
Figure 14-20 shows the code entered in the Lab14-5.cpp file. It also shows the
Lab14-5.txt file opened in a text editor. Desk-check the code using the data contained
in the text file. What will the code display on the screen?

Figure 14-20  � Information for Lab 14-5 (continues)

//Lab14-5.cpp - displays each region's total sales
//Created/revised by <your name> on <current date>

#include <iostream>
#include <fstream>
using namespace std;

int main()
{
 int store1Sales = 0;
 int store2Sales = 0;
 int store1Total = 0;
 int store2Total = 0;

 ifstream inFile;
 inFile.open("Lab14-5.txt");

 if (inFile.is_open())
 {
 inFile >> store1Sales;
 inFile.ignore();

 while (!inFile.eof())
 {
 inFile >> store2Sales;
 inFile.ignore();
 store1Total += store1Sales;
 store2Total += store2Sales;
 inFile >> store1Sales;
 inFile.ignore();
 } //end while
 inFile.close();

 cout << "Store 1's total sales: $"
 << store1Total << endl;
 cout << "Store 2's total sales: $"
 << store2Total << endl;
 }
 else
 cout << "Can't open Lab14-5.txt file." << endl;
 //end if
 return 0;
} //end of main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

541

﻿ 	Chapter Summary 	﻿

LAB 14-6  Debug
Follow the instructions for starting C++ and viewing the Lab14-6.cpp file, which is
contained in either the Cpp8\Chap14\Lab14-6 Project folder or the Cpp8\Chap14
folder. (Depending on your C++ development tool, you may need to open Lab14-6’s
project/solution file first.) The program should write records consisting of a name and

two numbers to a sequential access file named records.txt. Run the program. Type your name and
press Enter. Type 5000 and press Enter, and then type 2000 and press Enter. Notice that the program
is not working correctly. Debug the program. After debugging the program, be sure to open the
records.txt file to verify that it contains the information you entered.

Chapter Summary

•• Sequential access files can be either input files or output files. Input files are files whose
contents are read by a program. Output files are files to which a program writes data.

•• To create a file object in a program, the program must contain the #include <fstream>
directive.

•• You use the ifstream and ofstream classes, which are defined in the fstream file, to
create input and output file objects, respectively. The file objects are used to represent the
actual files stored on your computer’s disk.

Figure 14-20  � Information for Lab 14-5

//Lab14-5.cpp - displays each region's total sales
//Created/revised by <your name> on <current date>

#include <iostream>
#include <fstream>
using namespace std;

int main()
{
 int store1Sales = 0;
 int store2Sales = 0;
 int store1Total = 0;
 int store2Total = 0;

 ifstream inFile;
 inFile.open("Lab14-5.txt");

 if (inFile.is_open())
 {
 inFile >> store1Sales;
 inFile.ignore();

 while (!inFile.eof())
 {
 inFile >> store2Sales;
 inFile.ignore();
 store1Total += store1Sales;
 store2Total += store2Sales;
 inFile >> store1Sales;
 inFile.ignore();
 } //end while
 inFile.close();

 cout << "Store 1's total sales: $"
 << store1Total << endl;
 cout << "Store 2's total sales: $"
 << store2Total << endl;
 }
 else
 cout << "Can't open Lab14-5.txt file." << endl;
 //end if
 return 0;
} //end of main function

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

542

•• After creating a file object, you then use the open function (which is a member function in
the ifstream and ofstream classes) to open the file for input, output, or append.

•• You can use the is_open function (which is a member function in the ifstream and
ofstream classes) to determine whether the open function either succeeded or failed to
open a sequential access file. The is_open function returns the Boolean value true if the
open function was able to open the file. It returns the Boolean value false if the open
function could not open the file.

•• To distinguish one record from another in a sequential access file, programmers usually
write each record on a separate line in the file. You do this by including the endl stream
manipulator at the end of the statement that writes the record to the file. If the record
contains more than one field, programmers use a character (such as '#') to separate the
data in one field from the data in another field. You can also use a string (such as "#").

•• When reading data from a file, you use the eof function (which is a member function in
the ifstream class) to determine whether the file pointer is at the end of the file. If the file
pointer is located after the last character in the file, the eof function returns the Boolean
value true; otherwise, it returns the Boolean value false.

•• When a program is finished with a file, you should close the file by using the close function,
which is a member function in the ifstream and ofstream classes. Failing to close an
open file can result in the loss of data. A program cannot reopen a file without closing it first.

Key Terms
!—the Not logical operator

close function—closes a sequential access file in a program

eof function—determines whether an entire sequential access file has been read; it returns true
when the file pointer is located after the last character in the file; otherwise, it returns false

Field—a single item of information about a person, place, or thing

Input files—files that contain information used as input by a program

is_open function—used in a program to determine whether a sequential access file was opened
successfully; returns true when the open operation succeeded; otherwise, returns false

Not logical operator—an exclamation point (!); reverses the truth-value of a condition

open function—used to open input and output files in a program

Output files—files that store the output produced by a program

Record—a collection of one or more related fields that contain all of the necessary data about a
person, place, or thing

Scope resolution operator—two colons (::); indicates that the keyword to the right of the
operator is a member of the class whose name appears to the left of the operator

Sequential access files—files composed of lines of text; also referred to as text files

Text files—another name for sequential access files

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

543

Review Questions 	

Review Questions
1.	 A _____________________ is a single item of information about a person, place,

or thing.

a.	 field

b.	 file

c.	 record

d.	 none of the above

2.	 A group of related fields that contain all of the data about a specific person, place,
or thing is called a _____________________.

a.	 field

b.	 file

c.	 record

d.	 none of the above

3.	 For a program to create a file object, it must include the _____________________ file.

a.	 fileStream

b.	 fstream

c.	 outFile

d.	 sequential

4.	 You use the _____________________ class to instantiate an output file object.

a.	 cout

b.	 fstream

c.	 ofstream

d.	 outstream

5.	 Which of the following creates an object named outPayroll that represents an out-
put file in the program?

a.	 fstream outPayroll;

b.	 ofstream outPayroll;

c.	 outPayroll as ofstream;

d.	 outPayroll as outstream;

6.	 Which of the following opens the payroll.txt file for output? The file is associated with
the outPayroll object.

a.	 outPayroll.open("payroll.txt");
b.	 outPayroll.open("payroll.txt", ios::out);
c.	 outPayroll.open("payroll.txt", ios::output);
d.	 both a and b

7.	 Which mode is used in the open function to add records to the end of an existing
output file?

a.	 add

b.	 ios::add

c.	 ios::app

d.	 ios::out

8.	 Which function closes a sequential access file?

a.	 close

b.	 end

c.	 exit

d.	 finish

9.	 Which function determines whether the open function was successful?

a.	 is_open

b.	 isopen

c.	 isFileOpen

d.	 is_FileOpen

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

544

10.	 Which of the following writes the contents of the city variable to an output file
named address.txt? The file is associated with the outFile object.
a.	 address.txt << city << endl;
b.	 ofstream << city << endl;
c.	 outFile << city << endl;
d.	 outFile >> city >> endl;

11.	 Which of the following reads a number from an input file named managers.txt and stores
the number in the salary variable? The file is associated with the inFile object.

a.	 managers.dat << salary;
b.	 ifstream << salary;

c.	 inFile << salary;
d.	 none of the above

12.	 Which of the following writes the contents of the city and state variables to an
output file named address.txt? The file is associated with the outFile object.

a.	 address.txt << city << state << endl;
b.	 ofstream << city << state << endl;
c.	 outFile >> city >> state >> endl;
d.	 outFile << city << '#' << state << endl;

13.	 Which of the following tells the computer to repeat the loop instructions until the end
of the file is reached? The file is associated with the inFile object.

a.	 while (inFile.eof())
b.	 while (!ifstream.eof())

c.	 while (!inFile.eof())
d.	 while (!ifstream.fail())

14.	 Which of the following creates an object named inPayroll that represents an input
file in the program?

a.	 instream inPayroll;
b.	 ifstream inPayroll;

c.	 inPayroll ifstream;
d.	 inPayroll as ifstream;

15.	 Which of the following opens the payroll.txt file for input? The file is associated with
the inFile object.

a.	 inFile.open("payroll.txt", ios::app);
b.	 inFile.open("payroll.txt");
c.	 inFile.open("payroll.txt", ios::in);
d.	 both b and c

Exercises

Pencil and Paper

1.	 Write the statement to declare an input file object named inSales. (The answers to
TRY THIS Exercises are located at the end of the chapter.)

2.	 Write the statement to open a sequential access file named janSales.txt for output. The
file is associated with the outJan object. (The answers to TRY THIS Exercises are
located at the end of the chapter.)

3.	 Rewrite the statement from Pencil and Paper Exercise 2 so it opens the janSales.txt file
for append.

TRY THIS

TRY THIS

MODIFY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

545

Exercises 	

4.	 Write the statement to open a sequential access file named inventory.txt for input. The
file is associated with the inInventory object.

5.	 Write the statement to open a sequential access file named firstQtr.txt for append.
The file is associated with the outSales object.

6.	 Write the statement to open a sequential access file named febSales.txt for output. The
file is associated with the outFeb object.

7.	 Write an if clause that determines whether an output file was opened successfully. The
file is associated with the outSales object.

8.	 Write the statement to read a string from the sequential access file associated with the
inFile object. Assign the string to the textLine variable.

9.	 Write the statement to read a number from the sequential access file associated with
the inFile object. Assign the number to the number variable.

10.	 Write the statement to close the janSales.txt file, which is associated with the outFile
object.

11.	 A program needs to write the string “Employee” and the string “Name” to the sequential
access file associated with the outFile object. Each string should appear on a separate
line in the file. Write the code to accomplish this task.

12.	 A program needs to write the contents of a string variable named capital and the
newline character to the sequential access file associated with the outFile object.
Write the code to accomplish this task.

13.	 Write a while clause that tells the computer to stop processing the loop instructions
when the end of the file has been reached. The file is associated with the inFile object.

14.	 A program needs to read a sequential access file, line by line, and display each line on
the computer screen. The file, which was opened successfully, is associated with the
inFile object. Write the code to read and then close the file.

15.	 Correct the condition in the following if clause, which should determine whether
the open function was able to open the file associated with the outFile object:
if (outFile.open()).

Computer

16.	 If necessary, create a new project named TryThis16 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named TryThis16.cpp. Write a
program that allows the user to enter the first 10 letters of the alphabet, one at a time.
The program should save each letter, in uppercase, on a separate line in a sequential
access file named TryThis16.txt. Save and then run the program. Test the program by
entering the lowercase letters a through j. Verify that the program worked correctly by
opening the TryThis16.txt file in a text editor. Close the TryThis16.txt file. (The answers
to TRY THIS Exercises are located at the end of the chapter.)

17.	 If necessary, create a new project named TryThis17 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named TryThis17.cpp. Write a
program that saves records to a sequential access file named TryThis17.txt. Each
record should appear on a separate line and contain two fields separated by the number
sign (#). The first field should contain numbers from 10 through 25. The second field
should contain the square of the number in the first field. For example, the first record

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

SWAT THE BUGS

TRY THIS

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

546

will contain 10#100 followed by the newline character. Display the message “Numbers
saved in file.” if the program was able to save the numbers. Save and then run the
program. Verify that the program worked correctly by opening the TryThis17.txt file
in a text editor. Close the TryThis17.txt file. (The answers to TRY THIS Exercises are
located at the end of the chapter.)

18.	 In this exercise, you will modify the program from TRY THIS Exercise 17. If necessary,
create a new project named ModifyThis18 Project and save it in the Cpp8\Chap14
folder. Copy the instructions from the TryThis17.cpp file into a new source file named
ModifyThis18.cpp. Change the filename in the first comment to ModifyThis18.cpp.
Also change the name of the sequential access file in both the open function and the
cout statement to ModifyThis18.txt. Modify the program so that each record contains
an additional field: the cube of the number in the first field. For example, the first record
will contain 10#100#1000 followed by the newline character. Save and then run the
program. Verify that the program worked correctly by opening the ModifyThis18.txt
file in a text editor. Close the ModifyThis18.txt file.

19.	 If necessary, create a new project named Introductory19 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Introductory19.cpp. Create
a program that saves a company’s payroll amounts in a sequential access file. Save the
amounts in fixed-point notation with two decimal places. Name the sequential access
file Introductory19.txt and open the file for append. Use a negative number as the
sentinel value. Save and then run the program. Enter the following payroll amounts
and sentinel value: 45678.99, 67000.56, and –1. Now, run the program again. This
time, enter the following payroll amounts and sentinel value: 25000.89, 35600.55,
and –1. Open the Introductory19.txt file in a text editor. The file should contain four
payroll amounts, with each amount appearing on a separate line in the file. Close the
Introductory19.txt file.

20.	 If necessary, create a new project named Introductory20 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Introductory20.cpp. Create a
program that saves prices in a sequential access file. Save the prices in fixed-point notation
with two decimal places. Name the sequential access file Introductory20.txt and open the
file for append. Use a negative number as the sentinel value. Save and then run the program.
Enter the following prices and sentinel value: 10.50, 15.99, and –1. Now, run the program
again. This time, enter the following prices and sentinel value: 20, 76.54, 17.34, and –1.
Open the Introductory20.txt file in a text editor. The file should contain five prices, with
each price appearing on a separate line in the file. Close the Introductory20.txt file.

21.	 If necessary, create a new project named Introductory21 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Introductory21.cpp. If
you are using Microsoft Visual C++, copy the Introductory21.txt file from the
Cpp8\Chap14 folder to the Cpp8\Chap14\Introductory21 Project folder. Use a text
editor to open the Introductory21.txt file, which contains 10 uppercase letters of the
alphabet. Close the Introductory21.txt file. Create a program that counts the
number of letters stored in the file. The program should display the number of letters
on the computer screen. Save and then run the program.

22.	 If necessary, create a new project named Intermediate22 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Intermediate22.cpp. If you
are using Microsoft Visual C++, copy the Intermediate22.txt file from the
Cpp8\Chap14 folder to the Cpp8\Chap14\Intermediate22 Project folder. Use a text
editor to open the Intermediate22.txt file, which contains payroll amounts. Close the
Intermediate22.txt file. Create a program that calculates and displays the total of the

MODIFY THIS

INTRODUCTORY

INTRODUCTORY

INTRODUCTORY

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

547

Exercises 	

payroll amounts stored in the file. Display the total with a dollar sign and two decimal
places. Save and then run the program.

23.	 If necessary, create a new project named Intermediate23 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Intermediate23.cpp. If you
are using Microsoft Visual C++, copy the Intermediate23.txt file from the Cpp8\Chap14
folder to the Cpp8\Chap14\Intermediate23 Project folder. Use a text editor to open the
Intermediate23.txt file, which contains prices. Close the Intermediate23.txt file. Create
a program that calculates and displays the average price stored in the file. Display the
average with a dollar sign and two decimal places. Save and then run the program.

24.	 If necessary, create a new project named Intermediate24 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Intermediate24.cpp. If you
are using Microsoft Visual C++, copy the Intermediate24.txt file from the Cpp8\Chap14
folder to the Cpp8\Chap14\Intermediate24 Project folder. Use a text editor to open
the Intermediate24.txt file, which contains payroll codes and salaries. Close the
Intermediate24.txt file. Create a program that allows the user to enter a payroll
code. The program should search for the payroll code in the file and then display the
appropriate salary. If the payroll code is not in the file, the program should display an
appropriate message. The program should allow the user to display as many salaries as
needed without having to run the program again. Save and then run the program.
Test the program by entering the following payroll codes: 10, 24, 55, 32, and 6. Stop
the program.

25.	 If necessary, create a new project named Advanced25 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Advanced25.cpp. If you
are using Microsoft Visual C++, copy the Advanced25.txt file from the Cpp8\Chap14
folder to the Cpp8\Chap14\Advanced25 Project folder. Use a text editor to open the
Advanced25.txt file, which contains the names of the items in inventory, as well as
each item’s quantity and price. Close the Advanced25.txt file. Write a program that
displays the contents of the file in three columns titled “Name”, “Quantity”, and
“Price”. The program should also display a fourth column that contains the result of
multiplying each item’s quantity by its price. Use “Value” as the column’s title. (Hint:
You can align the columns using '\t', which is the escape sequence for the Tab key.)
In addition, the program should calculate and display the total value of the items in
inventory. Display the price, value, and total value with two decimal places. Save and
then run the program.

26.	 If necessary, create a new project named Advanced26 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Advanced26.cpp. Write
a program that allows the user to record the names of cities and their corresponding
ZIP codes in a sequential access file named Advanced26.txt. The program should
also allow the user to look up a ZIP code in the file and display the name of its
corresponding city. If the ZIP code is not in the file, the program should display an
appropriate message. Save and then run the program. Enter any five ZIP codes and
their corresponding city names. Then, test the program by entering each valid ZIP
code. Also enter one or more invalid ZIP codes.

27.	 If necessary, create a new project named Advanced27 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Advanced27.cpp. If you are
using Microsoft Visual C++, copy the Advanced27.txt file from the Cpp8\Chap14 folder
to the Cpp8\Chap14\Advanced27 Project folder. Each salesperson at BobCat Motors is
assigned a code that consists of two characters. The first character is either the letter F
(which indicates a full-time employee) or the letter P (which indicates a part-time employee).

INTERMEDIATE

INTERMEDIATE

ADVANCED

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

548

The second character is either a 1 (indicating the salesperson sells new cars) or a 2
(indicating the salesperson sells used cars). Use a text editor to open the Advanced27.txt
file, which contains the names of BobCat’s salespeople along with each salesperson’s code,
and then close the file. Write a program that prompts the user to enter the code (F1, F2,
P1, or P2). The program should search the Advanced27.txt file for the code and then
display only the names of the salespeople assigned that code. Display an appropriate
message if the user enters an invalid code. Save and then run the program. Test the
program by entering F2 as the code. The program should display three records: Mary Jones,
Joel Adkari, and Janice Paulo. Now, test the program using codes of F1, P1, P2, and S3.

28.	 If necessary, create a new project named Advanced28 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Advanced28.cpp. If you
are using Microsoft Visual C++, copy the Advanced28.txt file from the Cpp8\Chap14
folder to the Cpp8\Chap14\Advanced28 Project folder. Use a text editor to open the
Advanced28.txt file, which contains 20 numbers. Close the Advanced28.txt file.
Write a program that performs the following for each number in the Advanced28.txt file:
read the number, add 1 to the number, and write the new number to another sequential
access file named UpdatedAdvanced28.txt. Save and then run the program. Use a
text editor to open the UpdatedAdvanced28.txt file. Each number in the file should
be one greater than its corresponding number in the Advanced28.txt file. Close the
UpdatedAdvanced28.txt file.

29.	 If necessary, create a new project named Advanced29 Project and save it in the
Cpp8\Chap14 folder. Also create a new source file named Advanced29.cpp. If you
are using Microsoft Visual C++, copy the Advanced29.txt file from the Cpp8\Chap14
folder to the Cpp8\Chap14\Advanced29 Project folder. Use a text editor to open the
Advanced29.txt file, which contains 12 numbers. Close the Advanced29.txt file. Write
a program that reads the numbers contained in the Advanced29.txt file and writes only
the even numbers to a new sequential access file named EvenAdvanced29.txt. Save and
then run the program. Use a text editor to open the EvenAdvanced29.txt file, which
should contain only the even numbers. Close the EvenAdvanced29.txt file.

30.	 Follow the instructions for starting C++ and viewing the SwatTheBugs30.cpp file,
which is contained in either the Cpp8\Chap14\SwatTheBugs30 Project folder or the
Cpp8\Chap14 folder. (Depending on your C++ development tool, you may need to
open the project/solution file first.) The program should display the contents of the
SwatTheBugs30.txt file, but it is not working correctly. Run the program. Debug the
program.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 ifstream inSales;

2.	 outJan.open("janSales.txt"); or
outJan.open("janSales.txt", ios::out);

ADVANCED

ADVANCED

SWAT THE BUGS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

549

Exercises 	

Computer

16.	 See Figure 14-21.

//TryThis16.cpp - writes 10 letters (in uppercase)
//to a sequential access file
//Created/revised by <your name> on <current date>

#include <iostream>
#include <fstream>
using namespace std;

int main()
{
 char letter = ' ';

 ofstream outFile;
 outFile.open("TryThis16.txt");

 if (outFile.is_open())
 {
 for (int x = 1; x < 11; x += 1)
 {
 cout << "Enter letter " << x << ": ";
 cin >> letter;
 letter = toupper(letter);
 outFile << letter << endl;
 } //end for
 outFile.close();
 }
 else
 cout << "Can't open the TryThis16.txt file ."
 << endl;
 //end if
 return 0;
} //end of main function

Figure 14-21  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C h a p t e r 1 4 Sequential Access Files

550

17.	 See Figure 14-22.

//TryThis17.cpp - saves numbers from 10 through
//25, along with the square of each number,
//in a sequential access file
//Created/revised by <your name> on <current date>

#include <iostream>
#include <cmath>
#include <fstream>
using namespace std;

int main()
{
 ofstream outNumbers;
 outNumbers.open("TryThis17.txt");

 if (outNumbers.is_open())
 {
 for (int x = 10; x < 26; x += 1)
 outNumbers << x << '#'
 << pow(x, 2.0) << endl;
 //end for
 outNumbers.close();
 cout << "Numbers saved in file." << endl;
 }
 else
 cout << "Can't open the TryThis17.txt file."
 << endl;
 //end if
 return 0;
} //end of main function

Figure 14-22  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After studying Chapter 15, you should be able to:

�� Differentiate between procedure-oriented and object-oriented
programming

�� Define the terms used in object-oriented programming

�� Create a class definition

�� Instantiate an object from a class that you define

�� Create a default constructor

�� Create a parameterized constructor

�� Include methods other than constructors in a class

�� Overload the methods in a class

C H A P T E R 15
Classes and Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

552

Object-Oriented Terminology
In Chapter 1, you learned that some programs are procedure oriented and some are object oriented.
The programs you created in the previous chapters were procedure oriented. Recall that when
writing a procedure-oriented program, the programmer concentrates on the major tasks that the
program must perform to accomplish its goal. A payroll program, for example, typically performs
several major tasks, such as inputting the employee data, calculating the gross pay, calculating the
taxes, calculating the net pay, and outputting a paycheck. The programmer usually assigns each
major task to a function, which is the primary component in a procedure-oriented program.

The primary component in an object-oriented program, on the other hand, is an object. An
object is anything that can be seen, touched, or used. In other words, an object is nearly any
thing. When writing an object-oriented program, the programmer focuses not only on the
tasks the program must perform, but also on the objects that the program can use to perform
those tasks. The objects can take on many different forms. Programs written for the Windows
environment typically use objects such as check boxes, list boxes, and buttons. A payroll
program, on the other hand, might utilize objects found in real life, such as a time card object,
an employee object, and a paycheck object. Because each object is viewed as an independent
unit, an object can be used in more than one program, usually with little or no modification.
A check object used in a payroll program, for example, can also be used in a sales revenue
program (which receives checks from customers) and an accounts payable program (which
issues checks to creditors). The ability to use an object for more than one purpose enables code
reuse, which saves programming time and money—advantages that contribute to the popularity
of object-oriented programming.

Every object in an object-oriented program is created from a class, which is a pattern or
blueprint that the computer uses to create the object. Using object-oriented programming
(OOP) terminology, objects are instantiated (created) from a class, and each object is referred
to as an instance of the class. A string object (variable or named constant), for example, is an
instance of the string class and is instantiated when its declaration statement is processed in a
program. Similarly, the input and output file objects discussed in Chapter 14 are instances of the
ifstream and ofstream classes, respectively. Keep in mind that the class itself is not an object;
only an instance of the class is an object.

Every object has attributes, which are the characteristics that describe the object. When you tell
someone that your wristwatch is a Valenti Model VI, you are describing the watch (an object)
in terms of some of its attributes—in this case, its maker and model number. A watch also has
many other attributes, such as a crown, a dial, an hour hand, a minute hand, and a movement.

In addition to attributes, most objects also have behaviors. An object’s behaviors fall into two
categories: actions that the object is capable of performing and actions to which the object
can respond. A watch, for example, can keep track of the time and date. Some watches can
also illuminate their dials when a button on the watch is pushed. A class contains—or, in OOP
terms, encapsulates—all of the attributes and behaviors of the object it instantiates. The term
encapsulate means to enclose in a capsule. In the context of OOP, the “capsule” is a class.

Abstraction is another term used in OOP discussions. Abstraction refers to the hiding of the
internal details of an object from the user. Hiding the internal details helps prevent the user from
making inadvertent changes to the object. The internal mechanism of a watch, for example, is
enclosed (hidden) in a case to protect the mechanism from damage. Attributes and behaviors
that are not hidden are said to be exposed to the user. Exposed on a Valenti Model VI watch
are the crown used to set the hour and minute hands and the button used to illuminate the dial.
The idea behind abstraction is to expose to the user only those attributes and behaviors that are
necessary to use the object and to hide everything else.

Ch15-Chapter Preview

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

553

Defining a Class in C++ 	﻿

Another OOP term, inheritance, refers to the fact that you can create one class from another class.
The new class, called the derived class, inherits the attributes and behaviors of the original class,
called the base class. For example, the Valenti company might create a blueprint of the Model VII
watch from the blueprint of the Model VI watch. The Model VII blueprint (the derived class) will
inherit all of the attributes and behaviors of the Model VI blueprint (the base class), but it can then
be modified to include an additional feature, such as an alarm.

Finally, you will also hear the term polymorphism in OOP discussions. Polymorphism is the
object-oriented feature that allows the same instruction to be carried out differently, depending
on the object. For example, you open a door, but you also open an envelope, a jar, and your eyes.
Similarly, you can set the time, the date, and the alarm on a Valenti watch. Although the meaning
of the verbs open and set are different in each case, you can understand each instruction because
the combination of the verb and the object makes the instruction clear.

Mini-Quiz 15-1
1.	 OOP is the acronym for _________________________.

2.	 A class is an object.

a.	 True
b.	 False

3.	 An object created from a class is called _________________________.

a.	 an attribute
b.	 an instance of the class
c.	 the base class
d.	 the derived class

4.	 The actions that an object can perform or to which an object can respond are called the
object’s _________________________.

a.	 attributes
b.	 behaviors
c.	 qualities
d.	 traits

Defining a Class in C++
In previous chapters, you instantiated objects using existing classes, such as the string and
ofstream classes. You used the instantiated objects in a variety of ways in many different
programs. In some programs, you used a string object (variable or named constant) to store
a name, and in others you used it to store a phone number. Similarly, one of the programs in
Chapter 14 used an output file object to save eBook information. Another program in the same
chapter used an output file object to save a store’s sales information.

You can also define your own classes in C++ and then create instances (objects) from those
classes. As do the string and ofstream classes, your classes must specify the attributes and
behaviors of the objects they create. You specify the attributes and behaviors using a class
definition. Figure 15-1 shows the syntax used in this book to define a class. The figure also
includes an example of defining a class named FormattedDate.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

You can use the
acronym APIE
(Abstraction,
Polymorphism,
Inheritance, and

Encapsulation) to help
you remember some of
the OOP terms.

The creation of
a good class,
which is one
whose objects
can be used

in a variety of ways by
many different programs,
requires a lot of planning.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

554

How To �Define a Class

The class
statement
groups related
items into
one unit.

Figure 15-1   How to define a class (continues)

Syntax
//declaration section
class className
{
public:
 public attributes (data members)
 public behaviors (member methods)
private:
 private attributes (data members)
 private behaviors (member methods)
};

[//implementation section
member method definitions]

Example
//declaration section
class FormattedDate
{
public:
 FormattedDate();
 FormattedDate(string, string, string);
 void setDate(string, string, string);
 string getFormattedDate();
private:
 string month;
 string day;
 string year;
};

//implementation section
FormattedDate::FormattedDate()
{
 //initializes the private variables
 month = "0";
 day = "0";
 year = "0";
} //end of default constructor

FormattedDate::FormattedDate(string m, string d, string y)
{
 //initializes the private variables
 //using the values provided by the program
 month = m;
 day = d;
 year = y;
} //end of default constructor

void FormattedDate::setDate(string m, string d, string y)
{
 //assigns program values to the private variables
 month = m;
 day = d;
 year = y;
} //end of setDate method

string FormattedDate::getFormattedDate()
{
 //formats and returns values stored in the private variables
 return month + "/" + day + "/" + year;
} //end of getFormattedDate method

colon

colon

semicolon

method prototypes

variable declarations

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

555

Defining a Class in C++ 	﻿

Notice that the syntax contains two sections: a declaration section and an optional
implementation section. The declaration section contains the C++ class statement, which
begins with the keyword class followed by the name of the class; the statement ends with a
semicolon. Although it is not a requirement, the convention is to enter the class name using
Pascal case, which means you capitalize the first letter in the name and the first letter in any
subsequent words in the name. Examples of class names that follow this naming convention
include Check, FormattedDate, and TimeCard.

Within the class statement, you list the attributes and behaviors of the objects that the class
will create. You enclose the attributes and behaviors in a set of braces. In most cases, the
attributes (called data members) are represented by variable declarations, and the behaviors
(called member methods) are represented by method prototypes. A method is simply a function
that is defined in a class definition. You enter the method definitions in the implementation
section of a class definition. The implementation section will contain one definition for each
prototype listed in the declaration section. If no method prototypes appear in the declaration
section, the implementation section is not needed.

As Figure 15-1 indicates, a class can contain both public members and private members. You
record the public members below the keyword public in the class statement. The private
members are recorded below the keyword private. When you use a class to instantiate (create)
an object in a program, only the public members of the class are exposed (made available) to the
program; the private members are hidden. In most cases, you will want to expose the member
methods and hide the data members. You expose the member methods to allow the program
to use the service each method provides. You hide the variables (data members) to protect their
contents from being changed inadvertently by the program. Therefore, in most class definitions,
you will list the method prototypes below the keyword public in the class statement, and you
will list the variable declarations below the keyword private, as shown in the FormattedDate
class definition in Figure 15-1.

When a program needs to assign data to a private variable, it must use a public member method
to do so. For example, a program would need to use the setDate method in Figure 15-1 to
assign data to a FormattedDate object’s month, day, and year variables. It is the public member
method’s responsibility to validate the data, if necessary, and then either assign the data to the
private data member (if the data is valid) or reject the data (if the data is not valid). Keep in mind
that a program does not have direct access to the private members of a class. Rather, it must
access the private members indirectly, through a public member method.

Some C++
programmers
refer to the
methods in
a class as

member functions.

(continued)

Syntax
//declaration section
class className
{
public:
 public attributes (data members)
 public behaviors (member methods)
private:
 private attributes (data members)
 private behaviors (member methods)
};

[//implementation section
member method definitions]

Example
//declaration section
class FormattedDate
{
public:
 FormattedDate();
 FormattedDate(string, string, string);
 void setDate(string, string, string);
 string getFormattedDate();
private:
 string month;
 string day;
 string year;
};

//implementation section
FormattedDate::FormattedDate()
{
 //initializes the private variables
 month = "0";
 day = "0";
 year = "0";
} //end of default constructor

FormattedDate::FormattedDate(string m, string d, string y)
{
 //initializes the private variables
 //using the values provided by the program
 month = m;
 day = d;
 year = y;
} //end of default constructor

void FormattedDate::setDate(string m, string d, string y)
{
 //assigns program values to the private variables
 month = m;
 day = d;
 year = y;
} //end of setDate method

string FormattedDate::getFormattedDate()
{
 //formats and returns values stored in the private variables
 return month + "/" + day + "/" + year;
} //end of getFormattedDate method

Figure 15-1   How to define a class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

556

After an object has been instantiated in a program, the program can refer to a public member of
the class using the syntax shown in Figure 15-3. In the syntax, objectName and publicMember are
the names of the object and public member, respectively. The figure also includes examples of
referring to the reportDate object’s getFormattedDate and setDate methods. Both methods
are public members of the FormattedDate class used to instantiate a reportDate object.

Instantiating an Object and Referring to a Public Member
Figure 15-2 shows the syntax for using a class to instantiate an object in a C++ program. The
figure also includes examples of instantiating a FormattedDate object.

semicolon

How To �Instantiate an Object

Syntax
className objectName[(argumentList)];

Examples
FormattedDate reportDate;
FormattedDate reportDate(bdayMonth, bdayDay, bdayYear);

Figure 15-2   How to instantiate an object

How To �Refer to a Public Member of an Object’s Class

Syntax
objectName.publicMember

Example 1
cout << reportDate.getFormattedDate();
refers to the reportDate object’s getFormattedDate method, which is a public
method of the FormattedDate class shown earlier in Figure 15-1

Example 2
reportDate.setDate(monthNum, dayNum, yearNum);
refers to the reportDate object’s setDate method, which is a public method of
the FormattedDate class shown earlier in Figure 15-1

Figure 15-3   How to refer to a public member of an object’s class

In the remainder of this chapter, you will view examples of class definitions and also examples of
code in which objects are instantiated and used.

Mini-Quiz 15-2
1.	 A program cannot access a class’s public member method directly.

a.	 True
b.	 False

2.	 In C++, you enter the class statement in the _______________________ section of a class
definition, and you enter the method definitions in the _______________________ section.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

semicolon

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

557

Example 1—A Class That Contains a Private Data Member and Public Member Methods 	﻿

3.	 Typically, the data members (attributes) of a class are represented by
_________________________ in a class definition.

a.	 constant declarations
b.	 method prototypes
c.	 method definitions
d.	 variable declarations

4.	 A class’s private data member can be accessed directly by a public member method
within the class.

a.	 True
b.	 False

5.	 Write the C++ statement to instantiate a Check object named payCheck.

6.	 Which of the following refers to the payCheck object’s getCheck method?

a.	 payCheck.getCheck()

b.	 payCheck::getCheck()

c.	 getCheck()

d.	 getCheck().payCheck

Example 1—A Class That Contains a Private Data Member
and Public Member Methods
Figure 15-4 shows the class definition for the Square class, which a program can use to
instantiate a Square object. A Square object has one attribute: the length of one of its sides. The
attribute is represented within the class statement by a private data member: a double variable
named side. When a variable is declared below the private keyword in a class statement, it
can be used only by the code entered in the class definition. In this case, the code uses the side
variable to both store and retrieve the side measurement of a Square object.

A Square object has four behaviors: It can initialize its side measurement when it is created;
it can assign a value to its side measurement after it has been created; it can retrieve its side
measurement value; and it can calculate and return its area. In the class definition shown in
Figure 15-4, these behaviors are represented by four public member methods named Square,
setSide, getSide, and calcArea. The method prototypes for these methods appear below
the public keyword in the class statement. The definitions of the methods appear in the
implementation section of the class definition.

//declaration section
class Square
{
public:
 Square();
 void setSide(double);
 double getSide();
 double calcArea();
private:
 double side;
};

//implementation section
Square::Square()
{
 side = 0.0;
} //end of default constructor

void Square::setSide(double sideValue)
{
 if (sideValue > 0.0)
 side = sideValue;
 else
 side = 0.0;
 //end if
} //end of setSide method

double Square::getSide()
{
 return side;
} //end of getSide method

double Square::calcArea()
{
 return side * side;
} //end of calcArea method

Figure 15-4   Square class definition (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

558

In the Square class definition in Figure 15-4, the first method prototype (in the declaration
section) and the first method definition (in the implementation section) pertain to the default
constructor. A constructor is a class method whose instructions the computer automatically
processes each time an object is instantiated from the class. The sole purpose of a constructor is
to initialize the class’s private variables.

Every class should have at least one constructor. Each of a class’s constructors must have the same
name as the class, but its formal parameters (if any) must be different from any other constructor
in the class. A constructor that has no formal parameters is called the default constructor. A class
can have only one default constructor.

Because a constructor does not return a value, its prototype and definition do not begin with a
data type. However, notice that its definition begins with the name of the class followed by the
scope resolution operator (::), the name of the constructor, and a set of empty parentheses—in
this case, Square::Square(). The scope resolution operator indicates that the Square method is
a member of (or is contained in) the Square class. The Square method’s definition in Figure 15-4
contains the code to initialize the Square class’s private side variable to the number 0.0.

As you learned earlier, a program does not have direct access to a private variable in a class.
Rather, it must use a public method to access the private variable indirectly. A program that
instantiates a Square object, for instance, can use the public setSide method in Figure 15-4 to
assign a value to the private side variable. In this case, the setSide method receives the value
from the program that invokes it and then stores the value in its formal parameter: a double
variable named sideValue. The code contained in the setSide method’s definition verifies
that the value received from the program is greater than the number 0.0. If it is, the code assigns
the value to the private side variable; otherwise, it assigns the number 0.0 to the variable.

//declaration section
class Square
{
public:
 Square();
 void setSide(double);
 double getSide();
 double calcArea();
private:
 double side;
};

//implementation section
Square::Square()
{
 side = 0.0;
} //end of default constructor

void Square::setSide(double sideValue)
{
 if (sideValue > 0.0)
 side = sideValue;
 else
 side = 0.0;
 //end if
} //end of setSide method

double Square::getSide()
{
 return side;
} //end of getSide method

double Square::calcArea()
{
 return side * side;
} //end of calcArea method

Figure 15-4   Square class definition

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

559

Example 1—A Class That Contains a Private Data Member and Public Member Methods 	﻿

Notice that the setSide method’s prototype and definition begin with the keyword void, which
indicates that the method does not return a value.

A program that instantiates a Square object can use the public getSide method in Figure 15-4
to retrieve the value stored in the private side variable. Unlike the void setSide method, the
getSide method is a value-returning method. It returns the double number stored in the
object’s side variable.

The last method in the Square class, calcArea, is also a value-returning method. The method
first calculates the area of the Square object by multiplying the value stored in its private side
variable by itself. It then returns the area as a double number.

Figure 15-5 shows the patio area program, which uses the Square class to instantiate a Square
object that represents a square patio. The program uses the Square object to calculate and
display the patio’s area. The class definition appears on Lines 8 through 43. The code pertaining
to the Square object in the main function is shaded in the figure. Figure 15-5 also includes a
sample run of the program.

Figure 15-5   Patio area program (continues)

 1 //Patio Area.cpp
 2 //Displays the area of a square patio
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 using namespace std;
 7
 8 //declaration section
 9 class Square
10 {
11 public:
12 Square();
13 void setSide(double);
14 double getSide();
15 double calcArea();
16 private:
17 double side;
18 };
19
20 //implementation section
21 Square::Square()
22 {
23 side = 0.0;
24 } //end of default constructor
25
26 void Square::setSide(double sideValue)
27 {
28 if (sideValue > 0.0)
29 side = sideValue;
30 else
31 side = 0.0;
32 //end if
33 } //end of setSide method
34
35 double Square::getSide()
36 {
37 return side;
38 } //end of getSide method
39
40 double Square::calcArea()
41 {
42 return side * side;
43 } //end of calcArea method
44
45 int main()
46 {
47 //instantiate a Square object
48 Square patio;
49 //declare variables
50 double sideMeasurement = 0.0;
51 double area = 0.0;
52
53 //get side measurement
54 cout << "Side measurement (feet): ";
55 cin >> sideMeasurement;
56 //assign side measurement to Square object
57 patio.setSide(sideMeasurement);
58
59 //calculate and display area
60 area = patio.calcArea();
61 cout <<
62 "The area of a square patio "
63 << "with a side measurement of " << endl
64 << patio.getSide() << " feet is "
65 << area << " square feet." << endl;
66 return 0;
67 } //end of main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

560

The Square patio; statement on Line 48 instantiates a Square object named patio. When
the object is created, the default constructor is automatically called to initialize the private data
member (the side variable) to the number 0.0. The patio.setSide(sideMeasurement);
statement on Line 57 calls the Square object’s setSide method, passing it the side
measurement value entered by the user. Recall that the setSide method is a public member
of the Square class. The setSide method verifies that the value passed to it is greater than the
number 0.0. If it is, the method assigns the value to the Square object’s private side variable;
otherwise, it assigns the number 0.0 to the variable.

Next, the area = patio.calcArea(); statement on Line 60 calls the Square object’s calcArea
method to calculate and return the Square object’s area. The statement assigns the method’s return
value to the program’s area variable. The cout statement on Lines 61 through 65 displays a message
on the computer screen. The message contains the Square object’s side measurement and area.
When processing the cout statement, the patio.getSide() code on Line 64 calls the Square
object’s getSide method, which simply retrieves the value stored in the private side variable.

Figure 15-5   Patio area program

 1 //Patio Area.cpp
 2 //Displays the area of a square patio
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 using namespace std;
 7
 8 //declaration section
 9 class Square
10 {
11 public:
12 Square();
13 void setSide(double);
14 double getSide();
15 double calcArea();
16 private:
17 double side;
18 };
19
20 //implementation section
21 Square::Square()
22 {
23 side = 0.0;
24 } //end of default constructor
25
26 void Square::setSide(double sideValue)
27 {
28 if (sideValue > 0.0)
29 side = sideValue;
30 else
31 side = 0.0;
32 //end if
33 } //end of setSide method
34
35 double Square::getSide()
36 {
37 return side;
38 } //end of getSide method
39
40 double Square::calcArea()
41 {
42 return side * side;
43 } //end of calcArea method
44
45 int main()
46 {
47 //instantiate a Square object
48 Square patio;
49 //declare variables
50 double sideMeasurement = 0.0;
51 double area = 0.0;
52
53 //get side measurement
54 cout << "Side measurement (feet): ";
55 cin >> sideMeasurement;
56 //assign side measurement to Square object
57 patio.setSide(sideMeasurement);
58
59 //calculate and display area
60 area = patio.calcArea();
61 cout <<
62 "The area of a square patio "
63 << "with a side measurement of " << endl
64 << patio.getSide() << " feet is "
65 << area << " square feet." << endl;
66 return 0;
67 } //end of main function

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

561

Example 1—A Class That Contains a Private Data Member and Public Member Methods 	﻿

Header Files
Although you can enter a class definition in the program that uses the class, as shown earlier in
Figure 15-5, most programmers enter a class definition in a separate text file called a header file.
Figure 15-6 shows the definition of the Square class entered in a header file named Square.h.
Unlike program filenames, which end with .cpp, header filenames end with .h. You will learn
how to add a header file to a solution in Lab 15-2.

Figure 15-6   Square class definition entered in the Square.h header file

 1 //Square.h
 2 //Created/revised by <your name> on <current date>
 3
 4 //declaration section
 5 class Square
 6 {
 7 public:
 8 Square();
 9 void setSide(double);
10 double getSide();
11 double calcArea();
12 private:
13 double side;
14 };
15
16 //implementation section
17 Square::Square()
18 {
19 side = 0.0;
20 } //end of default constructor
21
22 void Square::setSide(double sideValue)
23 {
24 if (sideValue > 0.0)
25 side = sideValue;
26 else
27 side = 0.0;
28 //end if
29 } //end of setSide method
30
31 double Square::getSide()
32 {
33 return side;
34 } //end of getSide method
35
36 double Square::calcArea()
37 {
38 return side * side;
39 } //end of calcArea method

Figure 15-7 shows a modified version of the patio area program. Unlike the original program,
the modified program does not contain the Square class definition. Instead, it uses the class
definition contained in the Square.h header file from Figure 15-6. You can store a header file
in the same location as the program file that employs the class. In this case, for example, the
Square.h file would be stored in the same location as the Modified Patio Area.cpp file. The
programmer uses a #include directive to tell the compiler to include the contents of the header

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

562

Mini-Quiz 15-3
1.	 The :: operator is called the _______________________.

2.	 Write the default constructor’s prototype for a class named Item.

3.	 The Item class in Question 2 contains two private data members: a char variable named
code and an int variable named price. Write the definition for the default constructor.

Example 2—A Class That Contains a Parameterized
Constructor
Figure 15-8 shows a modified version of the Square class from Example 1. The modifications
made to the original class from Figure 15-6 are shaded in the figure. Notice that this version
of the Square class contains an additional constructor. The additional constructor has one

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

file in the program. In the modified patio area program, the #include "Square.h" directive
(which is shaded in Figure 15-7) tells the compiler to merge the contents of the Square.h file
with the contents of the current program. The quotation marks before and after the header
filename indicate that the header file is located in the same location as the program file.

 1 //Modified Patio Area.cpp
 2 //Displays the area of a square patio
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include "Square.h"
 7 using namespace std;
 8
 9 int main()
10 {
11 //instantiate a Square object
12 Square patio;
13 //declare variables
14 double sideMeasurement = 0.0;
15 double area = 0.0;
16
17 //get side measurement
18 cout << "Side measurement (feet): ";
19 cin >> sideMeasurement;
20 //assign side measurement to Square object
21 patio.setSide(sideMeasurement);
22
23 //calculate and display area
24 area = patio.calcArea();
25 cout <<
26 "The area of a square patio "
27 << "with a side measurement of " << endl
28 << patio.getSide() << " feet is "
29 << area << " square feet." << endl;
30 return 0;
31 } //end of main function

Figure 15-7   Modified patio area program

The angle
brackets (<>) in
a directive
indicate that
the file is

located in the same
folder as the C++
Standard Library
header files.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

563

Example 2—A Class That Contains a Parameterized Constructor 	﻿

parameter: a double variable named num. Constructors that contain at least one parameter are
called parameterized constructors. In this case, the parameterized constructor allows you to
specify the side variable’s initial value in the statement that instantiates a Square object in a
program. You specify the value by enclosing it in a set of parentheses after the object’s name. For
example, either of the following program statements will invoke the parameterized constructor
shown in Figure 15-8: Square picture(9.5); or Square picture(sideLength);. When
the parameterized constructor is invoked, it calls the setSide method, passing it the value it
receives from the program. The setSide method determines whether the value is greater than
0.0 and then assigns either the value or the number 0.0 to the private side variable.

 1 //Modified Square.h
 2 //Created/revised by <your name> on <current date>
 3
 4 //declaration section
 5 class Square
 6 {
 7 public:
 8 Square();
 9 Square(double);
10 void setSide(double);
11 double getSide();
12 double calcArea();
13 private:
14 double side;
15 };
16
17 //implementation section
18 Square::Square()
19 {
20 side = 0.0;
21 } //end of default constructor
22
23 Square::Square(double num)
24 {
25 setSide(num);
26 } //end of constructor
27
28 void Square::setSide(double sideValue)
29 {
30 if (sideValue > 0.0)
31 side = sideValue;
32 else
33 side = 0.0;
34 //end if
35 } //end of setSide method
36
37 double Square::getSide()
38 {
39 return side;
40 } //end of getSide method
41
42 double Square::calcArea()
43 {
44 return side * side;
45 } //end of calcArea method

Figure 15-8   Modified Square class definition entered in the Modified Square.h header file

parameterized
constructor

default constructor

If the setSide
method did
not contain
validation code,
you could

replace the statement
in the parameterized
constructor with
side = num;.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

564

A method’s name combined with its optional parameterList is called the method’s signature.
When a program statement instantiates an object, the computer compares the statement with
the signature of each of the class constructors; it stops comparing when it finds a match. Put
another way, the computer determines the appropriate class constructor by matching the
quantity, data type, and position (order) of the arguments in the statement that instantiates
the object with the quantity, data type, and position (order) of the parameters listed in each
constructor’s parameterList. In this case, the computer will invoke the default constructor when
you use the Square picture; statement to instantiate a Square object. However, as mentioned
earlier, it will use the parameterized constructor when you instantiate a Square object using
statements such as Square picture(9.5); or Square picture(sideLength);. Figure 15-9
shows how you could use the parameterized constructor in the modified patio area program.

 1 //Modified Patio Area.cpp
 2 //Displays the area of a square patio
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include "Modified Square.h"
 7 using namespace std;
 8
 9 int main()
10 {
11 //declare variables
12 double sideMeasurement = 0.0;
13 double area = 0.0;
14
15 //get side measurement
16 cout << "Side measurement (feet): ";
17 cin >> sideMeasurement;
18
19 //instantiate a Square object
20 Square patio(sideMeasurement);
21
22 //calculate and display area
23 area = patio.calcArea();
24 cout <<
25 "The area of a square patio "
26 << "with a side measurement of " << endl
27 << patio.getSide() << " feet is "
28 << area << " square feet." << endl;
29 return 0;
30 } //end of main function

Figure 15-9   Modified patio area program using the parameterized constructor from Figure 15-8

instantiates a
Square object

Compare the code shown in Figure 15-9 with the code shown earlier in Figure 15-7. Notice
that the statement to instantiate a Square object now appears after the cin statement that gets
the side measurement, and it now contains an argument (the sideMeasurement variable). In
Figure 15-7, the instantiation code (on Line 12) appears before the variable declaration statements,
and it doesn’t contain any arguments. Also notice that the code in Figure 15-9 does not call
the setSide method, as the code on Line 21 in Figure 15-7 does. The setSide method is not
necessary in Figure 15-9’s code because the parameterized constructor will set the private side
variable’s value when the Square object is instantiated.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

565

Example 3—Reusing a Class 	﻿

Example 3—Reusing a Class
In Examples 1 and 2, you used the Square class to create an object that represented a square patio.
In this example, you will use the Square class to create objects that represent a square pizza and a
square pizza slice. As mentioned earlier, the ability to use an object for more than one purpose saves
programming time and money, which contributes to the popularity of object-oriented programming.

Figure 15-10 shows the pizza slices program, which calculates and displays the number of
square pizza slices that can be cut from a square pizza. The figure also contains a sample run of
the program.

Figure 15-10   Pizza slices program showing another use for the Square class (continues)

 1 //Pizza Slices.cpp
 2 //Displays the number of square slices
 3 //that can be cut from a square pizza
 4 //Created/revised by <your name> on <current date>
 5
 6 #include <iostream>
 7 #include "Modified Square.h"
 8 using namespace std;
 9
10 int main()
11 {
12 //instantiate Square objects
13 Square wholePizza;
14 Square pizzaSlice;
15 //declare variables
16 double wholeSide = 0.0;
17 double sliceSide = 0.0;
18 double wholeArea = 0.0;
19 double sliceArea = 0.0;
20 double numSlices = 0.0;
21
22 //get side measurements
23 cout << "Whole pizza side measurement (inches): ";
24 cin >> wholeSide;
25 cout << "Pizza slice side measurement (inches): ";
26 cin >> sliceSide;
27
28 //assign side measurements to Square objects
29 wholePizza.setSide(wholeSide);
30 pizzaSlice.setSide(sliceSide);
31
32 //calculate areas
33 wholeArea = wholePizza.calcArea();
34 sliceArea = pizzaSlice.calcArea();
35
36 //calculate number of slices
37 if (sliceArea > 0.0)
38 numSlices = wholeArea / sliceArea;
39 //end if
40 cout << "Number of slices: " << numSlices << endl;
41 return 0;
42 } //end of main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

566

The pizza slices program instantiates two Square objects named wholePizza and pizzaSlice
to represent the whole pizza and a pizza slice, respectively. The program then declares five
double variables to store the side measurement of the whole pizza, the side measurement of a
pizza slice, the area of the whole pizza, the area of a pizza slice, and the number of slices.

The cout and cin statements on Lines 23 through 26 prompt the user for the side measurements
of the whole pizza and a pizza slice and store the user’s responses in the wholeSide and
sliceSide variables, respectively. The statement on Line 29 calls the wholePizza object’s
setSide method, passing it the side measurement of the whole pizza. The statement on Line 30
calls the pizzaSlice object’s setSide method, passing it the side measurement of a pizza slice.
Each time the setSide method is invoked, it validates the value passed to it and then assigns
either the value or the number 0.0 to the appropriate object’s side variable.

Next, the assignment statement on Line 33 in Figure 15-10 calls the wholePizza object’s
calcArea method to calculate and return the area of the whole pizza. Similarly, the assignment
statement on Line 34 calls the pizzaSlice object’s calcArea method to calculate and return
the area of a pizza slice. The condition in the if clause on Line 37 then checks whether the
pizza slice area is greater than 0.0. This determination is necessary because the pizza slice area
is used as the divisor in the statement on Line 38. That statement calculates the number of slices
by dividing the area of the whole pizza by the area of a pizza slice. Finally, the cout statement on
Line 40 displays a message that contains the number of slices.

Example 4—A Class That Contains Overloaded Methods
Figure 15-11 shows a different version of the Square class used in the previous examples.
This version contains two (rather than one) calcArea methods. Although both methods
have the same name, notice that their parameterLists differ. The parameterList in the first
calcArea method is empty, as it was in the previous examples. The parameterList in the
second calcArea method, however, contains one formal parameter: a double variable named
sideValueFromProgram. (The second method’s prototype and definition are shaded in the
figure.) When two or more methods have the same name but different parameterLists, the
methods are referred to as overloaded methods.

Figure 15-11   Square class definition entered in the Overloaded Square.h file (continues)

The two
constructors in
Figure 15-11
are overloaded
methods

because both have
the same name but a
different parameterList.

 1 //Overloaded Square.h
 2 //Created/revised by <your name> on <current date>
 3
 4 //declaration section
 5 class Square
 6 {
 7 public:
 8 Square();
 9 Square(double);
10 void setSide(double);
11 double getSide();
12 double calcArea();
13 double calcArea(double);
14 private:
15 double side;
16 };
17
18 //implementation section
19 Square::Square()
20 {
21 side = 0.0;
22 } //end of default constructor
23
24 Square::Square(double num)
25 {
26 setSide(num);
27 } //end of constructor
28
29 void Square::setSide(double sideValue)
30 {
31 if (sideValue > 0.0)
32 side = sideValue;
33 else
34 side = 0.0;
35 //end if
36 } //end of setSide method
37
38 double Square::getSide()
39 {
40 return side;
41 } //end of getSide method
42
43 double Square::calcArea()
44 {
45 return side * side;
46 } //end of calcArea method
47
48 double Square::calcArea(double sideValueFromProgram)
49 {
50 setSide(sideValueFromProgram);
51 return side * side;
52 } //end of calcArea method

(continued)

 1 //Pizza Slices.cpp
 2 //Displays the number of square slices
 3 //that can be cut from a square pizza
 4 //Created/revised by <your name> on <current date>
 5
 6 #include <iostream>
 7 #include "Modified Square.h"
 8 using namespace std;
 9
10 int main()
11 {
12 //instantiate Square objects
13 Square wholePizza;
14 Square pizzaSlice;
15 //declare variables
16 double wholeSide = 0.0;
17 double sliceSide = 0.0;
18 double wholeArea = 0.0;
19 double sliceArea = 0.0;
20 double numSlices = 0.0;
21
22 //get side measurements
23 cout << "Whole pizza side measurement (inches): ";
24 cin >> wholeSide;
25 cout << "Pizza slice side measurement (inches): ";
26 cin >> sliceSide;
27
28 //assign side measurements to Square objects
29 wholePizza.setSide(wholeSide);
30 pizzaSlice.setSide(sliceSide);
31
32 //calculate areas
33 wholeArea = wholePizza.calcArea();
34 sliceArea = pizzaSlice.calcArea();
35
36 //calculate number of slices
37 if (sliceArea > 0.0)
38 numSlices = wholeArea / sliceArea;
39 //end if
40 cout << "Number of slices: " << numSlices << endl;
41 return 0;
42 } //end of main function

Figure 15-10   Pizza slices program showing another use for the Square class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

567

Example 4—A Class That Contains Overloaded Methods 	﻿

Overloading is useful when two or more methods require different parameters to perform
essentially the same task. Both overloaded calcArea methods in the Square class, for example,
calculate and return the area of a Square object. However, the first calcArea method does not
require a program to pass it any information. The second calcArea method, on the other hand,
requires a program to pass it one item of information: the side measurement of the Square
object. Like the parameterized constructor, the parameterized calcArea method calls the
setSide method to validate the side measurement provided by the program. After the setSide
method assigns the appropriate value to the object’s private side variable, the calcArea method
calculates and returns the Square object’s area.

(continued)

Figure 15-11   Square class definition entered in the Overloaded Square.h file

 1 //Overloaded Square.h
 2 //Created/revised by <your name> on <current date>
 3
 4 //declaration section
 5 class Square
 6 {
 7 public:
 8 Square();
 9 Square(double);
10 void setSide(double);
11 double getSide();
12 double calcArea();
13 double calcArea(double);
14 private:
15 double side;
16 };
17
18 //implementation section
19 Square::Square()
20 {
21 side = 0.0;
22 } //end of default constructor
23
24 Square::Square(double num)
25 {
26 setSide(num);
27 } //end of constructor
28
29 void Square::setSide(double sideValue)
30 {
31 if (sideValue > 0.0)
32 side = sideValue;
33 else
34 side = 0.0;
35 //end if
36 } //end of setSide method
37
38 double Square::getSide()
39 {
40 return side;
41 } //end of getSide method
42
43 double Square::calcArea()
44 {
45 return side * side;
46 } //end of calcArea method
47
48 double Square::calcArea(double sideValueFromProgram)
49 {
50 setSide(sideValueFromProgram);
51 return side * side;
52 } //end of calcArea method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

568

Figure 15-12 shows a modified version of the pizza slices program from Example 3, with the
modifications shaded in the figure. The modified version uses the parameterized calcArea
method. The figure also contains a sample run of the program.

Overloading is
an example of
polymorphism.

 1 //Modified Pizza Slices.cpp
 2 //Displays the number of square slices
 3 //that can be cut from a square pizza
 4 //Created/revised by <your name> on <current date>
 5
 6 #include <iostream>
 7 #include "Overloaded Square.h"
 8 using namespace std;
 9
10 int main()
11 {
12 //instantiate Square objects
13 Square wholePizza;
14 Square pizzaSlice;
15 //declare variables
16 double wholeSide = 0.0;
17 double sliceSide = 0.0;
18 double wholeArea = 0.0;
19 double sliceArea = 0.0;
20 double numSlices = 0.0;
21
22 //get side measurements
23 cout << "Whole pizza side measurement (inches): ";
24 cin >> wholeSide;
25 cout << "Pizza slice side measurement (inches): ";
26 cin >> sliceSide;
27
28 //calculate areas
29 wholeArea = wholePizza.calcArea(wholeSide);
30 sliceArea = pizzaSlice.calcArea(sliceSide);
31
32 //calculate number of slices
33 if (sliceArea > 0.0)
34 numSlices = wholeArea / sliceArea;
35 //end if
36 cout << "Number of slices: " << numSlices << endl;
37 return 0;
38 } //end of main function

Figure 15-12   Modified pizza slices program using overloaded methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

569

Example 4—A Class That Contains Overloaded Methods 	﻿

Mini-Quiz 15-4
1.	 A method’s name along with its optional parameterList is called the method’s

________________________.

2.	 Write the prototype for a parameterized constructor in the Item class. The constructor
has one formal parameter that has the int data type.

3.	 If a class contains two methods that have the same name but different parameterLists,
the methods are referred to as ________________________ methods.

LAB 15-1  Stop and Analyze
Study the program shown in Figure 15-13 and then answer the questions.

Figure 15-13   Code for Lab 15-1 (continues)

 1 //Lab15-1.cpp – displays an increased price
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 #include <iomanip>
 7 using namespace std;
 8
 9 //declaration section
10 class Item
11 {
12 public:
13 Item();
14 void setData(string, double);
15 double getIncreasedPrice(double);
16 private:
17 string id;
18 double price;
19 };
20
21 //implementation section
22 Item::Item()
23 {
24 id = "";
25 price = 0.0;
26 } //end of default constructor
27

Compare the code shown in Figure 15-12 with the code shown earlier in Figure 15-10. Unlike
the code in Figure 15-10 (on Lines 29 and 30), the code in Figure 15-12 does not call the
setSide method to assign a value to each Square object’s side variable. The setSide method
is not necessary in Figure 15-12’s code because each object’s parameterized calcArea method
calls the setSide method before it calculates and returns the area.

The answers
to Mini-Quiz
questions are
contained in the
Answers.pdf file.

The answers
to the labs are
contained in the
Answers.pdf file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

570

(continued)

28 void Item::setData(string idNum, double p)
29 {
30 id = idNum;
31 price = p;
32 } //end of setData method
33
34 double Item::getIncreasedPrice(double rate)
35 {
36 if (rate > 1.0)
37 rate /= 100;
38 //end if
39 return price + price * rate;
40 } //end of getIncreasedPrice method
41
42
43 int main()
44 {
45 //instantiate an Item object
46 Item computer;
47
48 //declare variables
49 string computerId = "";
50 double computerPrice = 0.0;
51 double incRate = 0.0;
52
53 cout << fixed << setprecision(2);
54
55 //get computer ID
56 cout << "Computer ID (X to end): ";
57 getline(cin, computerId);
58 while (computerId != "X" && computerId != "x")
59 {
60 //get price and increase rate
61 cout << "Enter the price: ";
62 cin >> computerPrice;
63 cin.ignore(100, '\n');
64 cout << "Increase rate in decimal form: ";
65 cin >> incRate;
66 cin.ignore(100, '\n');
67
68 //assign the ID and price
69
70
71 //display the increased price
72 cout << "The new price of computer "
73 << computerId << " is $"
74
75 << endl;
76
77 //get computer ID
78 cout << endl << "Computer ID (X to end): ";
79 getline(cin, computerId);
80 } //end while
81 return 0;
82 } //end of main function

Figure 15-13   Code for Lab 15-1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

571

Example 4—A Class That Contains Overloaded Methods 	﻿

QUESTIONS

1.	 What are the names of the private data members in the Item class?

2.	 What are the name and purpose of the default constructor?

3.	 What is the purpose of the setData method?

4.	 What is the purpose of the getIncreasedPrice method?

5.	 What is the purpose of the code on Lines 36 and 37?

6.	 What statement is missing from Line 69?

7.	 Line 74 should display the increased price. What code is missing from that line?

8.	 Follow the instructions for starting C++ and viewing the Lab15-1.cpp file, which is
contained in either the Cpp8\Chap15\Lab15-1 Project folder or the Cpp8\Chap15 folder.
(Depending on your C++ development tool, you may need to open Lab15-1’s project/
solution file first.)

9.	 Enter the missing statement and code from Steps 6 and 7. Save and then run the
program. Enter ABX-12 as the computer ID, 2500 as the price, and 0.1 as the increase
rate. The program displays the message “The new price of computer ABX-12 is $2750.00.”
Now, enter PYZ-43 as the computer ID, 1900 as the price, and 10 as the increase rate.
The program displays the message “The new price of computer PYZ-43 is $2090.00.”

10.	 Test the program using different computer IDs, prices, and rates. When you are finished
testing the program, enter the letter x as the computer ID.

LAB 15-2  Plan and Create
Figure 15-14 shows the problem specification for Lab 15-2.

Problem specification
Sharon Terney of Terney Landscaping wants a program that estimates the cost of laying sod on a
rectangular piece of land. Jack Sysmanski, the owner of All-Around Fence Company, wants a
program that calculates the cost of installing a fence around a rectangular yard. You will create the
Terney Landscaping program in this lab and then create the All-Around Fence Company program in
Computer Exercise 14 at the end of the chapter.

While analyzing both problems, you notice that each involves a rectangular shape. In the Terney
Landscaping program, you need to find the area of the rectangle on which the sod is to be laid. In
the All-Around Fence Company program, on the other hand, you need to find the perimeter of the
rectangle around which a fence is to be constructed. To save time, you can create a Rectangle
class that contains the attributes and behaviors of a rectangle and then use the class to instantiate
a Rectangle object in both programs.

Figure 15-14   Problem specification for Lab 15-2

Recall that a class defines an object’s attributes and behaviors. When determining the attributes,
it is helpful to consider how you would describe the object. Rectangles are typically described in
terms of two dimensions: length and width. Therefore, the length and width dimensions are the
attributes of a Rectangle object. You will include both attributes as private data members in the
Rectangle class, using the double variables length and width.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

572

Next, you determine the object’s behaviors. To be useful in both the Terney Landscaping and
All-Around Fence Company programs, a Rectangle object must be capable of performing the
four tasks shown in Figure 15-15.

A Rectangle object should be able to:

1. initialize its private data members (default constructor)

2. assign values (received from a program) to its private data members

3. calculate and return its area

4. calculate and return its perimeter

Figure 15-15   Tasks a Rectangle object should be capable of performing

As Figure 15-15 indicates, a Rectangle object will need to initialize its private data members.
You will provide a default constructor for this purpose. A Rectangle object will also need to
provide a means for the program to assign values to the private data members. This task will be
handled by a void member method named setDimensions. You will use two value-returning
member methods named calcArea and calcPerimeter to perform the third and fourth tasks
listed in Figure 15-15. Figure 15-16 shows the completed class definition for the Rectangle class.

Figure 15-16   Rectangle class definition (continues)

 1 //Lab15-2 Rectangle.h
 2 //Created/revised by <your name> on <current date>
 3
 4 //declaration section
 5 class Rectangle
 6 {
 7 public:
 8 Rectangle();
 9 void setDimensions(double, double);
10 double calcArea();
11 double calcPerimeter();
12 private:
13 double length;
14 double width;
15 };
16
17 //implementation section
18 Rectangle::Rectangle()
19 {
20 length = 0.0;
21 width = 0.0;
22 } //end of default constructor
23
24 void Rectangle::setDimensions(double len, double wid)
25 {
26 //assigns dimensions to private data members
27 if (len > 0.0 && wid > 0.0)
28 {
29 length = len;
30 width = wid;
31 } //end if
32 } //end of setDimensions method
33
34 double Rectangle::calcArea()
35 {
36 return length * width;
37 } //end of calcArea method
38
39 double Rectangle::calcPerimeter()
40 {
41 return (length + width) * 2;
42 } //end of calcPerimeter method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

573

Example 4—A Class That Contains Overloaded Methods 	﻿

Now that you have defined the Rectangle class, you can begin creating the Terney Landscaping
program, which will use the class to create a Rectangle object. Figure 15-17 shows the IPO
chart information and C++ instructions for the program. According to the IPO chart, the output
is the area (in square yards) and the total price. The input is the length and width of the rectangle
(both in feet) and the price of a square yard of sod. Notice that a Rectangle object is used as a
processing item in the program.

(continued)

 1 //Lab15-2 Rectangle.h
 2 //Created/revised by <your name> on <current date>
 3
 4 //declaration section
 5 class Rectangle
 6 {
 7 public:
 8 Rectangle();
 9 void setDimensions(double, double);
10 double calcArea();
11 double calcPerimeter();
12 private:
13 double length;
14 double width;
15 };
16
17 //implementation section
18 Rectangle::Rectangle()
19 {
20 length = 0.0;
21 width = 0.0;
22 } //end of default constructor
23
24 void Rectangle::setDimensions(double len, double wid)
25 {
26 //assigns dimensions to private data members
27 if (len > 0.0 && wid > 0.0)
28 {
29 length = len;
30 width = wid;
31 } //end if
32 } //end of setDimensions method
33
34 double Rectangle::calcArea()
35 {
36 return length * width;
37 } //end of calcArea method
38
39 double Rectangle::calcPerimeter()
40 {
41 return (length + width) * 2;
42 } //end of calcPerimeter method

Figure 15-16   Rectangle class definition

Figure 15-17   IPO chart information and C++ instructions for the Terney Landscaping program
(continues)

IPO chart information
Input
 length (in feet)
 width (in feet)
 sod price (per square yard)

Processing
 Rectangle object

Output
 area (in square yards)
 total price

Algorithm
1. enter length, width, and sod price

2. use the Rectangle object’s setDimensions
 method to assign the length and width
 to the Rectangle object; pass the method the
 length and width measurements
3. use the Rectangle object’s calcArea method to
 calculate the area in square feet, then divide

 the result by 9 to get the area in square yards
4. calculate the total price by multiplying the
 area by the sod price
5. display the area and the total price

C++ instructions

double lawnLength = 0.0;
double lawnWidth = 0.0;
double priceSqYd = 0.0;

Rectangle lawn;

double lawnArea = 0.0;
double totalPrice = 0.0;

cout << "Length (in feet): ";
cin >> lawnLength;
cout << "Width (in feet): ";
cin >> lawnWidth;
cout << "Sod price (per square
yard): ";
cin >> priceSqYd;

lawn.setDimensions(lawnLength,
lawnWidth);

lawnArea = lawn.calcArea() / 9;

totalPrice = lawnArea * priceSqYd;

cout << "Square yards: "
<< lawnArea << endl;
cout << "Total price: $"
<< totalPrice << endl;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

574

As Figure 15-17 indicates, the program first gets the length, width, and sod price information
from the user. The program passes the length and width information to the Rectangle object’s
setDimensions method, which assigns the values (assuming that both are greater than 0.0) to
the Rectangle object’s private data members.

Next, the program calculates the area of the Rectangle object in square yards. It does this by
first calling the Rectangle object’s calcArea method to calculate the area in square feet. It
then converts the value returned by the calcArea method from square feet to square yards by
dividing the return value by the number 9, which is the number of square feet in a square yard.

After calculating the area in square yards, the program calculates the total price by multiplying
the number of square yards by the price per square yard of sod. Finally, the program displays the
area (in square yards) and the total price on the screen. Although the Rectangle object is also
capable of calculating its perimeter, the current program does not require the object to perform
that task.

Figure 15-18 shows the code for the entire Terney Landscaping program and includes a sample
run of the program.

Figure 15-17   IPO chart information and C++ instructions for the Terney Landscaping program

IPO chart information
Input
 length (in feet)
 width (in feet)
 sod price (per square yard)

Processing
 Rectangle object

Output
 area (in square yards)
 total price

Algorithm
1. enter length, width, and sod price

2. use the Rectangle object’s setDimensions
 method to assign the length and width
 to the Rectangle object; pass the method the
 length and width measurements
3. use the Rectangle object’s calcArea method to
 calculate the area in square feet, then divide
 the result by 9 to get the area in square yards

4. calculate the total price by multiplying the
 area by the sod price
5. display the area and the total price

C++ instructions

double lawnLength = 0.0;
double lawnWidth = 0.0;
double priceSqYd = 0.0;

Rectangle lawn;

double lawnArea = 0.0;
double totalPrice = 0.0;

cout << "Length (in feet): ";
cin >> lawnLength;
cout << "Width (in feet): ";
cin >> lawnWidth;
cout << "Sod price (per square
yard): ";
cin >> priceSqYd;

lawn.setDimensions(lawnLength,
lawnWidth);

lawnArea = lawn.calcArea() / 9;

totalPrice = lawnArea * priceSqYd;

cout << "Square yards: "
<< lawnArea << endl;
cout << "Total price: $"
<< totalPrice << endl;

Figure 15-18   Terney Landscaping program (continues)

 1 //Lab15-2.cpp - displays the cost of laying sod
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 #include "Lab15-2 Rectangle.h"
 7 using namespace std;
 8
 9 int main()
10 {
11 //instantiate a Rectangle object
12 Rectangle lawn;
13
14 //declare variables
15 double lawnLength = 0.0;
16 double lawnWidth = 0.0;
17 double priceSqYd = 0.0;
18 double lawnArea = 0.0;
19 double totalPrice = 0.0;
20
21 //get length, width, and sod price
22 cout << "Length (in feet): ";
23 cin >> lawnLength;
24 cout << "Width (in feet): ";
25 cin >> lawnWidth;
26 cout << "Sod price (per square yard): ";
27 cin >> priceSqYd;
28
29 //assign dimensions to Rectangle object
30 lawn.setDimensions(lawnLength, lawnWidth);
31
32 //calculate area and total price
33 lawnArea = lawn.calcArea() / 9;
34 totalPrice = lawnArea * priceSqYd;
35
36 //display area and total price
37 cout << fixed << setprecision(2) << endl;
38 cout << "Square yards: " << lawnArea << endl;
39 cout << "Total price: $" << totalPrice << endl;
40 return 0;
41 } //end of main function

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

575

Example 4—A Class That Contains Overloaded Methods 	﻿

DIRECTIONS

Follow the instructions for starting your C++ development tool. Depending on the
development tool you are using, you may need to create a new project; if so, name the project
Lab15-2 Project and save it in the Cpp8\Chap15 folder. Enter the instructions shown in Figure
15-18 in a source file named Lab15-2.cpp. (Do not enter the line numbers.) Save the file in
either the project folder or the Cpp8\Chap15 folder.

Next, you will add a header file to either the project folder (if you are using Microsoft Visual
C++) or the Cpp8\Chap15 folder (if you are using Dev-C++ or Code::Blocks). The instructions
for doing this are shown in Figure 15-19. (If you are using a different C++ development tool, you
will need to ask your instructor how and where to add a header file.)

Figure 15-18   Terney Landscaping program

 1 //Lab15-2.cpp - displays the cost of laying sod
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <iomanip>
 6 #include "Lab15-2 Rectangle.h"
 7 using namespace std;
 8
 9 int main()
10 {
11 //instantiate a Rectangle object
12 Rectangle lawn;
13
14 //declare variables
15 double lawnLength = 0.0;
16 double lawnWidth = 0.0;
17 double priceSqYd = 0.0;
18 double lawnArea = 0.0;
19 double totalPrice = 0.0;
20
21 //get length, width, and sod price
22 cout << "Length (in feet): ";
23 cin >> lawnLength;
24 cout << "Width (in feet): ";
25 cin >> lawnWidth;
26 cout << "Sod price (per square yard): ";
27 cin >> priceSqYd;
28
29 //assign dimensions to Rectangle object
30 lawn.setDimensions(lawnLength, lawnWidth);
31
32 //calculate area and total price
33 lawnArea = lawn.calcArea() / 9;
34 totalPrice = lawnArea * priceSqYd;
35
36 //display area and total price
37 cout << fixed << setprecision(2) << endl;
38 cout << "Square yards: " << lawnArea << endl;
39 cout << "Total price: $" << totalPrice << endl;
40 return 0;
41 } //end of main function

(continued)

If you are using Microsoft Visual C++, click Project on the menu bar, and then click Add New
Item. If necessary, click Visual C++. Click Header File (.h) in the Add New Item dialog box, type
Lab15-2 Rectangle in the Name box, and then click the Add button. If necessary, delete the
#pragma once directive.

If you are using Dev-C++, click File on the menu bar, point to New, and then click Source File.
Click File, and then click Save As. Type Lab15-2 Rectangle.h in the File name box and then click
the Save button.

If you are using CODE::BLOCKS, click File on the menu bar, point to New, and then click Source
File. Click File, and then click Save As. Type Lab15-2 Rectangle.h in the File name box and then
click the Save button.

Figure 15-19   Instructions for adding a header file

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

576

In the header file, enter the Rectangle class definition shown in Figure 15-16. Save the program.
Now, follow the appropriate instructions for running the Lab15-2.cpp file. Test the program using
the data shown in Figure 15-18. If necessary, correct any bugs (errors) in the program.

LAB 15-3  Modify
If necessary, create a new project named Lab15-3 Project and save it in the Cpp8\
Chap15 folder. Enter (or copy) the Lab15-2.cpp instructions into a new source file
named Lab15-3.cpp. Change Lab15-2.cpp in the first comment to Lab15-3.cpp. Also
change “Lab15-2 Rectangle.h” in the #include directive to “Lab15-3 Rectangle.h”.

Next, enter (or copy) the Lab15-2 Rectangle.h instructions into a new header file named
Lab15-3 Rectangle.h. Change Lab15-2 Rectangle.h in the first comment to Lab15-3 Rectangle.h.
Add a second setDimensions method to the Rectangle class. The method should accept two
integers rather than two double numbers. Now, modify the program so that it uses integers
(rather than double numbers) for the length and width measurements. Save and then run the
program. Test the program using 10 as the length, 15 as the width, and 1.95 as the sod price. The
number of square yards and total price are 16.67 and $32.50, respectively.

LAB 15-4  What’s Missing?
The program in this lab should display the area of a parking lot. Start your C++
development tool, and view the Lab15-4.cpp and Parallelogram.h files, which are
contained in either the Cpp8\Chap15\Lab15-4 Project folder or the Cpp8\Chap15
folder. (Depending on your C++ development tool, you may need to open Lab15-4’s

project/solution file first.) Put the C++ instructions in the proper order, and then determine the
one or more missing instructions. Test the program appropriately.

LAB 15-5  Desk-Check
Desk-check the code shown in Figure 15-20 using Carla Rensen and 12456.75 as the
salesperson’s name and sales amount, respectively. Then use X to stop the program.
What will the code display on the computer screen?

Figure 15-20   Code for Lab 15-5 (continues)

 1 //Lab15-5.cpp - displays a bonus amount
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 #include <iomanip>
 7 using namespace std;
 8
 9 //declaration section
10 class Bonus
11 {
12 public:
13 Bonus();
14 void setSales(double);
15 double getBonus(double);
16 private:
17 double sales;
18 };
19
20 //implementation section
21 Bonus::Bonus()
22 {
23 sales = 0.0;
24 } //end of default constructor
25
26 void Bonus::setSales(double s)
27 {
28 if (s > 0.0)
29 sales = s;
30 else
31 sales = 0.0;
32 //end if
33 } //end of setSales method
34
35 double Bonus::getBonus(double r)
36 {
37 return sales * r;
38 } //end of getBonus method
39
40 int main()
41 {
42 const double BONUS_RATE = 0.05;
43 string name = "";
44 double dollars = 0.0;
45 double bonus = 0.0;
46 Bonus dollarAmt;
47
48 cout << fixed << setprecision(2);
49 cout << "Salesperson's name (X to exit): ";
50 getline(cin, name);
51 while (name != "X" && name != "x")
52 {
53 cout << "Sales amount: ";
54 cin >> dollars;
55 cin.ignore(100, '\n');
56 dollarAmt.setSales(dollars);
57
58 bonus = dollarAmt.getBonus(BONUS_RATE);
59 cout << name << " bonus: $" << bonus << endl;
60
61 cout << endl << "Salesperson's name (X to exit): ";
62 getline(cin, name);
63 } //end while
64 return 0;
65 } //end of main function

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

577

Example 4—A Class That Contains Overloaded Methods 	﻿

Figure 15-20   Code for Lab 15-5 (continues)

(continued)

 1 //Lab15-5.cpp - displays a bonus amount
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 #include <iomanip>
 7 using namespace std;
 8
 9 //declaration section
10 class Bonus
11 {
12 public:
13 Bonus();
14 void setSales(double);
15 double getBonus(double);
16 private:
17 double sales;
18 };
19
20 //implementation section
21 Bonus::Bonus()
22 {
23 sales = 0.0;
24 } //end of default constructor
25
26 void Bonus::setSales(double s)
27 {
28 if (s > 0.0)
29 sales = s;
30 else
31 sales = 0.0;
32 //end if
33 } //end of setSales method
34
35 double Bonus::getBonus(double r)
36 {
37 return sales * r;
38 } //end of getBonus method
39
40 int main()
41 {
42 const double BONUS_RATE = 0.05;
43 string name = "";
44 double dollars = 0.0;
45 double bonus = 0.0;
46 Bonus dollarAmt;
47
48 cout << fixed << setprecision(2);
49 cout << "Salesperson's name (X to exit): ";
50 getline(cin, name);
51 while (name != "X" && name != "x")
52 {
53 cout << "Sales amount: ";
54 cin >> dollars;
55 cin.ignore(100, '\n');
56 dollarAmt.setSales(dollars);
57
58 bonus = dollarAmt.getBonus(BONUS_RATE);
59 cout << name << " bonus: $" << bonus << endl;
60
61 cout << endl << "Salesperson's name (X to exit): ";
62 getline(cin, name);
63 } //end while
64 return 0;
65 } //end of main function
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

578

Chapter Summary

•• A class is a pattern for creating one or more instances of the class. Each instance is considered
an object.

•• A class encapsulates all of an object’s attributes and behaviors. An object’s attributes are
the characteristics that describe the object. Its behaviors are the actions that the object can
perform or to which the object can respond.

•• The OOP term abstraction refers to the hiding of an object’s internal details from the user.
Hiding the internal details prevents the user from making inadvertent changes to the object.

•• The idea behind abstraction is to expose to the user only the attributes and behaviors that are
necessary to use the object and to hide everything else. In most classes, you expose an object’s
behaviors (member methods) and you hide its attributes (data members).

•• Polymorphism is the object-oriented feature that allows the same instruction to be carried
out differently depending on the object.

•• You use a class definition to create a class. The class definition contains two sections:
declaration and implementation. The declaration section contains the class statement. The
implementation section contains the method definitions.

•• You instantiate (create) an object using the syntax className objectName[(argumentList)];.

•• You refer to a public member of a class using the syntax objectName.publicMember.

LAB 15-6  Debug
Follow the instructions for starting C++ and viewing the Lab15-6.cpp file,
which is contained in either the Cpp8\Chap15\Lab15-6 Project folder or the
Cpp8\Chap15 folder. (Depending on your C++ development tool, you may need
to open Lab15-6’s project/solution file first.) The program should display the item

number and inventory quantity entered by the user. Run the program. Notice that the program
is not working correctly. Debug the program.

Figure 15-20   Code for Lab 15-5

 1 //Lab15-5.cpp - displays a bonus amount
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 #include <iomanip>
 7 using namespace std;
 8
 9 //declaration section
10 class Bonus
11 {
12 public:
13 Bonus();
14 void setSales(double);
15 double getBonus(double);
16 private:
17 double sales;
18 };
19
20 //implementation section
21 Bonus::Bonus()
22 {
23 sales = 0.0;
24 } //end of default constructor
25
26 void Bonus::setSales(double s)
27 {
28 if (s > 0.0)
29 sales = s;
30 else
31 sales = 0.0;
32 //end if
33 } //end of setSales method
34
35 double Bonus::getBonus(double r)
36 {
37 return sales * r;
38 } //end of getBonus method
39
40 int main()
41 {
42 const double BONUS_RATE = 0.05;
43 string name = "";
44 double dollars = 0.0;
45 double bonus = 0.0;
46 Bonus dollarAmt;
47
48 cout << fixed << setprecision(2);
49 cout << "Salesperson's name (X to exit): ";
50 getline(cin, name);
51 while (name != "X" && name != "x")
52 {
53 cout << "Sales amount: ";
54 cin >> dollars;
55 cin.ignore(100, '\n');
56 dollarAmt.setSales(dollars);
57
58 bonus = dollarAmt.getBonus(BONUS_RATE);
59 cout << name << " bonus: $" << bonus << endl;
60
61 cout << endl << "Salesperson's name (X to exit): ";
62 getline(cin, name);
63 } //end while
64 return 0;
65 } //end of main function

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

579

Key Terms 	

•• Most C++ programmers enter class definitions in header files. Header filenames end with .h.

•• You can use a constructor to initialize the data members in a class when an object is
instantiated. A class can have more than one constructor, but only one can be the default
constructor. The default constructor has no formal parameters.

•• Each constructor in a class has the same name, but its formal parameters (if any) must be
different from any other constructor in the class. A constructor that has one or more formal
parameters is called a parameterized constructor.

•• A constructor does not have a data type because it cannot return a value.

•• You can overload the methods in a class. Doing this allows you to use the same name for
methods that require different information to perform the same task. The computer uses the
method’s signature to determine which overloaded method to process.

Key Terms
Abstraction—the OOP term that refers to the hiding of the internal details of an object from
the user

Attributes—the characteristics that describe an object

Base class—the class from which a derived class is created

Behaviors—the actions that an object is capable of performing or to which the object can
respond

Class—a pattern or blueprint used to instantiate an object in a program

Class definition—used to specify the attributes and behaviors of an object

class statement—the statement used to create a class in C++

Constructor—a class method whose instructions the computer automatically processes each
time an object is instantiated from the class

Declaration section—the section that contains the class statement in a class definition

Default constructor—a constructor that has no formal parameters

Derived class—a class that inherits the attributes and behaviors of a base class

Encapsulates—the OOP term that refers to the grouping together of the attributes and
behaviors of an object within a class

Exposed—the OOP term that refers to the attributes and behaviors that a program can access

Header file—a file that contains a class definition; header filenames end with .h

Hidden—the OOP term that refers to the attributes and behaviors that a program cannot access

Implementation section—the section that contains the method definitions in a class definition

Inheritance—the OOP term that refers to the fact that you can create one class (the derived
class) from another class (the base class); the derived class inherits the attributes and behaviors
of the base class

Instance—in OOP terminology, an object instantiated (created) from a class

Instantiated—the OOP term that refers to objects being created from a class

Method—a function that is defined in a class definition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

580

Object—anything that can be seen, touched, or used

OOP—an acronym for object-oriented programming

Overloaded methods—two or more class methods that share the same name but have different
parameterLists

Parameterized constructors—constructors that have one or more formal parameters

Pascal case—the practice of capitalizing the first letter in a name and the first letter in any
subsequent words in the name

Polymorphism—the object-oriented feature that allows the same instruction to be carried out
differently depending on the object

Signature—the combination of a method’s name with its optional parameterList

Review Questions
1.	 A blueprint for creating an object in C++ is called _____________________.

a.	 a class
b.	 an instance

c.	 a map
d.	 a pattern

2.	 Which of the following statements is false?

a.	 An example of an attribute is the minutes variable in a Time class.
b.	 An example of a behavior is the setTime method in a Time class.
c.	 An object created from a class is referred to as an instance of the class.
d.	 A class is considered an object.

3.	 You hide a member of a class by recording the member below the keyword
_____________________ in the class statement.

a.	 confidential

b.	 hidden

c.	 private

d.	 restricted

4.	 You expose a member of a class by recording the member below the
_____________________ keyword in the class statement.

a.	 common

b.	 exposed

c.	 public

d.	 unrestricted

5.	 A program can access the private members of a class _____________________.

a.	 directly
b.	 only through the public members of the class
c.	 only through other private members of the class
d.	 none of the above because the program cannot access the private members of a class

in any way

6.	 In most classes, you expose the _____________________ and hide the
_____________________.

a.	 attributes, data members
b.	 data members, member methods

c.	 member methods, data members
d.	 variables, member methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

581

Exercises 	

7.	 The method definitions for a class are entered in the _____________________ section
in the class definition.

a.	 declaration
b.	 implementation

c.	 method
d.	 program-defined

8.	 Which of the following is the scope resolution operator?

a.	 :: (two colons)
b.	 * (asterisk)
c.	 . (period)
d.	 -> (hyphen and greater than symbol)

9.	 The name of the constructor for a class named Animal is _____________________.

a.	 Animal

b.	 AnimalConstructor

c.	 ConstAnimal

d.	 Any of the above could be used as the name of the constructor.

10.	 Which of the following statements is false?

a.	 You typically use a public member method to change the value stored in a private
data member.

b.	 Because a constructor does not return a value, you place the keyword void before
the constructor’s name.

c.	 The public member methods in a class can be accessed by any program that uses an
object created from the class.

d.	 An instance of a class is considered an object.

11.	 Which of the following creates an Animal object named dog?

a.	 Animal dog;

b.	 Animal "dog";

c.	 dog = "Animal";

d.	 dog Animal();

12.	 A program creates an Animal object named dog. Which of the following calls
the displayBreed method, which is a public member method contained in the
Animal class?

a.	 Animal::displayBreed();

b.	 displayBreed();

c.	 dog::displayBreed();

d.	 dog.displayBreed();

Exercises

Pencil and Paper

1.	 Write the class definition for a class named Employee. The class should include
private data members for an Employee object’s name and salary. The salary may
contain a decimal place. The class should contain two constructors: the default
constructor and a constructor that allows a program to assign initial values to the data
members. (The answers to TRY THIS Exercises are located at the end of the chapter.)

TRY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

582

Computer

7.	 In this exercise, you use the Employee class from Pencil and Paper Exercise 4 to
create an Employee object. Follow the instructions for starting C++ and viewing the
TryThis7.cpp file, which is contained in either the Cpp8\Chap15\TryThis7 Project

TRY THIS

2.	 Include an additional public method in the Employee class from Pencil and Paper
Exercise 1. The method should allow a program to assign values to the data members
after an Employee object has been instantiated. (The answers to TRY THIS Exercises
are located at the end of the chapter.)

3.	 Include two additional public methods in the Employee class from Pencil and Paper
Exercise 2. One method should allow a program to view the contents of the salary
data member. The other method should allow a program to view the contents of the
employee name data member.

4.	 Include another public method in the Employee class from Pencil and Paper
Exercise 3. The method should calculate an Employee object’s new salary, which
is based on the raise percentage provided by the program using the object. Before
making the calculation, the method should verify that the raise percentage is greater
than or equal to 0.0. If the raise percentage is less than 0.0, the method should assign
the number 0.0 as the new salary.

5.	 Write the code for two overloaded methods named getArea. The methods belong to
the Square class. The first getArea method should accept two integers. The second
getArea method should accept two double numbers. Both methods should calculate
the area by multiplying the first number by the second number. Each should then
return the calculated value.

6.	 Correct the errors in the Item class shown in Figure 15-21.

TRY THIS

MODIFY THIS

MODIFY THIS

INTRODUCTORY

SWAT THE BUGS

//declaration section
class Item
{
private:
 item();
 void assignItem(string, double);
public:
 string name;
 double price;
}

//implementation section
Item()
{
 name = "";
 price = 0.0;
} //end of default constructor

void assignItem(string n, double p)
{
 name = n;
 price = p;
} //end of assignItem method

Figure 15-21

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

583

Exercises 	

folder or the Cpp8\Chap15 folder. (Depending on your C++ development tool, you
may need to open this exercise’s project/solution file first.) In the TryThis7 Employee.h
header file, enter the #include <string> and using namespace std; direc-
tives. Then enter the class definition you created in Pencil and Paper Exercise 4. Next,
complete the TryThis7.cpp file by entering the appropriate instructions. Use the com-
ments as a guide. Save and then run the program. Test the program by entering your
name, a current salary amount of 35000, and a raise rate of 0.05. The program should
display your name, current salary ($35000), and new salary ($36750). (The answers to
TRY THIS Exercises are located at the end of the chapter.)

8.	 In this exercise, you complete a program that uses the FormattedDate class shown
in Figure 15-1 in the chapter. Follow the instructions for starting C++ and viewing the
TryThis8.cpp file, which is contained in either the Cpp8\Chap15\TryThis8 Project folder
or the Cpp8\Chap15 folder. (Depending on your C++ development tool, you may need to
open this exercise’s project/solution file first.) In the TryThis8 FormattedDate.h header
file, enter the #include <string> and using namespace std; directives. Then
enter the class definition from Figure 15-1. Next, complete the TryThis8.cpp file by
entering the appropriate instructions. Use the comments as a guide. Test the program
appropriately. (The answers to TRY THIS Exercises are located at the end of the chapter.)

9.	 In this exercise, you modify the program from TRY THIS Exercise 8. If necessary, create
a new project named ModifyThis9 Project and save it in the Cpp8\Chap15 folder. Copy
the instructions from the TryThis8.cpp file into a source file named ModifyThis9.cpp.
Change the filename in the first comment. Also copy the instructions from the
TryThis8 FormattedDate.h file into a header file named ModifyThis9 FormattedDate.h
file. If necessary, change the filename in the first comment. Also change the filename in
the #include directive. Modify the program so that it asks the user whether he or she
wants to display the formatted date using either slashes (/) or hyphens (-). Save and then
run the program. Test the program by entering 4 as the month, 9 as the day, 2017 as
the year, and a - (hyphen) as the separator. The program displays 4-9-2017 on the com-
puter screen. Run the program again. Enter 12 as the month, 21 as the day, 2016 as the
year, and a / (slash) as the separator. The program displays 12/21/2016 on the computer
screen. (Hint: The getFormattedDate method should receive a string that indicates
whether the user wants slashes or hyphens in the date.)

10.	 In this exercise, you modify the pizza slices program shown in Figure 15-10 in the
chapter. If necessary, create a new project named ModifyThis10 Project and save it
in the Cpp8\Chap15 folder. Enter the C++ instructions from the figure into a source
file named ModifyThis10.cpp. Change the filename in the first comment. Enter the
instructions shown in Figure 15-8 in the chapter in a header file named ModifyThis10
Square.h. Change the filename in the first comment. Modify the pizza slices program
so it uses the parameterized constructor in the ModifyThis10 Square.h file. Test the
program appropriately.

11.	 In this exercise, you modify the patio area program shown in Figure 15-7 in the chapter.
If necessary, create a new project named ModifyThis11 Project and save it in the
Cpp8\Chap15 folder. Enter the C++ instructions from the figure into a source file
named ModifyThis11.cpp. Change the filename in the first comment. Enter the
instructions shown in Figure 15-11 in the chapter in a header file named ModifyThis11
Square.h. Change the filename in the first comment. Modify the patio area program so
it uses the parameterized calcArea method. Test the program appropriately.

TRY THIS

MODIFY THIS

MODIFY THIS

MODIFY THIS

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

584

12.	 In this exercise, you modify the program from Lab 15-4. If necessary, create a new
project named ModifyThis12 Project and save it in the Cpp8\Chap15 folder. Copy the
instructions from the Lab15-4.cpp file into a new source file named ModifyThis12.cpp.
Change the filename in the first comment. Also copy the instructions from the
Parallelogram.h file into a new header file named ModifyThis12.h. Change the filename
in the first comment. Modify the program so it also asks the user to enter the paving
cost per square yard. The program should now also display the cost of paving the
parking lot. Test the program using 900 feet as the length, 650 feet as the height, and
$10 as the cost per square yard. (Hint: The cost is $650000.)

13.	 In this exercise, you complete a program that uses the Square class shown in
Figure 15-6 in the chapter. Follow the instructions for starting C++ and viewing the
Introductory13.cpp file, which is contained in either the Cpp8\Chap15\Introductory13
Project folder or the Cpp8\Chap15 folder. (Depending on your C++ development tool,
you may need to open this exercise’s project/solution file first.) Enter the Square class
definition from Figure 15-6 in the Introductory13 Square.h file. Next, complete the
Introductory13.cpp file by entering the appropriate instructions. Use the comments as
a guide. Test the program appropriately.

14.	 In this exercise, you use the Rectangle class from Lab 15-2 to instantiate a
Rectangle object in the All-Around Fence Company program. If necessary, create a
new project named Intermediate14 Project. Copy the instructions from the Lab15-2
Rectangle.h file (which is located in either the Cpp8\Chap15\Lab15-2 Project folder
or the Cpp8\Chap15 folder) into a header file named Intermediate14 Rectangle.h.
Change the filename in the first comment. The owner of All-Around Fence Company
wants a program that calculates the cost of installing a fence. Use the IPO chart shown
in Figure 15-22 to code the program. Enter your C++ instructions into a source file
named Intermediate14.cpp. Display the perimeter as an integer. Display the total price
with a dollar sign and two decimal places. Also enter appropriate comments and any
additional instructions required by the compiler. Save and then run the program. Test
the program using 120 as the length, 75 as the width, and 10 as the cost per linear
foot. The program should display 390 linear feet as the perimeter and $3900.00 as the
total price.

MODIFY THIS

INTRODUCTORY

INTERMEDIATE

Input Processing Output
length (in feet) Processing items: perimeter
width (in feet) Rectangle object total price
fence cost (per linear foot)
 Algorithm:
 1. enter length, width, and fence cost
 2. use the Rectangle object’s setDimensions
 method to assign the length and width
 to the Rectangle object; pass the method
 the length and width
 3. use the Rectangle object’s calcPerimeter
 method to calculate and return the perimeter
 4. calculate the total price by multiplying
 the perimeter by the fence cost
 5. display the perimeter and total price

Figure 15-22

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

585

Exercises 	

15.	 In this exercise, you modify the Rectangle class from Lab 15-2 so that it allows a
program to view the contents of the length and width data members. You also
modify the Terney Landscaping program so that it displays the length and width
measurements.

a.	 If necessary, create a new project named Intermediate15 Project and save it in the
Cpp8\Chap15 folder. Copy the instructions from the Lab15-2.cpp file into a source
file named Intermediate15.cpp. Change the filename in the first comment.

b.	 Copy the instructions from the Lab15-2 Rectangle.h file (which is located in
either the Cpp8\Chap15\Lab15-2 Project folder or the Cpp8\Chap15 folder) into a
header file named Intermediate15 Rectangle.h file. Change the filename in the first
comment.

c.	 Add two value-returning methods to the Rectangle class. Each method should
return the value of one of the private variables.

d.	 Modify the Terney Landscaping program so that it uses the methods to display the
length and width of the Rectangle object. (The program should also display the
area and total price.) Test the program appropriately.

16.	 In this exercise, you modify the Rectangle class from Lab 15-2 so that its
setDimensions method returns a value. You also modify the Terney Landscaping
program.

a.	 If necessary, create a new project named Intermediate16 Project and save it in the
Cpp8\Chap15 folder. Copy the instructions from the Lab15-2.cpp file into a source
file named Intermediate16.cpp. Change the filename in the first comment.

b.	 Copy the instructions from the Lab15-2 Rectangle.h file (which is located in
either the Cpp8\Chap15\Lab15-2 Project folder or the Cpp8\Chap15 folder) into a
header file named Intermediate16 Rectangle.h file. Change the filename in the first
comment.

c.	 Modify the setDimensions method so that it returns a value that indicates
whether the length and width dimensions passed to the method are valid. To be
valid, each dimension must be greater than 0.0. If the setDimensions method
indicates that the length and width dimensions are valid, the program should
calculate and display both the area and the total price; otherwise, it should display an
error message. Modify the program appropriately.

d.	 Save and then run the program. Test the program using 120 feet as the length,
75 feet as the width, and 1.55 as the price. The program should display 1000.00 as
the area in square yards and $1550.00 as the total price. Now, run the program again.
Enter –5 as the length, 6 as the width, and 3 as the price. The program should display
an error message because the length dimension is less than 0.0.

17.	 In this exercise, you create a Triangle class and a program that uses the Triangle
class to instantiate a Triangle object.

a.	 If necessary, create a new project named Intermediate17 Project and save it in the
Cpp8\Chap15 folder. Create a Triangle class. Enter the class definition in a header
file named Intermediate17 Triangle.h. The class should include a void method that
allows the program to set the triangle’s dimensions. The method should verify that
all of the dimensions are greater than 0.0 before assigning the values to the private
data members. The class also should include two value-returning methods. One
value-returning method should calculate the area of a triangle, and the other should
calculate the perimeter of a triangle. The formula for calculating the area of a triangle
is 1/2 * b * h, where b is the base and h is the height. The formula for calculating the

INTERMEDIATE

INTERMEDIATE

INTERMEDIATE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

586

perimeter of a triangle is a + b + c, where a, b, and c are the lengths of the sides.
Determine the appropriate variables to include in the class. Be sure to include a
default constructor that initializes the variables.

b.	 Create a program that prompts the user for the triangle’s dimensions and then
displays the triangle’s area and perimeter amounts. Enter your C++ instructions in
a source file named Intermediate17.cpp. Display the amounts with zero decimal
places. Also enter appropriate comments and any additional instructions required by
the compiler. Save and then run the program. Test the program appropriately.

18.	 In this exercise, you modify an existing header file.

a.	 Follow the instructions for starting C++ and viewing the Advanced18.cpp and
Advanced18 MyDate.h files, which are contained in either the Cpp8\Chap15\
Advanced18 Project folder or the Cpp8\Chap15 folder. The program uses the
MyDate class to create an object named today. Notice that the program prompts
the user to enter the month, day, and year. It then uses the MyDate class’s public
methods (setDate and displayDate) to set and display the date entered by the
user. The program also uses a public method named updateDate to increase the
day number by 1. It then displays the new date on the screen.

b.	 Run the program. Enter 3 as the month, 15 as the day, and 2016 as the year. The
computer screen shows that today is 3/15/2016 and tomorrow is 3/16/2016, which
is correct.

c.	 Run the program again. This time, enter 3 as the month, 31 as the day, and 2016
as the year. The computer screen shows that today is 3/31/2016 and tomorrow is
3/32/2016, which is incorrect.

d.	 Modify the updateDate method so that it updates the date correctly. For example,
if today is 3/31/2016, then tomorrow is 4/1/2016. If today is 12/31/2017, then
tomorrow is 1/1/2018. You do not have to worry about leap years; treat February as
though it always has 28 days. Save and then run the program. Test the program four
times, using the following dates: 3/15/2016, 4/30/2017, 2/28/2017, and 12/31/2016.

19.	 In this exercise, you modify the Terney Landscaping program from Lab 15-2 so that it
passes an object to a function.

a.	 If necessary, create a new project named Advanced19 Project and save it in the
Cpp8\Chap15 folder. Copy the instructions from the Lab15-2.cpp file into a source
file named Advanced19.cpp. Change the filename in the first comment. Copy the
instructions from the Lab15-2 Rectangle.h file (which is located in either the Cpp8\
Chap15\Lab15-2 Project folder or the Cpp8\Chap15 folder) into a header file named
Advanced19 Rectangle.h file. Change the filename in the first comment.

b.	 Modify the program so that it uses a function named calcAndDisplay to
calculate and display the area and the total price. Pass the Rectangle object and
the price per square yard to the function. Save and then run the program. Test the
program using 120 feet as the length, 75 feet as the width, and 1.55 as the price.
The program should display 1000.00 as the area in square yards and $1550.00 as the
total price.

ADVANCED

ADVANCED

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

587

Exercises 	

20.	 In this exercise, you modify the Rectangle class from Lab 15-2 so that it includes an
overloaded method.

a.	 If necessary, create a new project named Advanced20 Project and save it in the
Cpp8\Chap15 folder. Copy the instructions from the Lab15-2 Rectangle.h file (which
is located in either the Cpp8\Chap15\Lab15-2 Project folder or the Cpp8\Chap15
folder) into a header file named Advanced20 Rectangle.h. Change the filename in the
first comment.

b.	 Pool-Time, a company that sells in-ground pools, wants a program that its
salespeople can use to determine the number of gallons of water required to fill an
in-ground pool. To calculate the number of gallons, you need to find the volume
of the pool. The volume formula is length * width * depth. Modify the Rectangle
class so that it can be used to represent a pool. You will need to include an additional
private variable to store the depth value, as well as an additional public method to
calculate and return the volume. You also will need to modify the default constructor
and also overload the setDimensions method. Be sure to verify that the depth
value is greater than 0.0 before assigning the value to the private variable.

c.	 Use the IPO chart shown in Figure 15-23 to code the program. Enter your C++
instructions in a source file named Advanced20.cpp. Also enter appropriate
comments and any additional instructions required by the compiler. Display the
volume and number of gallons with two decimal places.

d.	 Save and then run the program. Use 25 feet as the length, 15 feet as the width,
and 6.5 feet as the depth. The program should display 2437.50 as the volume and
18233.84 as the number of gallons of water.

ADVANCED

Input Processing Output
length (in feet) Processing items: volume (in cubic feet)
width (in feet) Rectangle object gallons of water
depth (in feet)
 Algorithm:
 1. enter length, width, and depth
 2. use the Rectangle object’s setDimensions
 method to assign the length, width, and
 depth to the Rectangle object; pass the
 method the length, width, and depth
 3. use the Rectangle object’s calcVolume
 method to calculate and return the
 volume
 4. calculate the gallons of water by
 dividing the volume by 0.13368
 5. display the volume and gallons of water

Figure 15-23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

588

2.	 See Figure 15-25.

Answers to TRY THIS Exercises

Pencil and Paper

1.	 See Figure 15-24.

//declaration section
class Employee
{
public:
 Employee();
 Employee(string, double);
private:
 string name;
 double salary;
};

//implementation section
Employee::Employee()
{
 name = "";
 salary = 0.0;
} //end of default constructor

Employee::Employee(string n, double s)
{
 name = n;
 salary = s;
} //end of constructor

Figure 15-24

Figure 15-25   (continues)

//declaration section
class Employee
{
public:
 Employee();
 Employee(string, double);
 void setEmployee(string, double);
private:
 string name;
 double salary;
};

//implementation section
Employee::Employee()
{
 name = "";
 salary = 0.0;
} //end of default constructor

Employee::Employee(string n, double s)
{
 name = n;
 salary = s;
} //end of constructor

void Employee::setEmployee(string n, double s)
{
 name = n;
 salary = s;
} //end of setEmployee method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

589

Exercises 	

Computer

7.	 See Figures 15-26 and 15-27.

 1 //TryThis7.cpp
 2 //Calculates and displays a new salary
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 #include "TryThis7 Employee.h"
 8 using namespace std;
 9
10 int main()
11 {
12 //instantiate Employee object
13 Employee myEmployee;
14
15 //declare variables
16 string name = "";
17 double pay = 0;
18 double rate = 0.0;
19
20 //get name, salary, and raise percentage
21 cout << "Employee's name: ";
22 getline(cin, name);
23 cout << "Employee's current salary: ";
24 cin >> pay;
25 cin.ignore(100, '\n');
26 cout << "Raise rate: ";
27 cin >> rate;
28 cin.ignore(100, '\n');
29
30 //assign name and salary to the Employee object
31 myEmployee.setEmployee(name, pay);
32
33 //use the Employee object to display the
34 //name and current salary
35 cout << "Name: " << myEmployee.getName() << endl;
36 cout<< "Current salary: $" << myEmployee.getSalary()
37 << endl;
38
39 //use the Employee object to calculate the new salary
40 myEmployee.calcNewSalary(rate);
41
42 //use the Employee object to display the new salary
43 cout << "New salary: $" << myEmployee.getSalary()
44 << endl;
45 return 0;
46 } //end of main function

Figure 15-26   (continues)

//declaration section
class Employee
{
public:
 Employee();
 Employee(string, double);
 void setEmployee(string, double);
private:
 string name;
 double salary;
};

//implementation section
Employee::Employee()
{
 name = "";
 salary = 0.0;
} //end of default constructor

Employee::Employee(string n, double s)
{
 name = n;
 salary = s;
} //end of constructor

void Employee::setEmployee(string n, double s)
{
 name = n;
 salary = s;
} //end of setEmployee method

(continued)

Figure 15-25

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

590

Figure 15-26

 1 //TryThis7.cpp
 2 //Calculates and displays a new salary
 3 //Created/revised by <your name> on <current date>
 4
 5 #include <iostream>
 6 #include <string>
 7 #include "TryThis7 Employee.h"
 8 using namespace std;
 9
10 int main()
11 {
12 //instantiate Employee object
13 Employee myEmployee;
14
15 //declare variables
16 string name = "";
17 double pay = 0;
18 double rate = 0.0;
19
20 //get name, salary, and raise percentage
21 cout << "Employee's name: ";
22 getline(cin, name);
23 cout << "Employee's current salary: ";
24 cin >> pay;
25 cin.ignore(100, '\n');
26 cout << "Raise rate: ";
27 cin >> rate;
28 cin.ignore(100, '\n');
29
30 //assign name and salary to the Employee object
31 myEmployee.setEmployee(name, pay);
32
33 //use the Employee object to display the
34 //name and current salary
35 cout << "Name: " << myEmployee.getName() << endl;
36 cout<< "Current salary: $" << myEmployee.getSalary()
37 << endl;
38
39 //use the Employee object to calculate the new salary
40 myEmployee.calcNewSalary(rate);
41
42 //use the Employee object to display the new salary
43 cout << "New salary: $" << myEmployee.getSalary()
44 << endl;
45 return 0;
46 } //end of main function

(continued)

Figure 15-27   (continues)

 1 //TryThis7 Employee.h
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <string>
 5 using namespace std;
 6
 7 //declaration section
 8 class Employee
 9 {
10 public:
11 Employee();
12 Employee(string, double);
13 void setEmployee(string, double);
14 double getSalary();
15 string getName();
16 void calcNewSalary(double);
17 private:
18 string name;
19 double salary;
20 };
21
22 //implementation section
23 Employee::Employee()
24 {
25 name = "";
26 salary = 0.0;
27 } //end of default constructor
28
29 Employee::Employee(string n, double s)
30 {
31 name = n;
32 salary = s;
33 } //end of constructor
34
35 void Employee::setEmployee(string n, double s)
36 {
37 name = n;
38 salary = s;
39 } //end of setEmployee method
40
41 double Employee::getSalary()
42 {
43 return salary;
44 } //end of getSalary method
45
46 string Employee::getName()
47 {
48 return name;
49 } //end of getName method
50
51 void Employee::calcNewSalary(double r)
52 {
53 if (r >= 0.0)
54 salary = salary * r + salary;
55 else
56 salary = 0.0;
57 //end if
58 } //end of calcNewSalary method

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

591

Exercises 	

8.	 See Figures 15-28 and 15-29.

(continued)

Figure 15-27

 1 //TryThis7 Employee.h
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <string>
 5 using namespace std;
 6
 7 //declaration section
 8 class Employee
 9 {
10 public:
11 Employee();
12 Employee(string, double);
13 void setEmployee(string, double);
14 double getSalary();
15 string getName();
16 void calcNewSalary(double);
17 private:
18 string name;
19 double salary;
20 };
21
22 //implementation section
23 Employee::Employee()
24 {
25 name = "";
26 salary = 0.0;
27 } //end of default constructor
28
29 Employee::Employee(string n, double s)
30 {
31 name = n;
32 salary = s;
33 } //end of constructor
34
35 void Employee::setEmployee(string n, double s)
36 {
37 name = n;
38 salary = s;
39 } //end of setEmployee method
40
41 double Employee::getSalary()
42 {
43 return salary;
44 } //end of getSalary method
45
46 string Employee::getName()
47 {
48 return name;
49 } //end of getName method
50
51 void Employee::calcNewSalary(double r)
52 {
53 if (r >= 0.0)
54 salary = salary * r + salary;
55 else
56 salary = 0.0;
57 //end if
58 } //end of calcNewSalary method

 1 //TryThis8.cpp - displays a formatted date
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 #include "TryThis8 FormattedDate.h"
 7 using namespace std;
 8
 9 int main()
10 {
11 //create a FormattedDate object
12 FormattedDate hireDate;
13
14 //declare variables
15 string hireMonth = "";
16 string hireDay = "";
17 string hireYear = "";
18
19 //get month, day, and year
20 cout << "Enter the month number: ";
21 cin >> hireMonth;
22 cout << "Enter the day number: ";
23 cin >> hireDay;
24 cout << "Enter the year number: ";
25 cin >> hireYear;
26
27 //use the FormattedDate object to set the date
28 hireDate.setDate(hireMonth, hireDay, hireYear);
29
30 //display the formatted date
31 cout << "Employee hire date: "
32 << hireDate.getFormattedDate() << endl;
33 return 0;
34 } //end of main function

Figure 15-28   (continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 1 5 Classes and Objects

592

(continued)

 1 //TryThis8.cpp - displays a formatted date
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <iostream>
 5 #include <string>
 6 #include "TryThis8 FormattedDate.h"
 7 using namespace std;
 8
 9 int main()
10 {
11 //create a FormattedDate object
12 FormattedDate hireDate;
13
14 //declare variables
15 string hireMonth = "";
16 string hireDay = "";
17 string hireYear = "";
18
19 //get month, day, and year
20 cout << "Enter the month number: ";
21 cin >> hireMonth;
22 cout << "Enter the day number: ";
23 cin >> hireDay;
24 cout << "Enter the year number: ";
25 cin >> hireYear;
26
27 //use the FormattedDate object to set the date
28 hireDate.setDate(hireMonth, hireDay, hireYear);
29
30 //display the formatted date
31 cout << "Employee hire date: "
32 << hireDate.getFormattedDate() << endl;
33 return 0;
34 } //end of main function

Figure 15-28

 1 //TryThis8 FormattedDate.h
 2 //Created/revised by <your name> on <current date>
 3
 4 #include <string>
 5 using namespace std;
 6
 7 //declaration section
 8 class FormattedDate
 9 {
10 public:
11 FormattedDate();
12 void setDate(string, string, string);
13 string getFormattedDate();
14 private:
15 string month;
16 string day;
17 string year;
18 };
19
20 //implementation section
21 FormattedDate::FormattedDate()
22 {
23 //initializes the private variables
24 month = "0";
25 day = "0";
26 year = "0";
27 } //end of default constructor
28
29 void FormattedDate::setDate(string m , string d, string y)
30 {
31 //assigns program values to the private variables
32 month = m;
33 day = d;
34 year = y;
35 } //end of setDate method
36
37 string FormattedDate::getFormattedDate()
38 {
39 //formats and returns values stored in the private variables
40 return month + "/" + day + "/" + year;
41 } //end of getFormattedDate method

Figure 15-29

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C++ Keywords

a p p e n d i x   A
abstract	 dynamic_cast	 mutable	 struct

and	 else	 namespace	 switch

and_eq	 enum	 new	 template

array	 event	 not	 this

asm	 explicit	 not_eq	 throw

auto	 export	 nullptr	 true

bitand	 extern	 operator	 try

bitor	 false	 or	 typedef

bool	 finally	 or_eq	 typeid

break	 float	 private	 typename

case	 for	 property	 union

catch	 friend	 protected	 unsigned

char	 gcnew	 public	 using

class	 generic	 register	 virtual

compl	 goto	 reinterpret_cast	 void

const	 if	 return	 volatile

const_cast	 initonly	 safe_cast	 wchar_t

continue	 inline	 sealed	 while

default	 int	 short	 xor

delegate	 interface	 signed	 xor_eq

delete	 interior_ptr	 sizeof

do	 literal	 static

double	 long	 static_cast

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ASCII Codes

a p p e n d i x   B
Character ASCII Binary Character ASCII Binary Character ASCII Binary

SPACE 32 00100000 : 58 00111010 T 84 01010100

! 33 00100001 ; 59 00111011 U 85 01010101

“ 34 00100010 < 60 00111100 V 86 01010110

35 00100011 = 61 00111101 W 87 01010111

$ 36 00100100 > 62 00111110 X 88 01011000

% 37 00100101 ? 63 00111111 Y 89 01011001

& 38 00100110 @ 64 01000000 Z 90 01011010

' 39 00100111 A 65 01000001 [91 01011011

(40 00101000 B 66 01000010 \ 92 01011100

) 41 00101001 C 67 01000011] 93 01011101

* 42 00101010 D 68 01000100 ^ 94 01011110

+ 43 00101011 E 69 01000101 _ 95 01011111

‘ 44 00101100 F 70 01000110 ` 96 01100000

– 45 00101101 G 71 01000111 a 97 01100001

. 46 00101110 H 72 01001000 b 98 01100010

/ 47 00101111 I 73 01001001 c 99 01100011

0 48 00110000 J 74 01001010 d 100 01100100

1 49 00110001 K 75 01001011 e 101 01100101

2 50 00110010 L 76 01001100 f 102 01100110

3 51 00110011 M 77 01001101 g 103 01100111

4 52 00110100 N 78 01001110 h 104 01101000

5 53 00110101 O 79 01001111 i 105 01101001

6 54 00110110 P 80 01010000 j 106 01101010

7 55 00110111 Q 81 01010001 k 107 01101011

8 56 00111000 R 82 01010010 l 108 01101100

9 57 00111001 S 83 01010011 m 109 01101101

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A p p e n d i x   B ASCII Codes

596

Character ASCII Binary Character ASCII Binary Character ASCII Binary

n 110 01101110 t 116 01110100 z 122 01111010

o 111 01101111 u 117 01110101 { 123 01111011

p 112 01110000 v 118 01110110 | 124 01111100

q 113 01110001 w 119 01110111 } 125 01111101

r 114 01110010 x 120 01111000 ~ 126 01111110

s 115 01110011 y 121 01111001 DELETE 127 01111111

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Common Syntax Errors

a p p e n d i x   C
1.	 A statement that does not end with a semicolon

2.	 A missing #include directive (such as #include <iostream>, #include <string>,
#include <fstream>, #include <cmath>, #include <ctime>, #include
<iomanip>, or #include <cstdlib>)

3.	 No using namespace std; statement

4.	 Unmatched braces in a function, selection structure, or loop (for example, an opening
brace that does not have a corresponding closing brace or vice versa)

5.	 A statement block (function, multi-statement selection structure, multi-statement loop)
not enclosed in a set of braces

6.	 Braces facing the wrong way (for example, using } as the opening brace or { as the
closing brace)

7.	 A reserved word used as the name of a variable or named constant

8.	 cin used with the insertion operator (<<) rather than with the extraction operator (>>)

9.	 cout used with the extraction operator (>>) rather than with the insertion operator (<<)

10.	 The extraction operator entered as > rather than as >>

11.	 The insertion operator entered as < rather than as <<

12.	 A variable, named constant, class, object, keyword, function, or method whose name is
either misspelled or entered in the wrong case

13.	 A space entered between two characters in an arithmetic assignment operator
(for example, using + = rather than +=)

14.	 An arithmetic assignment operator whose characters are reversed (for example, using
=* rather than *=)

15.	 A space entered between two characters in a comparison operator (for example,
using > = rather than >=)

16.	 A comparison operator whose characters are reversed (for example, using => rather
than >=)

17.	 A comparison made using one equal sign (=) rather than two equal signs (==)

18.	 In an if statement, an else clause that does not have a matching if clause

19.	 A do while statement that does not end with a semicolon

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A p p e n d i x   C Common Syntax Errors

598

20.	 A string enclosed in single quotation marks rather than in double quotation marks
(for example, using 'Mary' rather than "Mary")

21.	 A char character enclosed in double quotation marks rather than in single quotation
marks (for example, using "A" rather than 'A')

22.	 A char memory location initialized using two single quotation marks ('') rather than
two single quotation marks separated by a space character (' ')

23.	 An array declared using parentheses rather than square brackets

24.	 Accessing an element that is beyond the memory allocated to an array

25.	 A for clause that contains commas rather than semicolons, or one that does not
contain two semicolons

26.	 In a switch statement, a missing colon (:) in a case clause

27.	 In a switch statement, using semicolons in a case clause

28.	 A missing break; statement in a switch statement

29.	 A value-returning function that does not contain a return statement

30.	 A missing function prototype for a function that is defined below the main function

31.	 A missing #include directive for a header file that contains a class definition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

How To Boxes

a p p e n d i x   D
How To Figure Page(s)

Create a Computer Solution to a Problem 2-3 25

Name a Memory Location in C++ 3-2 54

Use the Decimal (Base 10) Number System 3-7 57

Use the Binary (Base 2) Number System 3-8 58

Initialize Variables 3-10 61

Declare a Variable in C++ 3-12 62

Declare a Named Constant in C++ 3-14 63

Use cin and >> to Get Numeric or Character Data 4-3 78

Use the cout Object 4-5 79

Use the static_cast Operator 4-10 83–84

Write an Assignment Statement 4-11 85–86

Use an Arithmetic Assignment Operator 4-13 87

Use the if Statement 5-5 119–120

Use Comparison Operators in an if Statement’s Condition 5-6 120

Use Logical Operators in an if Statement’s Condition 5-14 127–128

Use the toupper and tolower Functions 5-20 134

Use the fixed and scientific Stream Manipulators 5-21 135

Use the setprecision Stream Manipulator 5-22 136

Use the switch Statement 6-22 175

Use the while Statement 7-10 209

Update Counters and Accumulators 7-14 213

Use the for Statement 7-23 219

Use the do while Statement 8-4 252

Use the pow Function 9-2 282

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A p p e n d i x  D How To Boxes

600

How To Figure Page(s)

Use the sqrt Function 9-3 283

Use the rand Function 9-7 286

Generate Random Integers within a Specific Range 9-8 286–287

Use the srand Function 9-9 288

Create a Program-Defined Value-Returning Function 9-12 291–292

Call (Invoke) a Value-Returning Function 9-13 294

Write a Function Prototype 9-17 298

Create a Program-Defined Void Function 10-2 331

Call (Invoke) a Void Function 10-3 332

Declare and Initialize a One-Dimensional Array 11-2 372

Use an Assignment Statement to Assign Data to a One-Dimensional
Array

11-3 373–374

Use the Extraction Operator to Store Data in a One-Dimensional Array 11-4 374–375

Display the Contents of a One-Dimensional Array 11-5 375–376

Declare and Initialize a Two-Dimensional Array 12-2 427–428

Use an Assignment Statement to Assign Data to a Two-Dimensional
Array

12-3 429

Use the Extraction Operator to Store Data in a Two-Dimensional Array 12-4 430

Display the Contents of a Two-Dimensional Array 12-5 431–432

Declare and Initialize string Variables and Named Constants 13-1 462

Use the Extraction Operator (>>) to Get String Input from the Keyboard 13-2 463

Use the getline Function to Get String Input from the Keyboard 13-3 463

Use the ignore Function 13-7 468–469

Use the length Function 13-10 472

Use the substr Function 13-12 474

Use the find Function 13-14 478–479

Use the erase Function 13-17 481–482

Use the replace Function 13-19 484

Use the insert Function 13-21 486

Use the assign Function 13-23 488

Use the Concatenation Operator 13-25 489

Create Input and Output File Objects 14-2 513

Open a Sequential Access File 14-3 514–515

(continued)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

How To Boxes 	

601

How To Figure Page(s)

Determine the Success of the open Function 14-5 516–517

Write Data to a Sequential Access File 14-6 518

Read Data from a Sequential Access File 14-8 520

Test for the End of a Sequential Access File 14-9 522

Close a Sequential Access File 14-10 523

Define a Class 15-1 554–555

Instantiate an Object 15-2 556

Refer to a Public Member of an Object’s Class 15-3 556

(continued)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index

Special Characters
& (ampersand), 127–128, 132, 341
* (asterisk), 81, 87
\ (backslash), 464
: (colon), 514–515, 558
{}(curly braces), 118, 208–209, 220, 293, 371
“ (double quotation mark), 462
= (equal sign), 85, 87, 120, 121, 132
! (exclamation point), 120, 121, 517, 522
/ (forward slash), 81, 87, 92, 132
< (left angle bracket), 78–79, 120, 132, 562
- (minus sign), 81, 87, 132
(number sign), 519
() (parentheses), 81, 93, 132
% (percent sign), 81, 87, 132
| (pipe symbol), 127–129, 132
+ (plus sign), 81, 87, 132, 429, 489
> (right angle bracket), 77, 120, 132,

374–375, 430, 462–463, 520, 562
‘ (single quotation mark), 60
[] (square brackets), 371, 443

A
abstraction, 552
accumulating values stored in two-

dimensional arrays, 434–435
accumulators, 211, 211–217
actual argument, 281, 281–282
Addison O’Reilly problem, 26–27,

28–34, 78
calculation statements, 86
cout object, 79–80
data types, 45
desk-checking, 31–34, 54, 88–89
initial values for variables, 62
IPO charts, 26, 28, 54, 76
output statement, 80
problem specification, 26–27, 28, 30,

54, 76
prompts, 80
revising, 54–55
source code, 92
variable declaration statements, 63, 76

addition assignment operator (+=), 87
addition operator (+), 81, 132
address-of operator (&), 341

algorithms, 5
basketball through hoop problem,

158–160
clock program, 256
coding, 52, 76–80
daily rental fee program, 165–170
daily specials problem, 254–255
desk-checking, 31–42, 88–90. See also

desk-checking
Dr. N problem, 115
Pete’s Pizzeria problem, 117
planning, 28–31
Sherri problem, 248, 249
voter eligibility program, 162–163

American Standard Code for Information
Interchange (ASCII), 58, 58–59

codes, 595–596
ampersand (&)

address-of operator, 341
And operator (&&), 127–128, 132

And operator (&&), 127–128, 132
area or circumference program, 124–126,

130–132
flowchart, 125

argument(s), 134
actual, 281, 281–282

argument(s) (listed by name)
argumentList argument, 336
character argument, 487
count argument, 473, 481, 487
delimiterCharacter argument, 464,

469, 521
fileName argument, 514, 515, 516
insertString argument, 485, 486
mode argument, 514
numberOfCharacters argument, 469
parameterList argument, 292–293, 304,

335, 564, 566
replacementString argument, 484
returnDataType argument, 292, 293
searchString argument, 478, 479
stringVariableName argument, 464, 519
subscript argument, 473, 478, 481, 484
variableName argument, 519

argumentList argument, 336
arithmetic assignment statements, 87, 87–88

arithmetic operators, 81–84, 132–133
arrays, 370

one-dimensional. See one-dimensional
arrays

populating, 371
two-dimensional. See two-dimensional

arrays
arrays (listed by name)

calories array, 376–383, 385
fees array, 398
grades array, 428, 429, 431
letters array, 375
numbers array, 372–373
nums array, 399
orders array, 426
pollResults array, 386–388
prices array, 428, 431–432
rates array, 389–391
scientists array, 371
types array, 396–398

ASCII (American Standard Code for
Information Interchange), 58, 58–59

codes, 595–596
assemblers, 3, 3–4
assembly languages, 3, 3–4
assign function, 487
assignment operator (=), 85
assignment statements, 84, 84–88

assigning data to one-dimensional
arrays, 373–374

asterisk (*)
multiplication assignment operator (*=),

87, 132
multiplication operator, 81

attributes, 552
average, calculating, 384–385

B
backslash (\), newline character (\n), 464
base class, 553
basketball through hoop problem, 158–160

problem specification and algorithm,
158–160

behaviors, 552
bill-paying problem, 24–25
bonus program, 483, 485

Note: Page numbers in boldface type indicate where key terms are defined.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

604

containing parameterized constructors,
562–564

containing private data members
and public member methods,
557–562

defining, 553–555
derived, 553
reusing, 565–566

class definitions, 553, 553–555
class statement, 555, 557
clock program, 255–258

algorithm, code, and sample run, 256
desk-checking, 257

close function, 522, 522–523
closing sequential access files, 522–523
coding, 2

algorithms, 52, 76–80
nested selection structures, 163–165
selection structures, 118–120

colon (:), scope resolution operator (::),
514–515, 558

comments, 92, 92–93, 118, 209
commission program, 207–208, 224–226

C++ instructions, 225
flowchart, 207
IPO chart information and C++

instructions, 210
posttest loop, 253
problem specification and IPO chart,

204–205, 225
Company Name program, 488–489, 490
company ratings program, 338–341

desk-checking, 340
comparison, unnecessary, in conditions,

170–171
comparison operators, 120, 120–121,

132–133
compilers, 4
compound conditions, using instead

of nested selection structure,
167–168

computer programs, 2
concatenating strings, 489–490
concatenation operator (+), 489
constants

literal, 60, 60–61
named. See named constants

constructors, 558
default, 558
parameterized, 562–564, 563

consuming the character, 464
control structures, 5, 5–9. See also

repetition structures; selection
structures; sequence structure

count argument, 473, 481, 487
counter(s), 211, 211–217
counter-controlled loops, 217
cout object, 78, 78–80, 512, 513

bool data type, 56, 60
Boolean operators, 126, 126–129
break statement, 176, 176–177
bubble sort, 399, 399–401
bugs, 90
built-in functions, 280

C
C++ instructions

calories program, 377
commission program, 225
eBook Collection program, 523–525
guessing game program, 289
hypotenuse program, 283–285
Jenko Booksellers program, 434–435
motorcycle club program, 396–397
searching an array, 386–387
stock price program, 213–214, 217–218
tip program, 223
total payroll program, 221
Wilson Company program, 436–438

calcArea method, 557, 559, 566, 567
calculation statements, Addison O’Reilly

problem, 86
calling functions, 293–297
calories array, 376–383, 385
calories program, 376–382

C++ instructions, 377
desk-checking, 377–382
problem specification and IPO chart,

376
camel case, 53
car depreciation program, 258–261

flowchart, 261
problem specification, 258–260

case
converting to uppercase or lowercase,

133–134
sensitivity of memory location names, 53

case clauses, 175–177
Chapton Company program, problem

specification, 432–433
char data type, 56
character(s), 56

converting to uppercase or lowercase,
133–134

character argument, 487
character literal constants, 60
cin object, 77, 77–78, 512, 513
cin statement, 300, 342

one-dimensional arrays, 379, 387
passing variables by reference, 342
string variables, 467
two-dimensional arrays, 431

class(es), 552
base, 553
containing overloaded methods,

566–569

cout statement, 300, 303, 342
nested loops, 257
one-dimensional arrays, 378–379, 387,

393, 395, 398, 405
passing variables by reference, 342
string variables, 467
two-dimensional arrays, 431

curly braces ()
function body, 293
initializing arrays, 371
statement blocks, 118, 208–209, 220

currency converter program, 388–391
problem specification, IPO chart

information, and C++
instructions, 389–390

D
daily rental fee program

algorithm, 165–170
problem specification, 166

daily specials problem, 254–255
problem specification and algorithm,

254–255
data types

Addison O’Reilly problem, 45
fundamental, 55
selecting for memory locations, 55–60
user-defined, 55

data types (listed by name)
bool data type, 56, 60
char data type, 56
double data type, 56–57, 60, 291
float data type, 56–57, 60
int data type, 56, 60
short data type, 56, 60
string data type, 55, 56, 60–61, 462

data validation, 129
debugging, 90
decision structure. See selection structures
decision symbol, 116
declaration section, 555
declaration statements, 62

Addison O’Reilly problem, 76
declaring

memory locations, 62–64
named constants, 63–64
one-dimensional arrays, 371–373
string variables, 462
two-dimensional arrays, 427–428
variables, 62–63

decrementing, 212
default constructors, 558
delimiterCharacter argument, 464, 469, 521
demoted values, 61
derived classes, 553
desk-checking, 31, 31–42

Addison O’Reilly problem, 31–34, 54,
88–89

 I n d e x

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 I n d e x

605

calories program, 377–382
clock program, 257
company ratings program, 340
gas mileage problem, 35
highest number program, 394–395
savings account program, 300–303
stock price program, 215–216, 219
tip program, 224
tips program, 342–344
total payroll program, 222
Wilson Company program, 440–442

directives, 93
displayArray function, 382, 383,

443–444
displayCompanyInfo function, 336
displayInfo function, 523
displaying

area or circumference of a circle, 124–125,
130–132

contents of one-dimensional arrays,
375–382

contents of two-dimensional arrays,
431–433

displayLine function, 336
displayRating function, 338–341
displayTotalSales function, 336
division assignment operator (/=), 87
division operator (/), 81, 132
do while loops, displaying contents of

one-dimensional arrays, 375–376
do while statement, 252, 252–254
double data type, 56–57, 60, 291
double quotation marks (“), empty strings, 462
Dr. N problem, 114–116

problem specification, 116
dual-alternative selection structures, 115
duplicating characters within string

variables, 487–489

E
eBook Collection program, 523–528

IPO chart information and C++
instructions, 523–525

elements, 371
empty strings (“”), 61, 462
encapsulation, 552
endl stream manipulator, 79
endless loops, 210
eof function, 522
equal sign (=)

arithmetic assignment operators, 87
assignment operator, 85
equal to operator (==), 120, 121, 132
not equal to operator (!=), 120, 121, 132

equal to operator (==), 120, 121, 132
erase function, 481, 481–482
errors

logic. See logic errors

runtime, 90, 428
syntax. See syntax errors

escape sequence, 464
even integers program, 226–228

problem specification, 226–227
exclamation point (!)

not equal to operator (!=), 120, 132
Not logical operator, 517, 522

executable files, 91
explicit type conversion, 83, 83–84
exponentiation, 281
exposed details, 552
extended selection structures. See multiple-

alternative selection structures
extraction operator (>>), 77

getting string input from keyboard,
462–463

reading char and numeric data from
files, 520

storing data in one-dimensional arrays,
374–375

storing data in two-dimensional arrays,
430

F
false path, 115
fees array, 398
fields, 519
file(s)

executable, 91
header, 561
input, 512
object, 91
output, 512
sequential access. See sequential

access files
source, 91
text, 512

file objects, creating, 512–513
fileName argument, 514, 515, 516
find function, 478, 478–481
fixed stream manipulator, 135
float data type, 56–57, 60
flowchart(s), 28, 28–29

area or circumference program, 125
car depreciation program, 261
commission program, 207
savings account program, 297
stock price program, 215, 218
swapping numeric values program, 123

flowcharting
nested selection structures, 161–163
posttest loops, 250–252
pretest loops, 206–208

flowlines, 29
for clause, 300

nested loops, 257
one-dimensional arrays, 378–382

for loops
displaying contents of one-dimensional

arrays, 375
one-dimensional arrays, 374, 385, 387,

395
for statement, 219, 219–229
formal parameters, 292
formatting numeric output, 134–137
forward slash (/)

comments, 92
division assignment operator (/=), 87
division operator, 81, 132

function(s), 93, 279–317
arguments, 134
built-in, 280
calling, 293–297
passing one-dimensional arrays to,

382–384
passing two-dimensional arrays to,

443–444
program-defined, 280
value-returning. See value-returning

functions
function(s) (listed by name)

assign function, 487
close function, 522, 522–523
displayArray function, 382, 383,

443–444
displayCompanyInfo function, 336
displayInfo function, 523
displayLine function, 336
displayRating function, 338–341,

339–340
displayTotalSales function, 336
eof function, 522
erase function, 481, 481–482
find function, 478, 478–481
getAverage function, 384–385
getBalance function, 298–303, 304
getHighest function, 392–395
getline function, 463–464, 464,

465–468, 521
getRandomNumber function,

291–292, 294
getRectangleArea function, 291,

292–293, 294–295
getSubtotal function, 291, 292, 295
getTips function, 341–344
ignore function, 468, 468–471
insert function, 485, 485–487
is_open function, 516, 516–517
length function, 471, 471–473, 475
main function. See main function
open function, 514, 514–518
pow function, 281, 281–282, 285
rand function, 285, 287–287, 289
replace function, 484, 484–485
saveInfo function, 523

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I n d e x

606

sqrt function, 282, 282–283, 285
srand function, 287, 287–288
stod function, 482, 482–483
stoi function, 483
substr function, 473, 473–477, 477
time function, 288, 288
tolower function, 133, 133–134, 281
toupper function, 133, 133–134, 281
verifyNumeric function, 475–477

function body, 93, 293
function headers, 93
function prototypes, 298, 298–303
fundamental data types, 55

G
game programs, problem specification, 212
gas mileage problem, 34–35
getAverage function, 384–385
getBalance function, 298–303, 304
getFormattedDate method, 556
getHighest function, 392–395
getline function, 463–464, 464,

465–468, 521
getRandomNumber function, 291–292, 294
getRectangleArea function, 291,

292–293, 294–295
getSide method, 557, 559
getSubtotal function, 291, 292, 293, 295
getTips function, 341–344
global variables, 304
grades array, 428, 429, 431
greater than operator (>), 120, 132
greater than or equal to operator (>=),

120, 132
gross pay program

problem specifications, 129
truth tables, 129–130

guessing game program, 289–290
problem specification, IPO chart

information, and C++
instructions, 289

H
hand-tracing. See desk-checking
header files, 561
hidden details, 552
highest number program, 391–396

desk-checking, 394–395
problem specification, IPO chart

information, and C++
instructions, 392

high-level languages, 4
How To boxes, list, 599–601
hypotenuse program, 283–285

problem specification, IPO chart
information; and C++
instructions, 283–285

I
IDE (Integrated Drive Environment), 91
if clause, strings, 475
if statement

comments to mark end, 118
comparison operators, 120–121
how to use, 119–120
logical operators, 127–128
one-dimensional arrays, 401, 402

ifstream class, 512, 513
ifstream file object, 515, 522
ignore function, 468, 468–471
implementation section, 555
implicit type conversion, 61

in arithmetic expressions, 82–83
inAlphabet object, 521
#include directive, 561–562
#include directives, 93, 512
INCREASE named constant, 430
increment operator (++), 429
incrementing, 212
indexes. See subscript(s)
inFile object, 520–521
infinite loops, 210
inheritance, 553
initializing, 60

counters and accumulators, 211
one-dimensional arrays, 371–373
string variables, 462
two-dimensional arrays, 427–428
variables, 60–62

input, 26
input files, 512
input statement, Addison O’Reilly

problem, 78
input/output symbol, 29
insert function, 485, 485–487
inserting characters within string

variables, 485–487
insertion operator (<<), 78, 78–79
insertString argument, 485, 486
instances, 552
instantiating, 552

objects, 556–557
int data type, 56, 60
integers, 56
internal memory, 52–53

data storage, 57–60
interpreters, 4
invalid data, 34
IPO, 26
IPO (Input, Processing, and Output)

charts, 26, 52
Addison O’Reilly problem, 26, 28, 54, 76
calories program, 376
commission program, 204–205, 225
eBook Collection program, 523–525
gas mileage problem, 34

guessing game program, 289
hypotenuse program, 283–285
Jenko Booksellers program, 434–435
Martin Sports program, 332–334
motorcycle club program, 396–397
Primrose Auction House program,

464–465
searching an array, 386–387
Snowboard Shop problem, 173
stock price program, 213–214, 217–218
tip program, 223
total payroll program, 221
Wilson Company program, 436–438

is_open function, 516, 516–517
istream class, 512
iterations, 9

J
Jenko Booksellers program, 434–435

problem specification, IPO chart
information, and C++
instructions, 434–435

K
keyboard, getting string input from, 462–464
keywords, 53
keywords (listed by name)

list, 593
private keyword, 557
void keyword, 331

L
left angle bracket (<)

directives, 562
insertion operator (<<), 78–79
less than operator, 120, 132
less than or equal to operator, 120, 132

length function, 471, 471–473, 475
less than operator (<), 120, 132
less than or equal to operator (<=), 120, 132
letters array, 375
lifetime, variables, 304
linkers, 91
literal constants, 60, 60–61
local variables, 122, 122–123, 304
logic errors, 90, 90–91

selection structures, 165–172
logic structures. See control structures;

repetition structures; selection
structures; sequence structure

logical operators, 126, 126–129, 132–133
truth tables, 128

loop(s), 9. See also repetition structures
endless (infinite), 210
posttest. See posttest loops
pretest. See pretest loops

loop body, 203

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 I n d e x

607

loop exit condition, 202
looping condition, 202

M
machine code, 3
machine languages, 3
main function, 280, 298, 300, 302, 304

one-dimensional arrays, 393
passing variables by value, 339
strings, 476

Martin Sports program, 332–336
problem specification, IPO chart

information, and C++
instructions, 332–334

memory, internal, 52–53
memory locations

declaring, 62–64
selecting data types, 55–60
selecting initial values, 60–62
selecting names, 53–55

methods, 555
overloaded. See overloaded methods
signature, 564

methods (listed by name)
calcArea method, 557, 559, 566, 567
getFormattedDate method, 556
getSide method, 557, 559
setDate method, 555, 556
setSide method, 557, 558–559, 560,

563, 566
Square method, 557

minus sign (-)
negation operator, 81, 132
subtraction assignment operator (-=), 87
subtraction operator, 81, 132

mnemonics, 3
mode argument, 514
modulus assignment operator (%=), 87
modulus operator (%), 81, 132
motorcycle club program, 396–398

problem specification, IPO chart
information, and C++
instructions, 396–397

multiple-alternative selection structures,
173, 173–177

switch statement, 174, 174–177
multiplication assignment operator (*=), 87
multiplication operator (*), 81, 87, 132

N
named constants, 53

declaring, 63–64
negation operator (-), 81, 132
nested loops, 254, 254–258
nested selection structures, 158, 158–165

coding, 163–165
flowcharting, 161–163
reversing outer and nested decisions, 169

newline character (\n), 464
not equal to operator (!=), 120, 121, 132
Not logical operator (!), 517, 522
number(s)

integers, 56
random, 285–288
real, 56, 56–57

number sign (#), separating fields, 519
numberOfCharacters argument, 469
numbers array, 372–373
numeric literal constants, 60
numeric output, formatting, 134–137
numeric values, swapping, 121–123
nums array, 399

O
object(s), 552

instantiating, 556–557
object code, 91
object file, 91
object-oriented program(s), 4, 4–5
object-oriented programming (OOP), 552
ofstream class, 512, 513
ofstream file object, 515, 518, 522
one-dimensional arrays, 369–413, 370

accessing individual elements, 388–391
calculating totals and averages,

384–385
data entry, 373–375
declaring and initializing, 371–373
displaying contents, 375–382
elements, 371
finding highest value, 391–396
parallel, 396–398
passing to a function, 382–384
searching, 385–388
sorting data, 399–406
storing data, 376–382
subscripts, 370–371

open function, 514, 514–518
opening sequential access files, 514–518
Or operator (||), 127–129, 132
order of precedence, 81, 132
orders array, 426
ostream class, 512
outFile object, 518–519
output, 26
output files, 512
output statement, Addison O’Reilly

problem, 80
outSales object, 519
overloaded methods, 566

classes containing, 566–569

P
parallel arrays, 396
parameterized constructors, 562–564, 563

classes containing, 562–564

parameterList argument, 564, 566
value-returning functions, 292–293, 304
void functions, 336

parentheses (())
functions, 93
overriding order of precedence, 81, 132

Pascal case, 555
passing

one-dimensional arrays to functions,
382–384

by reference, 295, 337, 341–344
two-dimensional arrays to a function,

443–444
by value, 295, 337, 338–341

percent sign (%)
modulus assignment operator (%=), 87
remainder operator, 81, 132

Pete’s Pizzeria problem, problem
specification and algorithms, 117

pipe symbol, Or operator (||), 127–129, 132
pizza slices program, 565–569
plus sign (+)

addition assignment operator (+=), 87
addition operator, 81, 132
concatenation operator, 489
increment operator (++), 429

pollResults array, 386–388
polymorphism, 553
populating the array, 371
posttest loops, 204, 248–254

do while statement, 252–254
flowcharting, 250–252

pow function, 281, 281–282, 285
precedence, order of, 81, 132
pretest loops, 204, 204–208

counter-controlled, 217–219
flowcharting, 206–208
for statement, 219–229
while statement, 208–211

prices array, 428, 431–432
priming read, 206
Primrose Auction House program, 464–471

problem specification and IPO chart, 464
private data, 555, 557–562
private keyword, 557
problem specifications

Addison O’Reilly problem, 26–27, 28,
30, 54, 76

basketball through hoop problem, 158–160
calories program, 376
car depreciation program, 258–260
Chapton Company program, 432–433
commission program, 204–205, 225
daily rental fee program, 166
daily specials problem, 254–255
Dr. N problem, 116
even integers program, 226–227
game programs, 212

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

I n d e x

608

gas mileage problem, 34
gross pay program, 129
guessing game program, 289
hypotenuse program, 283–285
Jenko Booksellers program, 434–435
Martin Sports program, 332–334
motorcycle club program, 396–397
Pete’s Pizzeria problem, 117
Primrose Auction House program,

464–465
searching an array, 386–387
Sherri problem, 248, 249
stock price program, 213–214, 217–218
tip program, 223
total payroll program, 221
voter eligibility program, 162–163

problem-solving process, 23–42, 75–101
coding the algorithm, 52, 76–80
desk-checking the algorithm, 31–42,

88–90. See also desk-checking
evaluating and modifying the program,

90–94
everyday problems, 24–25
planning the algorithm, 28–31
problem analysis, 26–27
steps, 26

procedure-oriented programs, 4
process symbol, 29
processing items, 29, 29–30
program(s), 2

object-oriented, 4, 4–5
procedure-oriented, 4

program-defined functions, 280
program-defined value-returning

functions, 291–293
program-defined void functions, 331–336
programmers, 2

employment opportunities, 2–3
job, 2

programming, 2, 2–3
programming languages, 2

assembly, 3, 3–4
high-level, 4, 4–5
history, 3–5
machine, 3

promoted values, 61
prompts, 78

Addison O’Reilly problem, 80
pseudocode, 28
pseudo-random number generators, 285
public members, 555, 557–562

referring to, 556–557
Pythagorean theorem, 283–285

R
rand function, 285, 287–287, 289
RAND_MAX constant, 285, 286
random numbers, 285–288

RATE names constant, 483
rates array, 389–391
reading from sequential access files,

519–522
real numbers, 56, 56–57
Rearrange Name program, 479–481
records, 519
reference, passing variables by, 295, 337,

341–344
remainder operator (%), 81, 132
removing characters from string

variables, 481–483
repetition structures, 8, 8–9, 201–236,

202, 247–268. See also loop(s);
posttest loops; pretest loops

counters and accumulators, 211–217
replace function, 484, 484–485
replacementString argument, 484
replacing characters in string variables,

484–485
return statement, 293, 301, 303, 331
returnDataType argument, 292, 293
reusing classes, 565–566
right angle bracket (>)

directives, 562
extraction operator (>>), 77, 374–375,

430, 462–463, 520
greater than operator, 120, 132
greater than or equal to operator, 120, 132

runtime, 53
runtime errors, 90, 428

S
Sahirah problem, problem specification,

202–203
saveInfo function, 523
savings account program, 295–297,

298–303
desk-checking, 300–303
flowcharts, 297
problem specification, IPO chart

information, and C++
instructions, 296–297

scalar variables, 370
scientific stream manipulator, 135
scientists array, 371
scope, variables, 304
scope resolution operator (::), 514,

514–515, 558
searching

contents of string variables,
477–481

two-dimensional arrays, 436–442
searching an array, 385–388

problem specification, IPO chart
information, and C++
instructions, 386–387

searchString argument, 478, 479

selection structures, 6, 6–8, 113–146, 114,
157–184

coding, 118–120
comparison operators, 120–121
converting to uppercase or lowercase,

133–134
displaying area or circumference,

124–125, 130–132
dual-alternative, 115
flowcharting, 116–118
formatting numeric output, 134–137
logic errors, 165–172
logical operators, 126–129
multiple-alternative (extended), 173,

173–177
nested. See nested selection structures
single-alternative, 115
summary of operators, 132–133
swapping numeric values, 121–123
truth tables, 129–130
unnecessary, 169–170

sentinel values, 205
sequence structure, 5–6, 6
sequential access files, 511–542, 512

closing, 522–523
opening, 514–518
reading information form, 519–522
testing for end, 522
writing data to, 518–519

setDate method, 555, 556
setprecision stream manipulator, 136
setSide method, 557, 558–559, 560,

563, 566
Sherri problem, problem specification,

illustrations, and algorithms, 248
short data type, 56, 60
short-circuit evaluation, 129
signatures, methods, 564
simple variables, 370
single quotation mark (‘), character literal

constants, 60
single-alternative selection structures, 115
Snowboard Shop problem, 173–177

IPO chart, 173
social media program, 385–388
Social Security Number program, 486–487
sorting, 399

data stored in one-dimensional array,
399–406

source code, 91
Addison O’Reilly problem, 92

source file, 91
sqrt function, 282, 282–283, 285
square brackets ([]), declaring arrays,

371, 443
Square class, 557, 558–562, 563,

565–566, 567
Square method, 557

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	 I n d e x

609

Square objects, 557, 567
srand function, 287, 287–288
start/stop symbol, 29
statement(s), 62

arithmetic assignment, 87, 87–88
assignment. See assignment statements
calculation, Addison O’Reilly problem, 86
declaration, 62, 76
input, Addison O’Reilly problem, 78
output, Addison O’Reilly problem, 80

statement(s) (listed by name)
break statement, 176, 176–177
cin statement. See cin statement
class statement, 555, 557
cout statement. See cout statement
do while statement, 252, 252–254
if statement. See if statement
return statement, 293, 301, 303, 331
for statement, 219, 219–229
switch statement, 174, 174–177
while statement. See while statement

statement blocks, 118, 208–209, 220
static_cast operator, 83, 83–84
stock price program, 213–216

desk-checking, 215–216, 219
flowchart, 215, 218
problem specification, IPO chart

information, and C++
instructions, 213–214, 217–218

stod function, 482, 482–483
stoi function, 483
stream(s), 76
stream manipulators, 79
stream objects, 76, 76–77
string(s), 461–500
string concatenation, 489, 489–490
string data type, 55, 56, 60–61, 462
string literal constants, 60, 60–61
string variables

accessing characters, 473–477
concatenating strings, 489–490
declaring and initializing, 462
determining number of characters,

471–473
duplicating characters within,

487–489
inserting characters within, 485–487
Primrose Auction House program,

465–471
removing characters, 481–483
replacing characters, 484–485
searching contents, 477–481

stringVariableName argument,
464, 519

sub variable, one-dimensional arrays, 378,
379–381

subscript(s), 370
one-dimensional arrays, 370–371
two-dimensional arrays, 426–427

subscript argument, 473, 478, 481, 484
substr function, 473, 473–477, 477
subtraction assignment operator (-=), 87
subtraction operator (-), 81, 132
swapping numeric values program, 121–123

flowchart, 123
switch statement, 174, 174–177
syntax, 62
syntax errors, 90

common, list, 597–598

T
temp variable, 304
testing for end of sequential access files, 522
text, 52
text files, 512
time function, 288, 288
tip program, 223–224

desk-checking, 224
problem specification, IPO chart

information, and C++
instructions, 223

tips program, 341–344
desk-checking, 342–344

tolower function, 133, 133–134, 281
total(s), calculating, 384–385
total payroll program, 220–223

desk-checking, 222
problem specification, IPO chart

information, and C++
instructions, 221

toupper function, 133, 133–134, 281
true path, 115
truth tables, 128, 129–130

logical operators, 128
two-dimensional arrays, 425–450, 426

accumulating values stored in, 434–435
data entry, 428–431
declaring and initializing, 427–428
displaying contents, 431–433
passing to a function, 443–444
searching, 436–442

type casts, 83, 83–84
type conversion, in arithmetic expressions,

82–83
types array, 396–398

U
update read, 206
updating, 212, 213
user-defined data types, 55
using directives, 93

V
valid data, 34
value, passing variables by, 295, 337,

338–341
value-returning functions, 281,

281–285
program-defined, 291–293

variable(s), 53
declaring, 62–63
global, 304
initializing, 60–62
local, 122, 122–123, 304
passing by reference, 295, 337,

341–344
passing by value, 295, 337,

338–341
scalar, 370
scope and lifetime, 304
simple, 370
string. See string variables

variableName argument, 519
verifyNumeric function,

475–477
void functions, 281, 329–358, 330

passing variables to, 337–344
program-defined, 331–336

void keyword, 331
voter eligibility program, 161–163

problem specification and algorithm,
162–163

W
while clause

one-dimensional arrays, 401,
402–405

strings, 476–477
two-dimensional arrays, 441–442

while loops
one-dimensional arrays, 374–375, 398
two-dimensional arrays, 431

while statement, 208, 208–211, 339
comments to mark end, 209
passing variables by value, 339, 340

white-space character, 77
Wilson Company program, 436–440

desk-checking, 440–442
problem specification, IPO chart

information, and C++
instructions, 436–438

writing to sequential access files,
518–519

Z
ZIP Code program, 472–473,

475–477

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Brief Contents�
	Contents�
	Preface
	Read This before You Begin
	Ch 1: An Introduction to Programming
	Programming a Computer
	A Brief History of Programming Languages
	Control Structures
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 2: Beginning the Problem-Solving Process
	Problem Solving
	Solving Everyday Problems
	Creating Computer Solutions to Problems
	Step 1-Analyze the Problem
	Step 2-Plan the Algorithm
	Step 3-Desk-Check the Algorithm
	The Gas Mileage Problem
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 3: Variables and Constants
	Beginning Step 4 in the Problem-Solving Process
	Selecting a Name for a Memory Location
	Selecting a Data Type for a Memory Location
	Selecting an Initial Value for a Memory Location
	Declaring a Memory Location
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 4: Completing the Problem-Solving Process
	Finishing Step 4 in the Problem-Solving Process
	Getting Data from the Keyboard
	Displaying Messages on the Computer Screen
	Arithmetic Operators in C++
	Assignment Statements
	Step 5-Desk-Check the Program
	Step 6-Evaluate and Modify the Program
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 5: The Selection Structure
	Making Decisions
	Flowcharting a Selection Structure
	Coding Selection Structures in C++
	Comparison Operators
	Swapping Numeric Values
	Displaying the Area or Circumference
	Logical Operators
	Using the Truth Tables
	A Different Version of the Area or Circumference Program
	Summary of Operators
	Converting a Character to Uppercase or Lowercase
	Formatting Numeric Output
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 6: More on the Selection Structure
	Nested Selection Structures
	Flowcharting a Nested Selection Structure
	Coding a Nested Selection Structure
	Logic Errors in Selection Structures
	Multiple-Alternative Selection Structures
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 7: The Repetition Structure
	Repeating Program Instructions
	Using a Pretest Loop to Solve a Real-World Problem
	The while Statement
	Using Counters and Accumulators
	Counter-Controlled Pretest Loops
	The for Statement
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 8: More on the Repetition Structure
	Posttest Loops
	Flowcharting a Posttest Loop
	The do while Statement
	Nested Repetition Structures
	The Clock Program
	The Car Depreciation Program
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 9: Value-Returning Functions
	Functions
	Value-Returning Functions
	The rand, srand, and time Functions
	Creating Program-Defined Value-Returning Functions
	Calling a Function
	Function Prototypes
	The Scope and Lifetime of a Variable
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 10: Void Functions
	Functions
	Creating Program-Defined Void Functions
	Passing Variables to a Function
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 11: One-Dimensional Arrays
	Arrays
	One-Dimensional Arrays
	The Calories Program
	Passing a One-Dimensional Array to a Function
	Calculating a Total and an Average
	The Social Media Program-Searching an Array
	The Currency Converter Program-Accessing an Individual Element
	The Highest Number Program-Finding the Highest Value
	Parallel One-Dimensional Arrays
	Sorting the Data Stored in a One-Dimensional Array
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 12: Two-Dimensional Arrays
	Using Two-Dimensional Arrays
	Accumulating the Values Stored in a Two-Dimensional Array
	Searching a Two-Dimensional Array
	Passing a Two-Dimensional Array to a Function
	Chapter Summary
	Key Term
	Review Questions
	Exercises

	Ch 13: Strings
	The string Data Type
	Getting String Input from the Keyboard
	The Primrose Auction House Program
	Determining the Number of Characters in a string Variable
	Accessing the Characters in a string Variable
	Searching the Contents of a string Variable
	Removing Characters from a string Variable
	Replacing Characters in a string Variable
	Inserting Characters within a string Variable
	Duplicating a Character within a string Variable
	Concatenating Strings
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 14: Sequential Access Files
	File Types
	Creating File Objects
	Opening a Sequential Access File
	Writing Data to a Sequential Access File
	Reading Information from a Sequential Access File
	Closing a Sequential Access File
	The eBook Collection Program
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Ch 15: Classes and Objects
	Object-Oriented Terminology
	Defining a Class in C++
	Instantiating an Object and Referring to a Public Member
	Example 1-A Class That Contains a Private Data Member and Public Member Methods
	Example 2-A Class That Contains a Parameterized Constructor
	Example 3-Reusing a Class
	Example 4-A Class That Contains Overloaded Methods
	Chapter Summary
	Key Terms
	Review Questions
	Exercises

	Appendix A: C++ Keywords
	Appendix B: ASCII Codes
	Appendix C: Common Syntax Errors
	Appendix D: How to Boxes
	Index

		2015-07-17T19:17:26+0000
	Preflight Ticket Signature

